RANDOM MATRIX THEORY AND
ZETA FUNCTIONS

By

Nina Claire Snaith
School of Mathematics

June 2000

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF BRISTOL
IN ACCORDANCE WITH THE REQUIREMENTS OF THE DEGREE

OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE



Abstract

Functions with zeros displaying the statistics of the eigenvalues of random
matrices occur both in number theory, for example the Riemann zeta function
and L-functions, and in the semiclassical study of systems which have chaotic
classical counterparts; the spectral determinant of such a system is an example
of this type of function.

In this thesis we study the characteristic polynomial Z(U,#) of an N x
N matrix U belonging to an ensemble of random matrices. We determine
the mean values of |Z|° and (Z/Z*)° averaged over such an ensemble. From
these we show that the asymptotic distributions, as N — oo, of the real and
imaginary parts of the logarithm of Z are independent and Gaussian.

Our random matrix calculations are compared with analytical results and
numerical computations for the number theoretical and spectral functions men-
tioned above. It is found that in the appropriate limit the logarithm of such
functions have a distribution which, when normalized to have mean zero and
unit variance, matches that of the logarithm of the random matrix function Z.
This implies that in this limit the value distribution of the logarithm of these
functions depends only on the random matrix distribution of their zeros. We
also formulate a conjecture for the manner in which the mean values of the
Riemann zeta function, L-functions and spectral determinants divide, again in
the limit equivalent to large matrix size N, into a product of a factor which
derives purely from random matrix theory, and a component which is specific

to the particular function under scrutiny.
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Chapter 1

Setting the Scene

Here is a question: what can be said about the value distribution of a function
if all that is known is that its zeros show a certain behaviour, and in partic-
ular display the statistics characteristic of the eigenvalues of an ensemble of
random matrices? Further, if we have a particular function in mind, where
do the features specific to that given function enter the value distribution and
its moments and how are they reconciled with the behaviour common to all

functions sharing the same zero statistics?

These questions, posed to serve the interests of quantum chaos, but even-
tually crossing over into the realms of number theory, will be the subject of
the ensuing chapters. This chapter will lay the groundwork for the pursuit of
the answers, while in the following one we will launch into the calculation in
earnest, studying the value distribution of a general function with zero statis-
tics belonging to a random matrix ensemble. In Chapter 3 we compare the
results of Chapter 2 with the mean values of the Riemann zeta function, a
much-studied example of a function with the appropriate zero statistics, ex-
tending this to other L-functions in Chapter 4. In the final chapter we retire
again to the domain of quantum chaos to investigate the spectral determinant

of classically chaotic systems.



Chapter 1. Setting the Scene

1.1 Quantum chaos and periodic orbit theory

Quantum chaos is the name by which the investigation of the quantum ana-
logues of classically chaotic systems has come to be known. In a quantum
system it is not possible to define chaotic versus regular behaviour as one can
within the realms of classical mechanics; for a start phase space trajectories
do not exist, so the definition that nearby paths diverge exponentially quickly
has no meaning. However, in the semiclassical limit, as a quantum system
approaches its classical counterpart, one might expect the chaoticity (or inte-
grability) of the classical version to be somehow reflected in the eigenenergies
and wavefunctions of the semiclassical system. Later in this chapter we will
see that there does indeed seem to be such a signature of chaos in that the
eigenvalues for classically integrable systems are uncorrelated while those cor-
responding to chaotic classical behaviour show the distinctive statistics of the
eigenvalues of large random matrices. For the moment, however, we will ex-
plore the tools of the semiclassical trade.

The backbone of such semiclassical studies are formulae, asymptotic in the
limit as the quantum parameter h (Planck’s constant) tends to zero, which
relate the quantum eigenvalues to strictly classical properties of the analogous
classical system. This limit h = 2nh — 0 is called the semiclassical limit.

Quantum eigenvalues, F,,, and wavefunctions, 9, (r), arise as the solutions

to the time-independent Schrodinger equation

Hipo(r) = Eptha(r). (1.1.1)

H is the Hamiltonian operator, and for example for motion in a scalar potential
V(r,t) with no other influences H = ;—EVQ + V(r,t). It should be noted that
the E, are real as they are the eigenvalues of the Hermitian operator, H.
The eigenvalue equation (1.1.1) derives from the time-dependent Schédinger

equation



1.1. Quantum chaos and periodic orbit theory

e,
zha\lf(r, t) = HY(r,t) (1.1.2)

by separation of the space and time variables if the potential V' (r,¢) does not
depend on time.

For bound systems, the above eigenvalues are discrete, and a great deal of
study has been made of the statistics of their values. A useful quantity in this

work is the density of states,

o0

d(E) =) §(E - E,), (1.1.3)

n=1
where ¢ is the Dirac delta distribution. As the density of states picks out the
positions of the eigenvalues in this way, it is the starting point for the study
of eigenvalue statistics.

A key step in the progress of semiclassical asymptotics was Gutzwiller’s
development in the 1960’s and 70’s of the trace formula [Gut67, Gut69, Gut70,
Gut71], soon after explored by Balian and Bloch [BB70, BB71, BB72, BB74|.
This formula provides an asymptotic (for small %) expression for the density of
states and it involves only information about the periodic orbits of the classical
system.

The route to the trace formula involves the Green function G(q",d', F)

(here written in three dimensions), which is the solution to the equation

(H - E)G(d".d,E)=6(d" — q). (1.1.4)

This function can be written as

G . E iwn(q” ;’;(q’)’ (1.1.5)
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where the 1, and E, are the same eigenfunctions and eigenvalues belonging
to H as in (1.1.1). Thanks to the orthonormality of the wavefunctions v, we

see that setting q” = ' and integrating over all space, we have

o0

/dSqG(q, B =)~ 1_E (1.1.6)

n=1

Thus we see that we can create the delta functions at the energy levels in

the density of states by allowing for imaginary energy:

1
d(E) = =limIm [ d’qG(q,q, E + ic). (1.1.7)

T €0

Now, the Green function has the physical interpretation that it represents
the amplitude at q" of waves with energy F which are continually being emitted
at q'. Since quantum mechanics is a wave theory, at the short-wave limit of
which lies classical mechanics, it is not surprising that in the semiclassical limit
(that is, in the approach to the classical regime) the Green function can be
written just as a sum over all the classical routes which could be taken by a
particle starting at q' with energy £ in order to end up at ”. The evolution of
the waves emanating from q' are related more and more closely to the classical
trajectories as the semiclassical limit is approached.

