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DYNAMICAL ZETA FUNCTIONS AND TRANSFER OPERATORS

by David Ruelle*.

Certain generating functions, encoding properties of objects like prime numbers, peri-
odic orbits, ..., have received the name of zeta functions. They are useful in studying the
statistical properties of the objects in question. Zeta functions have generally been asso-
ciated with problems of arithmetic or algebra, and tend to have common features: mero-
morphy, Euler product formula, functional equation, location of poles and zeros (Dirichlet
series expansion, Riemann hypothesis), and relation with certain operators (typically oper-
ators acting on cohomology groups). The dynamical zeta functions to be discussed here are
set up to count periodic orbits, but to count them with fairly general weights. As a conse-
quence the subject will have a more function theoretic flavor than the study of arithmetic
or algebraic zeta functions. Apart from that our zeta functions will have properties similar
to those of the more traditional ones. The main difference will be that the relevant opera-
tors (called transfer operators) will act on (infinite dimensional) cochain groups instead of
(finite dimensional) cohomology groups. Intuitively, the weights that we have introduced
prevent passage from cochains to cohomology groups. Technically this will force us to
consider determinants in infinite dimension. The study of dynamical zeta functions uses
original tools (transfer operators, kneading determinants) which we shall discuss below.

The simplest invariant measures for a dynamical system are those carried by periodic
orbits. Counting periodic orbits is thus a natural task from the point of view of ergodic
theory. And dynamical zeta functions are an effective tool to do the counting. The tool
turns out to be so effective in fact as to make one suspect that there is more to the story
than what we currently understand.

Some traditional examples of zeta functions.

The grandmother of all zeta functions is the Riemann zeta function defined by

for Res > 1. Actually this function was first considered by Euler, who noted that

Cr(s)= J[ 1=p™)7"

p prime
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(this is the Euler product formula). Riemann showed that (r(s) extends meromorphically
to C with a single pole at s = 1, and that there is a functional equation relating (r(s) and
Cr(1 — s). Because (g is a generating function for the primes, it can be used to prove the
prime number theorem: that the number of primes up to z is ~ z/logz. A theorem from
harmonic analysis called the Wiener-Ikehara Tauberian theorem yields the prime number
theorem from the fact that (g(s) has a simple pole at s = 1, and no other pole or zero for
Res > 1.

After the Riemann zeta function, innumerable functions with related properties have
been introduced. In particular, given an algebraic variety over a finite field F,, we may
define a “Weil zeta function” by

00 amo -
Cw(z) =exp Z ElFle \
m=1

Here one has extended the algebraic variety to the algebraic closure of F,, obtaining a
space M, and f : M — M is the Frobenius map (acting by z — 2% on coordinates);
|Fix ™| is the number of fixed points of the m-th iterate of f. The function {w (2) satisfies
the Weil conjectures (Weil, Dwork, Grothendieck, Deligne), in particular it is rational.
Note that the variable z in {y(z) has to be thought of as the exponential of —s in (g(s).

The Weil zeta function counts periodic points (or periodic orbits) for the dynamical
system (M, f) where f is the Frobenius map. It is natural to consider a more general space
M and map f: M — M and (assuming that |Fixf™| is finite for each m) to define

() =exp S “ Fixf™
25

We have here again an “Euler product formula”, namely the following identity between
formal power series:

¢(z) =] -="H (1)

P

where the product is over periodic orbits P, and |P| is the period of P. For example one
can take for f a diffeomorphism of a compact manifold M (Artin-Mazur). In the special
case when f is hyperbolic (technically, f is an Axiom A diffeomorphism restricted to a
basic set) one finds that this zeta function is rational (Smale, Guckenheimer, Manning,
Bowen, Fried).

As an example of (1) consider the map x — 1 — ux? of the interval [—1,1] to itself.
For the Feigenbaum value p = 1.401155. .., this map has one periodic orbit of period 2"
for each integer n > 0. Therefore

()=l -="7" = [La+=") "



where we have used (1) and (1 — z)™% = [[02,(1 + 22"). Note that this ¢ satisfies the
functional equation ¢(z?) = (1 — 2)¢(z).