In order to obtain a semiclassical approximation to the density of states,
this semiclassical Green function is inserted into (1.1.7). Since it is the trace
of the Green function which appears in that equation, the sum is now over
closed classical trajectories from q back to q. It turns out that the trajectories
which shrink to zero length as q” and q’ approach q (as we take the trace)
will contribute to a smooth mean density of states, d(E). In addition to this,
performing the integral in (1.1.7) by the method of stationary phase picks
out just the periodic orbits (that is, those which leave and return to q with
the same momentum), and each of these contribute an oscillatory term to the
density of states. Thus we have a sum over the primitive periodic orbits p and

their repetitions (represented by the sum over k):

4



1.1. Quantum chaos and periodic orbit theory

d(F) ~ d(E) + 512+n > ) Appcos [%(Sp + u,,)} : (1.1.8)

p k=1
where 77 = 0 if the system being studied is classically chaotic, and n = (n—1)/2
for a system with n degrees of freedom which has integrable classical dynamics.
All the quantities on the right hand side of this equation are classical - not

dependent on A. S, is the action of the periodic orbit p, defined by

5,(B)= § p-da (1.1.9)

that is, the integral of the momentum along the orbit. A, is an amplitude

related to the stability of the kth repetition of the orbit p and is given by

Tp
Apk = 2r[det(MF — I)]'/2’ (1.1.10)

T,(E) = dS,/dE being the period of the orbit and M, being the monodromy
matrix which describes flow linearized around the orbit. The Maslov index
Hp counts points along the orbit where focusing of neighbouring trajectories
occurs, and from here on we will just incorporate it into the action variable,
Sp.

For the mean density of states, we have

1 dQ(E)

S(E) L AUE)
d(E) h dE

(1.1.11)

where Q(E) is the volume in phase space with energy less than E. This follows
from the general rule that for a system with n degrees of freedom there exists
about one quantum state for each volume A™ in the energy shell Q(FE), and

can be seen more easily if we consider the spectral staircase

N(E) = /O " i), (1.1.12)



Chapter 1. Setting the Scene

which consists of a unit step at the position of each eigenvalue. N (E) therefore
represents the number of E, such that E, < E. Semiclassically (once more

this means looking at just the leading-order term as % — 0) we can write

. 2 Ak
N(E) ~N(E) + - zp: ; T, sin(kS,/h), (1.1.13)
where N (E) = Q(E)/h™. We see that the derivative of N'(E) gives the ex-
pression for d(E), as expected.
As we are particularly interested for the purposes of this thesis in functions
which have zeros at the positions of the eigenvalues, we will also consider the

spectral determinant, which is constructed to be just such a function:

A(E) = det[A(E, H)(E — H)] = [[[A(E, E;)(E — E))), (1.1.14)

J
where A has no real zeros and is included so as to make the product converge.

For classically chaotic systems we have semiclassically [BK90]

A(E) ~ B(E) exp(=inN (E)) [ exp _ik\;";’(zg?k/?m (1.1.15)

where B(FE) is a real function which will not worry us as it has no zeros.

As we mentioned at the beginning of this section, one of the goals of quan-
tum chaology was to attempt to detect in the statistical distribution of a set
of energy eigenvalues, the semiclassical positions of which are described by
the above formulae, an indication of whether the corresponding classical sys-
tem behaves chaoticly or integrably. The answer, suggested by Berry and
Tabor [BT77] and later examined in depth by Bohigas, Giannoni and Schmit
[BGS84, BG84], involves the theory of random matrices.

6



1.2. Random Matrix Theory

1.2 Random Matrix Theory

Random matrix theory had its beginnings in the 1950’s and 60’s in the field
of nuclear physics. Physicists were attempting to create a model which would
predict the excitation states of atomic nuclei. To do this, it would be necessary
to work out the quantum Hamiltonians, H, of the particular nuclear systems
under consideration and then solve Schrédinger’s equation (1.1.1) to find its
energy eigenvalues. This proved to be very difficult due to the complexity of the
interactions in a nuclear system, and only the lowest few energy levels could be
modelled accurately. In fact, the Hamiltonians are so complicated that, when
written as matrices with respect to an appropriate basis, the matrix elements

show essentially no correlations; they look like random numbers.

When the problem of predicting specific energy levels proved to be in-
tractable, attention turned to considering the statistics of the distribution of
the energy levels. It was Wigner who had the idea that since the matrix
Hamiltonian of each individual nucleus is so complicated and there are no ob-
vious correlations between the various matrix elements, perhaps the best way
to approximate the energy level statistics of a given nucleus is by the aver-
age statistics of a collection of matrices all sharing some kind of symmetry,
but with otherwise uncorrelated, random entries. This is the basis of random

matrix theory.

However, such an idea is not limited to the study of nuclear physics. If a
quantum system and the related classical counterpart are considered, and the
classical version displays chaotic behaviour, then Wigner’s conjecture is likely
to be useful here as well. In this case, the effective randomness of the Hamil-
tonian matrix elements arises from the complexity of the wavefunctions of the
quantum system, since in the semiclassical limit they inherit their behaviour
from the chaotic trajectories of the classical system. The lack of correlations in
the matrix elements implies that, as in the nuclear case, it might be expected

that the energy level statistics of the quantum system would be predicted by

7



Chapter 1. Setting the Scene

the average statistics of a number of random matrices, just as an average over
all possible states provides general information about a system in a particular

state in ordinary statistical mechanics.

It should be noted that whenever we discuss the statistics of energy levels
being predicted by random matrix theory, we will always be implying that
the system under consideration has been desymmetrized. If a system has any
exact integrals of the motion or discrete symmetries then the corresponding
quantum numbers retain their meaning and so allow the Hamiltonian matrix
to be written as a series of blocks along the diagonal with zeros elsewhere. As
the eigenvalues of the different blocks are uncorrelated (possessing different
conserved quantum numbers, for instance those corresponding to total spin or
parity) their combined spectrum cannot be expected to show the distinctive
statistics which are found in the ensembles of random matrices discussed be-
low. Thus when we speak of a desymmetrized system, we mean that we are

considering just one of the blocks on the diagonal of the full Hamiltonian.