A natural way to count periodic orbits for a map f is to weight them with the topolog-
ical index L(z, f). Specifically, assume that f is a diffeomorphism of the compact manifold
M, z € Fixf, and 1 — T, f is invertible (where T, f is the tangent map to f at x). Then

L(xz, f) = sgndet(1 — T, f)

and we have the Lefschetz trace formula

dim M
S -Drufa= Y Lz, f)
k=0 z€Fixf

where f,; is the action of f on the k-th homology group of M with real coeflicients.
Suppose now that 1 — T, f™ is invertible for all fixed points z of f™ for all m > 0, and
define the Lefschetz zeta function

Cr(2) —expz Z (z, f™)

a:Elefm
then the trace formula yields
dim M -
H det(1 — zfy) Y
k=0

(therefore (1, (z) is rational). In many interesting cases L(z, f™) = 1 for all periodic points
z, so that (1 (z) = ((2).

Suppose now that, instead of a discrete time dynamical system generated by f : M —
M we have a continuous time dynamical system, i.e., a semiflow or flow (f*) on M. Then
the Euler formula (1) with z replaced by e~* suggests to define a zeta function

C(s)=[J(@ —et=n)t (2)

where the product is over (prime) periodic orbits w, and £(w) is the period of w.

A much-studied example of flow is the geodesic flow on a Riemann manifold N. We
recall the definition. If a point z(¢) moves at unit speed along a geodesic of N, and u(t) =
43(t) € TpyM, we have |Ju(t)|| = 1. Writing u(t) = f*u(0) defines a diffeomorphism f*
of the unit tangent bundle M of N, and (f!):cr is called the geodesic flow. Note that it
is a flow on the unit tangent bundle M rather than on N. Observe also that the period of
a periodic orbit for the geodesic flow is the length of a closed geodesic on N.

Closely related to (2) is the definition of the Selberg zeta function (g. This zeta
function appears in questions of arithmetic and is defined in terms of a Fuchsian group
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I' ¢ SL(2,R) operating on the complex upper half-plane H (and a matrix representation of
I which we shall ignore here). If I is torsion-free and I'\ H compact, then I'\ H is a compact
surface with curvature —1 (because H with the Poincaré metric is the Lobatchevsky plane,
with curvature —1, the geodesics of H are half circles centered on the real axis). Let (f?)
be the geodesic flow on I'\ H, so that the periods £(w) in (2) are the lengths of the closed
geodesics, then the Selberg zeta function is

Hcs+k HH 1~ [exp £(w)]*7F)

w k=0

It can be shown that (g is an entire analytic function satisfying a functional equation and
a form of the Riemann hypothesis. In fact the zeros of (s are related to the eigenvalues
of the Laplace-Beltrami operator A on I'\ H. We have thus a connection between classical
mechanics (the geodesic flow) and quantum mechanics (with the Hamiltonian A). This
connection has been much studied in relation with “quantum chaos”.

To conclude our list of examples let us mention the currently popular Thara-Selberg
zeta function associated with a finite unoriented graph (. This function (; is of the
form (1) where periodic orbits are replaced by cycles (circuits on G without immediate
backtracking). It is known that 1/(; is a polynomial, and that (; satisfies the Riemann
hypothesis precisely when G is Ramanujan (Ramanujan graphs were named by Lubotzky,
Phillips and Sarnak, examples are not easy to construct).

Dynamical zeta functions.

Let us now equip the dynamical system (M, f), where f need not be invertible but
Fixf™ is finite for all m > 0, with a weight g : M — C (real positive weights will be of
special interest). A zeta function associated with the weighted dynamical system (M, f, g)

is defined by
= exp Z Z H g(frx (3)

wele_fm k=0

as a formal power series. This is the prototype of what we want to call a dynamical zeta
function. We have here again an Euler product formula

|P|-1

) === ] o(f*=
P k=0

where zp € P is chosen arbitrarily. So, introducing a weight does not spoil the basic
combinatorial properties of the zeta function.

What about analyticity? Can we get more analyticity than is immediately obvious,
and then make use of it to obtain statistical properties of the (weighted) periodic orbits
we are here counting? To be specific suppose that g = exp A where A is a real function
and write

P(A) = limsup — log Z exp Z A(fF2)

m—>00 zeFix fm
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then the radius of convergence of ((z) is exp(—P(A)). Can we prove more: that {(z) has
an isolated pole at exp(—P(A))? This could for instance be used to prove analyticity of
A — P(A). We shall now give an example of this situation.

Let t be an r x r matrix with elements ¢;; = 0 or 1. Define

Q= {(gk)kez :t§k§k+1 =1 for all k}

and let d((&k), (mk)) = exp[— min{|k| : & # M }]- Then Q is a compact metric space with
respect to the metric d. The map 7 : (§) — (&k1) is called a shift and is a homeomorphism
of Q. If we assume that » > 2 and that for some power ¢V of ¢ all the matrix elements tﬁ}’
are > 0, the dynamical system (2, 7) is called a mixing subshift of finite type. Let C*(Q)
be the Banach space of real a-Holder continuous functions on 2. Since the a-Holder norm

is given by
|A(E) — A(n)]
Alla = max{sup |A(§)|,sup ——-——
[1A]| {£ | A(E)] SUP e

we see that A € C*(Q) says that the dependence of A((£x)rez) on & is exponentially small
for large k (bounded by ||A||oe~/F]).

}

1. Proposition. The limit

m—1

1

P(4) = lim —log > exp Y A(R¢) (4)
£eFixTm k=0

exists and there is R > exp(—P(A)) such that the dynamical zeta function {(z) associated
with the weighted dynamical system (2, 7, exp A) is meromorphic for |z| < R, with a single
pole at exp(—P(A)), and no other pole or zero.

[Note that if A = 0, the zeta function counts periodic orbits with weight 1 and can be
computed exactly (Bowen-Lanford) because |Fix7™| = trt™ as one readily checks. Here
one finds ((z) = exp Y oo_, Z-trt™ = exp(—trlog(1 — zt)) = 1/det(1 — 2t)].

m=1 m

The function A — P(A), called pressure, arises in a theory called thermodynamic
formalism which is based on ideas and methods of statistical mechanics. Having obtained
the above nontrivial but apparently useless result, I put it as Exercise 7(c) on p. 101 in
my book Thermodynamic Formalism [3]. A few years later (Dec 29, 1982) Bill Parry of
Warwick wrote to me about very interesting results on Axiom A flows he had obtained with
his student Mark Pollicott. These results used Exercise 7(c) which unfortunately he had
been unable to do. Could I help? By the time I had (painfully) managed to reconstruct
the solution of the exercise I received another letter: 13 Jan 83 / Dear David, / We’ve
finally managed to do your exercise! So ignore my last letter. / Sincerely / Bill Parry.

Before we look into the work of Parry and Pollicott, let me remark on a relation
between the zeta function (2) for a flow and the dynamical zeta function (3). Let M be
a compact manifold, f : M — M a diffeomorphism, and 7" : M — R a smooth function
> 0. A manifold M is obtained by identifying in {(z,7) : € M,0 < 7 < T(z)} the
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points (z,7'(z)) and (fz,0). Furthermore there is a smooth flow (f*) on M such that
fiz,7) = (z,t +7)if 0 < 74+t < T(x). This flow (f*) is called the suspension of f
corresponding to the ceiling function T'. It is now easy to check that the zeta function
defined by (2) for the flow (f) satisfies

5 [e’e] 1 m—1 .
{)=expd — Y eV
m zEFixf™ k=0

m=1

and is thus equal to the dynamical zeta function (3) for z =1 and g = e~*T. In particular,
¢(s) will be analytic in s when ((z) defined by (3) is analytic at z = 1.

By the way, it is natural to introduce a generalization of (2) associated with a function
B: M — C, viz

£(w) 1
¢(s) = T (1 - expl—s / dt B(f'z(w))])”

w

where x(w) is an arbitrarily chosen point in w. In the case of a suspension this is again
related to (3).

Hyperbolic dynamics and thermodynamic formalism.

Let K be a compact invariant set for the C” diffeomorphism f : M — M. One says
that K is hyperbolic if the tangent bundle restricted to K has a continuous splitting

TieM =V V¥
invariant under 7' f and such that, for a suitable Riemann metric and 0 < 6 < 1,
| T f" ]| < [|v]|0™ when veVin>0

|| To "] < ||v]|0" when veVy,n>0

If the entire manifold M is hyperbolic, f is called an Anosov diffeomorphism. Of particular
interest are the hyperbolic sets with local product structure. We shall not define this concept,
introduced by Smale, but mention as an example the closure K of the set of periodic points
for an Anosov diffeomorphism. (It is conjectured that for an Anosov diffeomorphism, the
closure of the set of periodic points is in fact always M itself).