1.2.1 The Gaussian ensembles

The problem next is to determine how to group the matrices according to
their particular symmetries. These groupings are prescribed by the symmetries
occurring in physical systems and all that follows is explained in much greater
detail in Mehta’s book on random matrix theory [Meh91]. A very readable

review of random matrices can be found in [Boh91].

As a first example, the Hamiltonian matrix of any system with integral
total angular momentum and with time-reversal symmetry can be written as
a symmetric matrix. Since all Hamiltonians are Hermitian, these symmetric
matrices must also be real. Systems with integral or half-integral total angular
momentum, but which have time-reversal invariance and rotational symmetry
can also be represented by real, symmetric matrices. Thus it was proposed

that an average over the eigenvalue statistics of an ensemble of real, symmetric
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matrices might be equivalent to the distribution of the eigenvalues of any one
particular real, symmetric, random matrix, and thus predict the distribution
of the energy levels of a physical system with the symmetries mentioned in
this paragraph: time-reversal symmetry, an integer total angular momentum
or rotational symmetry, and a chaotic classical counterpart.

Thus an ensemble F¢ is defined in the space of all N x N real symmetric
matrices, 7. The term ensemble implies that a probability density P is
applied to the space T} which specifies how each matrix will be weighted in
an ensemble average. The two conditions which determine the form of this

probability density are [Meh91]:

1. The ensemble is invariant under every transformation

H—-OTHO

of T} into itself, where O is any orthogonal matrix.

2. The various elements Hy;, k < j, are statistically

independent .

The first condition is necessary because the basis chosen in order to repre-
sent the quantum Hamiltonian operator as a matrix was arbitrary. However,
the final result should be the same no matter what basis was chosen - it should
not make a difference what representation was used for the Hamiltonian. In
general, if the basis chosen is changed by a unitary transformation ¢y — U

then the Hamiltonian changes as

H— UHU". (1.2.1)

However, since we are dealing only with matrix representations which are real
and symmetric, the unitary transformations are restricted to orthogonal ones.

Thus the first condition above says that if

9
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H' =0"1'HO=0"HO (1.2.2)

then the probability P(H')dH' equals P(H)dH, ie. the probability that a
matrix in Fjg belongs to the volume element dH is invariant under real or-
thogonal transformations. This makes sense as H and H' can be thought of
as representing the same physical system in two different representations.
The two conditions above determine the probability density function for the
matrices in the ensemble. The statistical invariance of the matrix elements,
condition (2), implies that the probability density is a product of functions,
each depending on one matrix element only, and the form turns out to be

[Meh91]

P(H) Hexp[ijj] [ expl—a(Hy;))?), (1.2.3)

k<j
where a is real and positive and b is real. Because of the Gaussian factors
above and the invariance of the ensemble under orthogonal transformations,
E; has been named the Gaussian Orthogonal Ensemble or GOE.

While the GOE dealt with systems which had time-reversal symmetry and
integer total angular momentum or time-reversal symmetry and some rota-
tional symmetry, a different collection of random matrices is needed to rep-
resent systems with time-reversal (but no rotational) symmetry and a half-
integral total angular momentum. This ensemble is, in many ways, similar to
the previous one, but this time it is defined in the space, Tyq, of all self-dual
Hermitian matrices. A self-dual matrix is merely one which is equal to its
time-reverse, so Ty contains 7Tig, but the latter is only a very small fraction
of the former. The Gaussian Symplectic Ensemble is defined in Ty by the two
conditions [Meh91]:

1. The ensemble is invariant under every transformation

10



1.2. Random Matrix Theory

H— S 'HS

of T} into itself, where S is any unitary symplectic matrix.

2. The various linearly independent components of H are statistically

independent.

We note the definition that a unitary symplectic matrix U satisfies UUt = 1

0 I
and UJU = J, where J = and [ is the identity matrix. Again,

-1 0
the probability density is the product of factors like those in (1.2.3), each one

depending on one of the independent components of H.

The third, and final, ensemble contains matrices which could represent
the quantum Hamiltonians of systems with no time-reversal symmetry. Such
Hamiltonians have no restrictions other than their hermiticity. Thus, in order
that the choice of basis with which to represent a Hamiltonian operator as a
matrix does not affect the outcome, the probabilities P(H')dH' and P(H)dH
for two matrices related by any unitary transformation H' = U 'HU must be
equal. So, for the Gaussian Unitary Ensemble (GUE), if Ty is the space of

Hermitian matrices:

1. The ensemble is invariant under every transformation

H - U'HU

of Ty into itself, where U is any unitary matrix.

2. The various linearly independent components of H are statistically

independent .

Since the GUE matrices can be complex, the linearly independent com-

11
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ponents in condition (2) are the real and imaginary parts of the off-diagonal
elements Hy;, k < j, and the real parts of the diagonal elements, so the prob-

ability density is the product of factors containing each of these components.

1.2.2 Circular ensembles

The Gaussian ensembles of matrices have the drawback that because they
are defined on a space of matrices which is not compact, there is no way
to assign the same weight to every matrix; matrices representing different
quantum systems are not treated equally. So, Dyson came up with three
similar ensembles to those described above, but which are mathematically
simpler than the Gaussian case. The difference is that whereas the matrices
in the Gaussian ensembles were Hermitian, the matrices in Dyson’s circular
ensembles are unitary. The ensembles are called circular orthogonal (COE),
circular symplectic (CSE) and circular unitary (CUE) and they correspond to
systems sharing time-reversal symmetry, etc, in exactly the same way as the
GOE, GSE and GUE respectively. Also, in a similar manner to the Gaussian
ensembles, the COE is defined in the space of symmetric unitary matrices, the
CSE contains unitary, self-dual matrices, and all arbitrary unitary matrices
are in the CUE.

In the Gaussian ensembles, the eigenvalues of the Hermitian matrices could
easily be connected with the energy levels of real systems because at least some
of the matrices represented physical quantum Hamiltonians. The argument for
using the circular ensembles is that we can imagine that a unitary matrix, S, is
a function of a Hermitian matrix, H, which could be a quantum Hamiltonian.
The exact form of the function does not matter, but the function could be

imagined to be something like:

1—wH

S = eXp(—'L.HT) or S= m (124)

The eigenvalues of S have the form €%, j = 1,...N, since S is unitary.