Arnold’s cat map is an example of an Anosov diffeomorphism on R?/Z2. Tt is defined
by (z,y) — (z + y,z + 2y)(mod1). Hyperbolicity is seen by checking that the eigenvalues

of (} ;) have modulus # 1.

If K is hyperbolic with local product structure, then f restricted to K is essentially
a subshift of finite type. This follows from the existence of Markov partitions first proved
(after an example of Adler and Weiss) by Sinai for Anosov diffeomorphisms, then by Bowen
in the general case. More precisely there is a subshift of finite type (€2, 7) and a Hoélder
continuous map 7 of {2 onto K such that



(a) for=morT

(b) #~! is uniquely defined on a residual set (countable intersection of dense open
subsets of K)

(c) maxzex |7tz is finite.
Counting periodic points for 7 is not quite the same thing as counting periodic points for
f but almost (Manning and Bowen have shown how to do an exact counting, using finitely
many subshifts of finite type). It simplifies matters to assume that f is topologically mixing
on K: if 01,02 are nonempty open subsets of K, then Oy N f~"0y # § for sufficiently
large n. In brief, from Proposition 1 one obtains the following.

2. Proposition. Let K be hyperbolic with local product structure, such that f|K
is topologically mixing. If A : K — R is Holder continuous, then

m—1
| k
P(A) = W}E)noo — log e;fm exp kz_% A(f"z)

exists and there is R > exp(—P(A)) such that the dynamical zeta function ((z) associated
with the weighted dynamical system (K, f|K,exp A) is meromorphic for |z| < R, with a
single pole at exp(—P(A)), and no other pole or zero.

Let me return to the letter that Bill Parry sent me at the end of 1982. His interest
was in hyperbolic flows (in particular Anosov flows) which have a theory very similar
to hyperbolic (and Anosov) diffeomorphisms. We shall not give detailed definitions but
note an important example: the geodesic flow on a compact manifold of variable negative
curvature is an Anosov flow. If (f!) is a smooth flow restricted to a hyperbolic set K
with local product structure, Bowen has shown that counting periodic orbits for (f?) is
basically the same thing as counting periodic orbits with weights for a subshift of finite
type. (This is because (f!) has a Markov partition, i.e., it is basically a suspension of a
subshift of finite type with a suitable ceiling function). Assuming that (f?) is topologically
mixing, one can then show that ((s) defined by (2) has a meromorphic extension to an
open set containing {s : Res > h}, without zero and with a single pole at s = h. (The
number A > 0 is known as “topological entropy of (f*) restricted to K” with a general
definition that need not concern us here). The analyticity of {(s) is thus very similar to the
analyticity of the Riemann zeta function as used to prove the prime number theorem. The
same method (Wiener-Tkehara Tauberian theorem) allowed Parry and Pollicott to prove
that the number of periodic orbits @ with period £(w) < z is ~ "® /hz. This extended
an earlier result of Margulis by a new and very elegant method. Later, Lalley, Katsuda
and Sunada, Parry, Pollicott, Sharp followed the same line of thought and studied the
distribution of periods for periodic orbits satisfying various conditions, with error terms,
etc. When (f?) is the geodesic flow on a manifold of variable negative curvature one
obtains thus detailed information about the lengths of geodesics on the manifold. The
special case of surfaces of constant curvature —1 is of arithmetic interest (as we said when
we introduced Selberg’s zeta function). So the study of dynamical zeta functions extends
to manifolds of variable negative curvature some results of arithmetic interest known in
the case of constant negative curvature.



The method of transfer operators.

The proof of Proposition 1 uses transfer operators. Given a set A (which need not be
a manifold) and maps F : A — A, g : A — C, a transfer operator £ acting on functions
® : A — C is defined by

(LR)(x)= > g)(y) (5)

yeF—1{z}

[As an example, if F' has Jacobian determinant J, and g = 1/|J|, the direct image by F of
the measure ®(z)dz is (L®)(z)dz]. The situation to keep in mind is when F is finite-to-
one, expanding and the functions g, ® have some kind of smoothness, so that £ preserves
(or improves) smoothness.

Consider now a one-sided subshift of finite type (A, F'), i.e., with the notation used
earlier, A = {(&k)r>0 : teyep,, = 1 for all k} and F(€x) = (€p+1). We define a metric on A
by analogy with that on (2, and take g = exp A where A is $-Hélder continuous. Then

(L®)(&r,6n,...) = D et (g, &, 6,..)

where the sum is over the £y such that t¢¢, = 1. Similarly

o) ©) = Y [ew Y A(FE)]a() (6)
k=0

n:Emn=¢

Now, expressions like (6) or like

Z exp Z_ A(Fkﬂ) (7)
n:Fmn=n k=0

(where the sum is over periodic points) are known in statistical mechanics as partition
functions and one can prove under various conditions that the log of the partition function
divided by m tends to a limit P(A) when m — oco. Here one finds that when £ acts on
the Banach space of 8-Holder functions

lim [[£™|]Y/™ =P
m—r00
where P(A) is defined as in (4) with 7 replaced by F. Therefore exp P(A) is the spectral
radius of £. By a formula due to Nussbaum we can estimate the essential spectral radius

of L to be
< liInsupm—)ooHEm - Em”l/m

when the E,, have finite rank. Pollicott noticed that by taking F,, = L™P,, and P,,®
a piecewise constant approximation of ® one gets that the essential spectral radius of £
is < exp(—f + P(A)). So the part of the spectrum which is > exp(—g + P(A)) consists
of isolated eigenvalues of finite multiplicity. In fact, because L is positivity preserving
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and F mixing, exp P(A) is a simple eigenvalue, and there is no other eigenvalue with the
absolute value exp P(A). (This is a Perron-Frobenius type result. Because of this, transfer
operators are sometimes called Perron-Frobenius operators).

Notice that (7) is something like a trace of £™, and because of this one can show
that each eigenvalue A of £ contributes a factor 1/(1 — Az) to ((z) defined by (3). It
is not obvious that the part of the spectrum < exp(—8 + P(A)) will contribute a factor
analytic for |z| < exp(8 — P(A)), but this can be proved by a trick due to Haydn (and
techniques of the thermodynamic formalism). We have just outlined a modern proof of
(an improved version of) Proposition 1, up to a detail: our function A depends on the
one-sided sequence § = (§o,&1,&2, .. .) instead of = (..., €-1,€0,&1,--.). This is however

A

not a problem because it can be proved (Livsic) that a a-Hoélder function A(§) may be
rewritten as A(§) + B(§) — B(7€) where A is 8-Holder with 8 = a/2, so that A and A give
the same dynamical zeta function.

We have just seen how to derive analyticity properties of the zeta function associated
with the weighted dynamical system (A, F,exp A) from study of the transfer operator £
defined by (6). The same technique applies to other cases; its success depends on the
choice of a Banach space B of “smooth” functions for which the essential spectral radius
of L is strictly smaller than its spectral radius (i.e., £ is quasicompact).

An important example, that of piecewise monotone maps of the interval, was treated
by Baladi and Keller. Let a = ag < a1 < ... < ay = b. We take A = [a, b] compact C R,
and assume that F': A — A is such that F|(a;_1,a;) is continuous and strictly monotone
for i = 1,...,N. Also assume that F™z, F™y € (ain)—1,0i@n)) for all m > 0 implies
x = y, and that g : A — C is > 0, of bounded variation with regular discontinuities.
Writing

m—1

R= lim (sup[£™1(z))*™ ,  R= lim (sup [ g(F*z))*/™
m—r 00 T x

M — 00
k=0

one obtains that ¢(z) is analytic for |z| < R~', meromorphic for |z| < R, and that the
eigenvalues A with A > R of £ acting on the functions of bounded variation correspond
to poles A~ ! of ((z), with the same multiplicity. Usually, R > R and (since we assumed
g >0) R~ is a pole of {(z).