12
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The reason for imagining a relation like (1.2.4) is that if S is a function of H,
then the angles 6, ... ,0y will be functions of the eigenvalues, F1,... , Ey of
H. For a restricted energy range, this function should be approximately linear,
and so it is reasonable to make the conjecture [Dys62] that the behaviour of
a small number of the N eigenvalues of S will be statistically the same as a
small number of the N eigenvalues of the Hermitian matrix, H.

We will consider first the CUE, as this is the ensemble which will be dealt
with most extensively in this thesis. The CUE is defined in the space of all
unitary N x N matrices by the statement that the probability that a matrix
is in the neighbourhood dS of S is given by

P(S)dS = @, (1.2.5)

where V is the total volume of the space of unitary matrices and p(dS) is the
volume of dS.

For the definition of u(dS) the fact is used that any unitary matrix S
can be written as S = UW for some pair of unitary matrices U and W. A

neighbourhood of S is defined as

S +dS = U(1 + idM)W, (1.2.6)

where dM is a Hermitian matrix with infinitesimal elements dM;; = dMi(JQ) =+
idMi(jl). Here we follow Mehta’s notation for the real and imaginary compo-
nents of dM;;. dMZ-(JQ) and dMZ-(jl) are thus real and vary independently over
small intervals of length d,ug-)) or dpgjl-). w(dS) is then defined as

u(dS) = [ dul T] dusy - (1.2.7)

1< 1<j
(1.2.5) then gives the statistical weight of each neighbourhood dS, which would

be needed for example in an average over the CUE.

13
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This definition for the CUE leads to the theorem, which is straightforward
to prove [Meh91],

Theorem 1. The CUE is uniquely defined in the space T, of all N XN unitary

matrices by the property of being invariant under every automorphism

S = USW (1.2.8)

of Ty, into itself, where U and W are any two N x N unitary matrices.

The probability P(S)dS is therefore invariant over all matrices S in Ty,
and so p(dS) is just Haar measure on the group U(N) of all N x N unitary
matrices.

For the other two circular ensembles similar discussions lead to the following

theorems.

Theorem 2. The orthogonal ensemble (COE) is uniquely defined in the space
Ti. of unitary symmetric matrices of order N X N by the property of being

invariant under every automorphism

S — WTSw (1.2.9)

of T, into itself where W is any N x N unitary matriz.

Theorem 3. The symplectic ensemble (CSE) is uniquely defined in the space
Ty of self-dual unitary quaternion matrices of order N x N by the property of

being invariant under every automorphism

S — WRSW (1.2.10)

of Ty into itself, where W is any N x N unitary quaternion matrix.

Here we recall that a self-dual matrix is one which is equal to its time-reverse.

14



1.2. Random Matrix Theory

1.2.3 Eigenvalue joint probability density function

In the preceding sections, the probability density function was discussed for
the matrices in the various Gaussian and circular ensembles. As the aim of
random matrix theory is to predict eigenvalue statistics for physical systems, it
is useful to know the joint probability density function for the eigenvalues of the
matrices in a given ensemble. The joint probability density function (JPDF)
can be calculated from the density function of the matrices (eg. (1.2.3, 1.2.5))
by a change of variables. P(x1,...,2xy)dx1 - -dzy, where P is the JPDF for
a given ensemble, is the probability of choosing from that ensemble a matrix
with eigenvalues lying between x; and z; + dx;, x5 and z9 4 dx, etc. Thus,
to find the average over a particular ensemble of a function f(x1,zs,...,zN),
we multiply the function by the JPDF and integrate over the full range of the

eigenvalues:

<f($1,... ,$N) >://d$1d$NP($1, ,asN)f(:cl,...xN).
(1.2.11)

If the orthogonal, symplectic and unitary ensembles are labelled by g =
1,4 and 2 respectively (these numbers are related to the number of linearly
independent components in the matrices) then the form of the JPDF for the

Gaussian ensembles is

N
1
Pﬂ(xl,...,xN):cﬂexp(—§ﬁzx§> T Iz -l (1.2.12)

j=1 1<j<k<N

In the equation above, and the one following, Cg is a normalization constant.

For the circular ensembles, the JPDF is

Py(0r,...,08)=Ch [ lexp(ib;) — exp(if)|?, (1.2.13)

1<j<k<N

15



Chapter 1. Setting the Scene

where again (3 distinguishes between the orthogonal, symplectic and unitary
ensembles and the eigenvalues are e ¥z ... ¢in.

The statistics of the distribution of the matrix eigenvalues for a given en-
semble can be defined in terms of the JPDF. For instance, the n-point corre-

lation functions are given by

NI
Ra(zs,... 20) = m/---/P(m,... )Ty dzy,  (1.2.14)

and therefore are the probability densities of finding eigenvalues near the points
Z1,--.,%,, while the remaining N — n eigenvalues can be anywhere. Other
statistics can also be defined, and the calculations pertaining to many of those
can be found in the book on random matrix theory by Mehta [Meh91].

One common statistic is that of the nearest neighbour spacing distribution.
This is the probability density P(s) of the spacings between consecutive eigen-
values and it illustrates the distinctive ’level repulsion’ which exists between
the eigenvalues of random matrices; that is, the probability density drops to
zero as the spacing distance tends to zero. This statistic is shown for the three
Gaussian ensembles in Figure 1.1. The repulsion is strongest for the GSE
where P(s) is a quartic in s near the origin, whereas the repulsion is quadratic
for the GUE and linear for the GOE.

As a contrast to the eigenvalues of random matrices, a set of completely un-
correlated points displays Poisson statistics. In this case the nearest neighbour
spacing distribution, also shown in Figure 1.1, displays no level repulsion.

The random matrix conjecture claims that for an N x N matrix chosen
from one of the ensembles mentioned in the previous sections, the statistical
properties of any finite number of its eigenvalues will tend with probability
one, as N — oo, to the average ensemble statistics.

In the limit as N, the matrix size, tends to infinity the limit of any of these
statistics involving only a finite number of eigenvalues is identical for the two

ensembles CUE and GUE. The same is true between the COE and the GOE,
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1.3. Universality

Figure 1.1: The nearest neighbour spacing distribution for the GOE (long
dashed), GUE (dot-dashed), GSE (dotted) and Poisson (solid) statistics. The
eigenvalues have been normalized so as to have unit mean consecutive spacing.

and also CSE and GSE statistics are the same in this limit. We will make use
of this fact and perform calculations with the circular ensembles, which are

mathematically simpler to work with.

1.3 Universality

In the previous sections we have discussed some random matrix ensembles
and the random matrix conjecture (see, for example, [Meh91]) which suggests
that the average eigenvalue statistics of such an ensemble might in general be
asymptotically the same as the statistics of any particular matrix drawn from
the ensemble. Thus these statistics are universal in that they are observed in

almost all of the matrices from any given ensemble.
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Chapter 1. Setting the Scene

In the same way, in the context of physical systems, universality refers to
the extent to which most systems having a Hamiltonian matrix which can be
considered random, follow the eigenvalue statistics of the appropriate random
matrix ensemble. It is clear that random matrix theory (RMT) can only
predict features which are common to the majority of systems because the
ensemble average is effectively over all possible systems. Thus nothing which
is particular to a specific system can be predicted by RMT - it is beyond
the range of universality. Not all eigenenergy statistics are fully universal,
however; they tend to be universal - that is, for chaotic systems they match
the average statistics of one of the matrix ensembles mentioned earlier - over
short energy scales. We will see later in this section that this is related to the
universality of the long periodic orbits of the systems. The natural scale with
which to compare long and short correlations is the mean level spacing d(E) ™!
(see 1.1.8). Over ranges much longer than this mean spacing, eigenenergy
correlations cease to be universal, as we will see in the following example.

The form factor, K(7), is the Fourier transform of the two point correlation
function of a spectrum of eigenvalues. We write a density of states, with a delta
function at each eigenvalue like (1.1.3), for a set of eigenvalues e, scaled so as
to have an average distance of unity between consecutive levels (ie. d(e) = 1).

Thus

K(r) = / " dwexp(2rizr)[d(e — 1/2) — 1][d(e + 2/2) — 1))

1 i

ﬁ< Z ; AjAjexp [i—i(Sz- - Sj)} 8[T —1/2(T; + T;)]X1.3.1)
LY AT -T)) if r<T

T it m<r<1 . (1.3.2)

1 if 7>1

Q

In the first line the average denoted by the angled brackets is an average

in e over a range which, while still being small compared to e, covers many
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1.3. Universality

energy levels. This average picks up a contribution whenever it encounters a
pair of eigenvalues a distance = apart; these do not have to be consecutive
levels. The second line is the semiclassical asymptotic result; that is, the
leading-order term in h. This arises directly from (1.1.8). In the final line,
various approximations are made in different regions (T = Thd). This last line
(1.3.2) is an ansatz due to Berry [Ber85, Ber88, Ber91]| for the form factor of a

system fitting into the GUE category of no time-reversal invariance. A sketch

of the form factor is shown below.

K()
1 universal
[I—
nonuniversal
—A
0 T
™ 1

Figure 1.2: A sketch of the form factor described in Equation 1.3.2.

It is clear that at very small 7 there is a delta spike at the period of each
periodic orbit. At some unknown time 7* between the period of the shortest
orbit and 7 = 1, these delta functions average to a universal curve: in this
case that of the GUE random matrix ensemble. For 7 less than one, the GUE
curve is just the straight line, K(7) = 7, whereas K(7) = 1 when 7 > 1.

Thus we can see that while there is universality on some scales, at very short
times (which correspond to long correlation scales on the energy axis due to
the fact that 7 and x are Fourier conjugate variables) there are features which

are specific to the individual system under study. Another way of viewing this
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Chapter 1. Setting the Scene

is that in all the semiclassical formulae in Section 1.1 we see that the oscillatory
term belonging to a given periodic orbit contains the factor exp(ikS,/k). Since
statistical measures of correlation in the eigenvalue positions involve averaging
(see, for example (1.3.1)) on a scale which is small compared to the energy
E, we can make the approximation S,(E + ¢€) = S,(E) + €dS,/dE = S,(E) +
€I,(E). Thus we see that the wavelength of the oscillatory term connected with
the periodic orbit p is h/T,, that is it is inversely proportional to the period of
the orbit. The wavelength of the oscillation defines the scale on which the term
belonging to that periodic orbit can affect correlations between eigenvalues in
(1.1.8). For example, when 7 = 1 then 7' = hd and we see that it is those
orbits with this period that just resolve eigenvalues separated by the mean
level spacing. Thus Berry’s ansatz implies that the periodic orbits with periods
much shorter than hd, which can vary greatly from one system to the next,
lead to non-universal long-range correlations between the eigenvalues, while
the longer orbits together contribute an effect on the short-range statistics
which is universal. This universality of the long orbits is expressed explicitly
in the Hannay-Ozorio de Almeida sum rule [HA84], which says that in general

for any chaotic system, as T" — o0

- T
YN AT - kT,) ~ yos (1.3.3)

p k=1
1.4 The Riemann zeta function

The Riemann zeta function is of interest to pure mathematicians because of
its connection with prime numbers, but it is also a hugely important tool in
quantum chaos because many calculations involving the Riemann zeta func-
tion mirror the most fundamental manipulations in semiclassical work, those
concerning the energy eigenvalues of semiclassical systems and the action of
the periodic orbits of those systems. Whereas the semiclassical calculations

involve sums over periodic orbits of the system in question, as illustrated in
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1.4. The Riemann zeta function

Section 1.1, the Riemann zeta function version contains sums over prime num-
bers. As much knowledge has built up about prime numbers over the years,
the Riemann zeta calculations are often more tractable than the periodic orbit
ones, and so can provide insight as to how the semiclassical calculations ought
to proceed.

The aspect of the Riemann zeta function which is important to this work is
the distribution of its non-trivial zeros. The Riemann zeta function is defined

by the Euler product over prime numbers

s)=11[ (1 - i) B (1.4.1)

or, equivalently, by a sum over integers

¢(s) = L (1.4.2)

ns’
n=1

The above definitions are only valid for Res > 1, but an analytic contin-

uation allows the function to be defined on the whole complex plane. There

then exists a functional equation (see [Tit86])

C(s) = 2°7* tsin(sm/2)T(1 — 8)C(1 — ), (1.4.3)

which relates the zeta function for Res > 1/2 to its values in the other half-
plane.