Traces and determinants

A trace on an algebra S over C is a linear operator Tr : § — C such that TrM; My =
TrMo M. In particular we shall be interested in traces on algebras generated by transfer
operators (or containing them). Remember that the transfer operator £ associated with
the weighted dynamical system (M, f, g) satisfies

(LR)(x) = Y 9(y)®(y) (8)

y:fy=z
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If £1, L, are transfer operators associated with maps fi1, fo : M — M and weights g1, g :
M — C, we have

(L2£1®@)(2) = > g2(f11)91(v) () (9)

y:fafry=x

so that £1L4 is again a transfer operator. An example of a trace is the counting trace
defined on transfer operators by

TrL = Z g(x)

z€Fixf

[It is readily seen from (9) that Tr°L;Ls = Tr°L5L;. In specific cases one would want to
check that the sum in Tr°L converges, and that Tr° M depends only on M as an operator,
not on its specific representation as sum of transfer operators of the form (8)].

When we have a trace Tr we can define a determinant Det(1 —2.M) as a formal power
series
o0 Zm

Det(1 — 2M) = exp(— Z E’I‘r/\/lm)

m=1

(1 denotes the identity operator). If S is the algebra of N x N matrices and Tr, Det are
the usual trace and determinant, the above is an identity that one can check by putting M
in normal Jordan form. Note also that the counting determinant Det®(1 — z£) constructed
with the counting trace is related to the dynamical zeta function (3) by

¢(2) = 1/Det®(1 — 2£)

Suppose now that M is a smooth manifold and that the algebra S is generated by
transfer operators of the form (8) with smooth f : M — M, g : M — C. We can then
define a sharp trace Tr¥ such that

L= ) L, fg(o)

z€Fixf

where L#(z, f) = sgndet(1 — (T,,f)~'). [We assume here that T, f, 1 — T, f are invertible,
but we shall see later that the definition of Tr* extends to more general situations where
Fixf need not be finite. Note also that if f is a diffeomorphism L*(z, f) = L(z, f~1)].
A sharp determinant Detf(1 — z£) is defined correspondingly, and a sharp zeta function
¢t(z) = 1/Detf(1 — 2L).

Let me interrupt the discussion of traces to address an obvious problem. Following
geometric intuition we have introduced dynamical zeta functions and transfer operators
associated with a weighted dynamical system (M, f,g). But the use of traces makes it
natural to introduce linear combinations of transfer operators, so that we loose the ge-
ometric connection with a single dynamical system. What is a natural formalism in the
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more general situation? Note that if there is a partition of unity (x,,) such that f restricted
to suppx. has an inverse 9, we may rewrite (8) as

Z G, ()P (Yux)

where G, = (xwg) © ¥,. We are thus led to defining a generalized transfer operator M
(associated with a family of weights G, : M — C and a family of maps v, : suppG,, — M)
by

(M) () = / 0o G (2) B ()

where dw denotes a measure (which may be taken to be a probability measure). Linear
combinations of generalized transfer operators are again generalized transfer operators:
they form an algebra (under suitable conditions on the choice of the G, and v,). It
is possible to consider M as a transfer operator associated with a (non unique) random
dynamical system. There is no longer a pressure associated with the generalized transfer
operator M but, writing

(IM[®)(z) = / 0w |Gy (2)|® (1)

we shall denote by e the spectral radius of | M| acting on bounded functions.

Let us return to the smooth situation (the G, and 1), are C") and note that the sharp

trace is now
TI‘ﬂM / dw Z $ ww ( )

zeFixy,,

It is convenient at this point to introduce operators M*) acting on k-forms « such that

M(k)a:/dew.w:a

where 1}« is the pullback of a by 9. [If AF(Ty) : AF(Tp M) — AF(Ty. M) is the exten-
sion of T, to the exterior algebra of T, M and if (AF(T,))* : Ak(TjwM) — AF(TrM)
denotes its transpose, we write (¢*a)(z) = (AF(Tpv))*a(yz)]. In particular M) reduces
to M. Following Atiyah and Singer we define now a flat trace Trl,’C such that

T M) _/ Z ) tr (A (Tetw))

= \det (1-Ty)|

where try and det are the finite dimensional trace and determinant. [Writing M®*) as
the limit of a regularized operator with kernel M (z, ), we obtain Tri M*) as the limit of
[ dz triM (z, )]. 1t is readily seen that

TPM =) " (=1)*TrpM®
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so that

Detf(1 — 2M) = ][ Det},(1 — zm®) D"
k=0

3. Proposition.* Let M be a compact Riemann manifold. We assume that G, :
M — C, ¢, : X, = M (where X, is a 6-neighborhood of suppG,,) are C", r > 1,
depending measurably on w, and that

/dw||Ger<oo , sup ||, ]r < 00
w

Also assume that there is 6 € (0,1) such that

dist (¢, Yuy) < 0dist(z, y)

for all x, y, w. Then the part of the spectrum of M in {\ : |\| > 0"ef’} consists of isolated
eigenvalues of finite multiplicities. Furthermore, Det},(1— 2M) converges in {z : |z|07eP <
1} and its zeros there are precisely the inverses of the eigenvalues of M with the same
multiplicity.