The Riemann zeta function has an infinite number of ’trivial’ zeros, which
lie at the negative even integers, a pole at s = 1, and more importantly, an
infinite number of complex zeros in the critical strip where Re s lies between
zero and one. The Riemann Hypothesis (RH), as yet unproven but generally
believed to be true, is that these complex zeros all lie on the line Res = 1/2.

This is called the critical line. As there is much interest in the Riemann zeta
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Chapter 1. Setting the Scene

function evaluated on this critical line, we sometimes write ((1/2+ it) so that
t measures the distance up the line Res = 1/2.

The connection between the Riemann zeta function and random matrix
theory is that in the limit as ¢ approaches infinity (that is, very high up the
critical line) the statistics of the distribution of the complex Riemann zeros
appear to tend exactly to those of the eigenvalues of the GUE random matrix
ensemble. In 1973, Montgomery [Mon73] proved that in the limit as ¢ — oo up
the critical line, the form factor statistic for the Riemann zeros was identical to
that of the GUE up to the point 7 = 1, see Section 1.3. He further conjectured
that the similarity held for all 7. Many more recent results strongly support
Montgomery’s conjecture, for instance Rudnick and Sarnak have shown that
all n-point correlations between the Riemann zeros high on the critical line
agree with GUE statistics [RS96], though still just in the region equivalent
to 7 < 1. The same result on the n-point correlations has been shown by
Bogomolny and Keating [BK96] using a different method which impinges no
restrictions on the range of validity, but which relies on a conjecture by Hardy
and Littlewood on the distribution of prime numbers. Added to this is a vast
quantity of numerical evidence generated by Odlyzko [Od197].

Number theorists are very interested in mean values of the zeta function
on the critical line and this is where the motivation for Chapter 3 lies. We
will find that the universal aspect in the value distribution of a function with
GUE zeros (or CUE, for the statistics are the same between these two in the
limit of large matrix size that we are dealing with), will allow us propose a
conjecture for these Riemann mean values which have proven so elusive when
approached from the number theoretical perspective.

While this is our specific interest in the Riemann zeta function, it is the
subject of much wider study in the field of quantum chaos because the positions
of the prime numbers determine the Riemann zero statistics in a completely
analogous manner to the connection between periodic orbits and eigenvalues

discussed in Section 1.1. We will here present a taste of the argument, but for
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1.4. The Riemann zeta function

a very thorough discussion see [Kea93].

Since we are interested in the positions of zeros, we will start with the
staircase function Ng(7T) (analogous to the spectral staircase of Section 1.1)
which is a function of 7T, the distance up the critical line, and which increases
by one at the position of each zero. Its value at T is therefore the number
of zeros on the critical line between s = 1/2 and s = 1/2 + ¢T. (Since the
complex zeros occur in complex conjugate pairs, we will consider just 7' > 0
when we speak of counting zeros.) The change in the argument of the zeta
function round a closed curve counts the zeros contained within that curve,
so choosing a rectangle symmetric across the critical line in order that the

functional equation (1.4.3) can be used to our advantage, we find

T T T 7 1
Nr(T) = —log———+- T+ —Iml 1/2 44T
W) = gl LT o@ )+ Loz i
— 1
= Ng(T)+ - Imlog((1/2 +iT), (1.4.4)

where the branch of the log is defined continuously from +oo+ i7" to 1/2 +iT
starting with the value 0.

For the argument of ((1/2 +4T") we now use the Euler product. It should
be noted that this is not entirely legitimate as the product does not converge
on the critical line where we are evaluating the zeta function. However, it
is through this substitution that we see the remarkable similarity with the

formulae of Section 1.1 so we will continue and find

Na(T) = Np(T) % Ty % exp (—%k log p) sin(Tklogp),  (14.5)

where we have expanded the logarithm of each factor in the Euler product.
From this we can determine, by differentiating, the density of states [Ber85].
Assuming that the complex zeros of the Riemann zeta function lie at 1/2+i,,

0<v <7 < ---, we have
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de(T) = Y 6T —7m) (1.4.6)

_ 1 1
= dgr(T) — 222 08P exp (—Eklogp> cos(Tklogp),

2T
p k=1

where dg(T) = dNg/dT ~ 5-log (&) is the mean density of states.

It is this formula which we need to compare with the density of states
for physical systems, expressed in terms of periodic orbits in (1.1.8). In that
equation we let n = 0 because the distribution of the zeros of the Riemann
zeta function follow GUE statistics, and it was discussed in Section 1.2 why
it is the classically chaotic systems rather than the classically integrable ones
which are predicted to display such eigenvalue statistics. It has often been
suggested that there may be an underlying physical system, the eigenvalues of
which are the Riemann zeros (for example [BK99]), and if such a system exists
it is believed that it would have a chaotic classical limit with no time-reversal
invariance, as suggested by the GUE zero distribution.

We therefore set about comparing (1.1.8) and (1.4.6) and see that if we
set i = 1 then the sum over primes is just like a sum over orbits with Maslov

indices p, = 0 and actions, periods and amplitudes identified as

Sp(T) =Tlogp (1.4.7a)
T, =logp (1.4.7b)
T, 1
Ay = ﬁ exp (—ikTp) . (1.4.7c)

This similarity in the roles of prime numbers and periodic orbits is not only
interesting to those in search of the elusive physical system lurking behind the

Riemann zeta function, but it has also led to the development of techniques

24



1.5. Overview

for dealing with periodic orbit sums through analogous methods already used
on the Riemann zeta function [BK92, Kea92].

We can see from (1.4.6) that the term associated with the kth repetition
of the primitive periodic orbit p has wavelength 27/ log p¥. Thus, for example,
since we know the mean spacing of the Riemann zeros at a large height 7" up
the critical line is asymptotically 27/ log (5= ), prime powers such that log p* >
log (%) determine the correlations in the positions of the zeros on scales shorter
than the mean spacing. Also, since there is a smallest prime number (just as
there is a shortest periodic orbit for a given physical system) there is an upper
limit to the distance over which the positions of the Riemann zeros can be
correlated, as illustrated by [Ber88].