There are results similar to the above proposition for M® and Det? (1 — zM®). It
follows in particular that 1/Det*(1 — 2M) is meromorphic for |z| < 8~ "e~F. Note that
for contracting 1) we have L(z,v) = 1, hence Det? = Det®, and we obtain results for
the dynamical zeta functions ((z) associated with smooth expanding maps (first studied
by Tangerman). Proposition 3 also applies to a rational map F' if it is hyperbolic, i.e.,
uniformly expanding in a neighborhood of the Julia set J (J is the closure of the set of
repelling periodic orbits).

Proposition 3 is a nonstandard extension of the theory of Fredholm determinants. In
its simplest form, Fredholm’s theory applies to complex continuous kernels K(z,y) where
x,y vary over a bounded interval [a, b]. The formula

b
Ko(z) = / K (z,9)6(y)dy

defines a compact operator on the Banach space B of compex continuous functions on [a, b]
with the sup norm. The operators K as above form an algebra, with a trace

b
TTFK=/ K(z,z)dz

* This result is proved in [4]. The condition sup,, ||t ||, < oo is missing in [4], but
some form of this condition is used in Remark 3.3 of that paper. Note that we may take
fractional » = s + a, meaning that the s-th derivative is a-Holder.
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and one can define a Fredholm determinant by
Detp(1 — 2K) = exp(— Z Term

or some equivalent formula. This determinant is an entire function of z which has a zero at
A1 precisely when X is an eigenvalue of K (the order of the zero and of the eigenvalue are
the same). Fredholm’s theory has been put on a more conceptual basis by Grothendieck,
using kernels in the topological tensor product B*®B of a Banach space B and its dual
B*. Grothendieck’s extension of Fredholm’s theory applies in particular to holomorphy
improving operators (these send a function holomorphic in D to a function holomorphic
in D' where D is relatively compact in D). The Fredholm-Grothendieck determinant
Det(1 — zK) is an entire function of z, but note that in Proposition 3 Det’)(1 — zM) has
in general a finite radius of convergence, and that M is not a compact operator.

Proposition 3 applies to expanding maps. What about hyperbolic maps (say Anosov)
on a compact manifold M? For such maps there is an invariant family of submanifolds of
M called stable manifolds, which are uniformly contracted by the map. These manifolds
are smooth, but the stable manifold through x does not depend smoothly on x, only Holder
continuously. For this reason one cannot readily extend to the smooth situation what was
done (see Proposition 2 above) in the Holder setting. [The case of C* Anosov maps in 2
dimensions has been elegantly treated by Rugh. The general case has been discussed by
Kitaev, but his paper is difficult. Work by Fried on the subject remains unpublished. There
is also recent work of Blank, Keller and Liverani on transfer operators in two dimensions].
When the stable manifolds form a smooth family, an extension of Proposition 3 to the
hyperbolic situation works well. This happens in particular for the geodesic flow on a
manifold of constant negative curvature, where everything is C¥: the zeta functions are
quotients of Grothendieck-type determinants, and thus meromorphic in C (Ruelle). This
agrees with what is known about Selberg zeta functions, and extends to other situations
(Mayer, Patterson).

Kneading determinants.

Milnor and Thurston have studied continuous piecewise monotone maps of the interval

[ap, an] to itself such that they are strictly monotone on subintervals [a;_1,a;] where

ap < ai <...<an. A (slightly modified) zeta function (a7 which counts periodic orbits
with a weight 1 satisfies

Cur(2).A(z) =1 (10)

where A is the determinant of a certain (N —1)x (N —1) matrix called kneading matriz. The

elements of the kneading matrix are power series in z with coefficients 0, £1 determined in

terms of the signs of the f™a; —a;. In particular, (y7(2) is meromorphic in the unit disc.

Can one extend the combinatorial identity (10) to dynamical zeta functions with weights?

Baladi and myself obtained an extension where A is replaced by a functional determinant.

We consider generalized transfer operators M acting on the Banach space B of func-
tions of bounded variation on R, so that

Z G ()@ ()
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Here the G, : R — C are of bounded variation, with compact support and (for simplicity)
continuous; 9, is a homeomorphism of an interval of R containing suppG,, to an interval
of R, and we assume ) VarG, < oco. Write ¢, = +1 (e, = —1) if 9, is increasing
(decreasing). The operators M form an algebra A with an involution M — M where

(M) (2) = Y e G (¥ )@ (v, )

w

and, using the sup norm || - ||o, we write
R= lim (IM™)"™ ,  R= lim (|M™[|o)"/"
m—r00 m—00
It turns out that, for the spectrum of M acting on B,
R < spectral radius of M < max(R, R)

essential spectral radius of M < R

The interesting case is when R # R. In particular if R < R and all G,, are > 0, then R is
an eigenvalue of M.

The sharp trace Tr* defined earlier can be extended to A, writing
1
TP M = - w(z) — 2)dG,,
M Ew / 5581 (Yu(2) — 2)dGou(2)

where sgn¢ = £/|£] if £ # 0 and sgn0 = 0. We can then define the zeta functions

= (&) = —
 Detf(1 - 2M) ’ a Det(1 — zﬂ)

¢(2)

and interestingly we have the functional equation ¢(2)C(z) =1 (from Tr* M + Tt M = 0).
A bounded nonatomic measure on R is given by

p(de) =) 1dGu(2)| + ) |dGu (¥ x)]
We define now a kneading operator D on L2(u) by

PO)) =3 [ 60)d(eG (@)1~ 2M) 7 Jsgn(- ~ )] (b))

and similarly an operator D. The kernel of D is given by

00 dg.,
Da:y = sz Z g 1(33) * Gws (wwlx) < Guy, (¢wk+1 .- -wwlx) X %Sgn(wwk .- -%qﬂ? - y)
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It turns out that D is Hilbert-Schmidt and one can define a functional determinant

Det(1+ D) = exp(/ p(dz) Dyy + i #Tﬁ)m)

What corresponds to the Milnor-Thurston determinant is here Det(1 + D), i.e., one can
prove the identity R
¢(z) = Det(1+ D)1

From this one can deduce that the determinant Detf(1 —2M) = Det(1 +D) is holomorphic
for |2] < R~!, and that its zeros there are the A\=! where R < || < R and ) is an eigenvalue
of M (of the same multiplicity).

Extensions of the theory of kneading determinants to dimension > 1 have been studied
(Baladi, Kitaev, Ruelle, Semmes, Baillif) and are currently an active area of research, but
only partial results have been obtained so far.

Some loose ends.

Counting periodic orbits with weights is a natural idea. And we have seen that it re-
lates to very different areas of mathematics: thermodynamic formalism, hyperbolic dynam-
ics, Selberg zeta functions, Grothendieck-Fredholm determinants, kneading determinants,
etc. The “hyperbolic” part of the theory of dynamical zeta functions is excellently pre-
sented in the monograph of Parry and Pollicott [2], which gives more details on the relation
with the thermodynamic formalism than could be given here. For further developments we
refer to Baladi’s monograph [1], which discusses in particular the relation between spectral
properties of transfer operators and the decay of correlations. A discussion of the decay of
correlations would have taken us too far afield, but this is an important topic, which has
progressed in recent years thanks to the work of Dolgopyat on hyperbolic flows, and the
very general ergodic results of Young [5]. Using the extensive bibliography of [1], the in-
terested reader can get access to many other questions. For instance the surprising results
of Mayer on the continued fraction transformation and the modular surface, or the very
explicit formulas obtained by Levin, Sodin and Yuditskii in the study of Julia sets.

Dynamical zeta functions and the related concepts discussed in this article form a
rather open field of investigation. Some astonishing developments have occurred in the
past. And new technical or structural ideas might again drastically change our view of the
subject in the future.

I am indebted to Viviane Baladi for critical reading of the present article, and also to
the referee and editor for a number of helpful suggestions. The article was written in part
at Rutgers, in part at the IHES, and in part at the IMPA (Rio).
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