We have now seen why the Riemann zeta function is of great interest to
quantum chaologists, but it has long been studied from a purely number the-
oretical point of view. Of the many aspects which have been explored, it is
the mean values, also called moments, which are relevant to this thesis. These

moments, defined as

1 1

TI,\(T) == /OT 1C(1/2 + it)[Pdt, (1.4.8)

are discussed in detail in Section 3.3 and it is these mean values which moti-
vated this thesis project from the beginning. Here is ((1/2 + it), for large ¢
a prime example of a function with zeros displaying random matrix statistics:

how are these mean values (1.4.8) affected by the distribution of zeros?

1.5 Overview

In the attempt to answer and extend the above question, we commence in the
following chapter to study the characteristic polynomial of a random N x N
matrix, since this function clearly has zeros with random matrix statistics.

We calculate the moments of this characteristic polynomial, where the aver-
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age corresponding to the integral in (1.4.8) is performed over an ensemble of
random matrices. Thus these mean values really are the moments of an av-
erage matrix from the ensemble, in the same way as an eigenvalue statistic
such as (1.2.14) is an average statistic of the ensemble. In the same manner
we study the value distribution of the logarithm of the characteristic polyno-
mial, finding that the real and imaginary parts tend to independent Gaussian
distributions as N — oo. This Gaussian result for just the imaginary part of
the logarithm has already been determined, by a different method, by Costin
and Lebowitz [CL95]. There is also overlap with the work of Haake et al.
[HKST96] who, in the course of studying the statistics of the coefficients of the
random matrix characteristic polynomials, derived expressions for the second
moment of the modulus of this function for circular ensembles and for matri-
ces showing Poisson eigenvalue statistics. These second moments also figure
in the work of Kettemann, Klakow and Smilansky [KKS97], who studied au-
tocorrelation functions of characteristic polynomials for Gaussian and circular
ensembles of random matrices and compared them with the corresponding
semiclassical expressions for spectral determinants. They note the connection
between the quantum autocorrelation function and the classical Ruelle zeta
function (related to the Fredholm determinant of the Perron-Frobenius opera-
tor - the classical evolution operator) and in [Smi99] Smilansky illustrates how
the semiclassical expressions for the autocorrelation functions coincide with
the equivalent random matrix results when the eigenvalues wo, ws, ... of the

Perron-Frobenius operator are distant from the main eigenvalue w; = 1.

There is also a field-theoretic technique for calculating autocorrelations
functions of spectral determinants using Grassman variables [AS95, KKS97],
but these expressions are normalized with respect to the correlators with coin-
ciding correlation points and these latter are precisely the moments we consider
in this thesis. Thus this technique does not yield an alternate method for the

calculation of these moments.

Armed with the random matrix results developed in Chapter 2, a compar-
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ison is made with the Riemann zeta function in Chapter 3. We use the known
values of the Riemann moments (1.4.8) and a theorem of Selberg’s which states
that the real and imaginary parts of the logarithm of ((1/2 + it) are indepen-
dently Gaussian in the limit as ¢ — oo to seek out the similarities with the
random matrix calculations.

L-functions figure in Chapter 4 because when grouped together in families
their zeros follow the statistics of a further pair of matrix ensembles [KS99b].
There is number theoretical interest in mean values of these families of L-
functions [CF99], and again we compare the known results with random matrix
theory.

In the final chapter we consider the value distribution of the spectral de-
terminant (1.1.14) and its logarithm for a periodically kicked top, a chaotic
system with eigenvalues displaying random matrix statistics. The value dis-
tribution of the imaginary part of the log of the spectral determinant was
investigated for various chaotic billiard systems by Aurich, Bolte and Steiner
[ABS94] (and later in [ABS97]) and found to be Gaussian in the semiclassical
limit, as predicted by random matrix theory. For the kicked tops we found
that even the approach of the distributions of the real and imaginary parts of
the logarithm of the spectral determinant to this Gaussian limit is predicted
by random matrix theory, the contributions specific to each kicked top being
pushed to the extremes of the distribution in the semiclassical limit. We also
conjecture that in this limit the moments of the spectral determinant factor
into a random matrix component, dependent only on the zero statistics, and
a part specific to the function under consideration, which takes the form of a

product over periodic orbits.

27



Chapter 2

Random Matrix Theory takes
Centre Stage

We now turn our attention to calculating mean values and the value distribu-

tion of the characteristic polynomial,

N
Z(U,0) = H e'(fn=0)) (2.0.1)

where the 6, are the eigenphases of a random N x N unitary matrix U be-
longing to one of the circular ensembles mentioned in the introduction. This
function then has zeros at points on the unit circle distributed with random
matrix statistics, so it is just what we need to begin our calculations. In
particular, mean values of this function where the average is performed over
the ensemble of matrices will provide us with a random matrix moment with
which to compare the moments of other functions, such as the Riemann zeta
function, which have zeros with random matrix statistics. These random ma-
trix mean values are expected to display the properties which surface in the
moments of any function with the correct zero statistics, but not to contain
any information specific to one particular function, since they are by construc-
tion an average over many such functions. Thus only characteristics which are

common to all are expected to survive the average.
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2.1. The CUE generating functions

In the course of the chapter we will examine closely the distribution of
values of the real and imaginary parts of the logarithm of Z (U, #) and discover
them to be Gaussian in the limit as N — oo, as well as considering the

ensemble average values of powers of |Z(U, )| in the same limit.

In the final section we will briefly consider, by way of comparison, the value

distribution of a function with uncorrelated zeros.

2.1 The CUE generating functions

The goal is to calculate average values of the function Z(U, §) where the average
is performed over an ensemble of random matrices. We start with the CUE

ensemble described in the previous chapter.

The average over the ensemble is performed as follows. For any such average
it is necessary to know the weighting assigned to each matrix in the average.
This is well known as the ensemble has been extensively studied (for example
[Meh91] [Dys62]). It is also identical to the group of unitary matrices U(N)
endowed with Haar measure, which implies that in terms of the eigenvalues
of the matrix, this weighting is [Wey46] m [T |€% — etm ‘2, so the st

moment of |Z(U, )| (where s may be considered to be a complex variable) is

1 27 27
Z(U,0)|* = o[ dby---dp 2.1.1
(200 )evr = Gy [ [ dor--aoy (21.1)
N S
x H |ei9j _6i0m|2 H(l_ei(an—o))
1<j<m<N n=1

We will subdue all the integrals of this form which we encounter by the
use of variations of Selberg’s integral (described at length in Chapter 17 of

[Meh91]). The particular integral which we need at the moment is
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J(a,b,c, 8,7, N)
2y N
/ / —z)| X H(a +ix;) (b — iz;)Pdx;  (2.1.2)
1<g<e<N Jj=1
(2m)N ]ﬁlr(1+v+ﬂ)r(a+ﬂ—(N+J'—1)’Y—1)
- g b TEa—ar@-m

In the above formula, a, b, o, # and ~ are complex numbers, Re a, Re b,

Re « and Re (3 are all greater than zero, Re (o« + ) > 1 and

(2.1.3)

-1
—%<Re7<min<Rea Re 8 Re(a+p )>

N-1N-1 2(N-1)

In attempting to coerce (2.1.1) into the form of Selberg’s integral, we note

that

o0 _ eiem‘ = 21sin(6,/2 — 0 /2)|, (2.1.4a)

and similarly

1 — e ®=0| = 2sin(6,/2 — 0/2)|. (2.1.4b)

Therefore we can write (2.1.1) as

2N(N 125N
(200N = “Srgmv / / ;- (2.15)

x ] Isin(0;/2 = 6m/2))° H lsin(6,, /2 — 6/2)|°,

1<j<m<N

and we note that this integral is in fact independent of #, which we eliminate

to obtain
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2.1. The CUE generating functions

) 2N(N71)25N2N ™ ™ . )
(1Z°)cvE W/O /0 doy ---dfy H sin(8; — 6,,)]
1<j<m<N

N
x | ] Isin 6, " (2.1.6)

n=1

If we write
sin(¢; — 0,,) = sinb,cosb,, — cosb;sin b, (2.1.7)
sin(6; — 0p,)

cot 0, — cot 6,
sin 6; sin 0, i 7

then the moment can be written as

2N2—|—sN )
(1Z°)cve = Ni@m)¥ / /d91 H |cot 6, — cot 0|

1<j<m§N

XH sin” 6,,) H|sm0 I°. (2.1.8)
n=1

A change of variables, x,, = cot 8,,, gives us

2N2—|—5N 9
(Z1)evr = sy [ o [ dmeedan T] lam—s,
1<j<m<N
N

X H ((1 + mn)(l _ ia:n))*Nfs/Q

2N2 sN
= ( -y J(1,1,N+s/2,N +s/2,1,N)

R S NCET) R
= E( T = My(s), (2.1.9)

where J is the form of Selberg’s integral defined in (2.1.2). Considering the
conditions, listed in (2.1.3), on the various parameters, (2.1.9) holds if —1 <
Res.

This result is of interest not only because it yields the form of the moments

of |Z|, but also because My(s), in (2.1.9), is the generating function for the
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moments of the real part of the logarithm of Z, which we will study in the
next section.

We will return shortly to the implications of the generating function (2.1.9)
but for the moment we will ask the natural question, which is what is the
moment generating function for the imaginary part of the logarithm of Z.
To answer this, we will consider {(Z/Z*)*/2). Here arg Z(U, #) is defined by
continuous variation along 6 — 7¢, starting at —ie and taking the limit ¢ — 0
(assuming that € is not equal to any of the eigenphases 6,,), with the further
specification that log Z(U, 6 — i) — 0 as € — oo. Thus Imlog Z(U,#) has a

jump discontinuity of size 7 when 6 = 6,,. Now we have

(5)2 — exp (ilmlog Z(U, 0))

= exp (—zZi M) : (2.1.10)

n=1 m=1
where for each value of n, the sum of sine functions lies in (—m,7].
We want to evaluate the s moment of this quantity, so we use again the

definition of the joint probability density function of CUE eigenvalues to write

Z\? _ 1 o 27rd9 do i0; _ ibm |2
~ = Ny ), [ 4 db [T | — e
CUE

1<j<m<N

X l_N[ exp (—is i M) : (2.1.11)

As (2.1.11) is independent of @, we can set 6 to zero, and as all the 6,,’s lie
in the interval (0, 27) we can replace the sum of sine functions in the exponent

with a saw-tooth wave:

3 Smkkx =T 3 T for 0<z<2m. (2.1.12)
1

o0
k=
We note that this relation keeps the sine sum within the range (—m, 7] pre-

scribed by the definition of the logarithm.
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2.1. The CUE generating functions

Substituting (2.1.12) into (2.1.11) yields

Zz : - ;/%.../%dg e do H |ei0j_ei6’m|2
Z ~ NI2n)P J, s N
CUE

1<j<m<N
N ™ —0

x [ [ exp (—is ( 5 ")) . (2.1.13)
n=1

However, |¢% — | = 2|sin(6,/2 — 0,,/2)|, so

CUE
2N(N
NN / / do; - - (2.1.14)

X H |sin(6’j/2—0m/2)‘2HeXp(—%(W—H@).

1<j<m<N

Now let ¢; = 0;/2 — /2, so that we obtain

(Z); 9N(N-1) N/W/Q /2 ( )
= = — 2 / doy---don 2.1.15
Z* CUE N'(Q’/T)N —7r/2 —7r/2

X H | sin(¢; Hexp i5Py,)-

1<j<m<N

The trick now is to use the relation sin(¢; — ¢,,) = (tan¢; — tan ¢,,)

X €OS ¢; COS ¢, to obtain

<<;)2>CUE _ N' - / /_W/2 (2.1.16)

H ‘tangb] - tan¢m|

1<j<m<N
N N
X 1_[(0052 ¢n)N 1 H(cos ¢n + isin ¢y)’,
n=1 n=1

into which we can substitute z; = tan ¢;:
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VA 3 2N2 00 00
<(%)> = sy [ dedoy T1 fo-al
CUE

1<j<m<N

N 1 N N , $
XH(sz) H(\/W m)
oV?

~ NI2m)N / /dml [T |z al

1<j<m<N

xH(1+x2) xﬁ(%) (2.1.17)

This is now in the perfect form to apply the variation of Selberg’s integral

already introduced in (2.1.2), but this time we let a = b =1, « = N — 5/2,
f = N+s/2and v = 1. The condition (2.1.3) is only satisfied when | Re s| < 2.

We now have

(%)

As we intimated earlier, the interest in these functions Ly(s) and My(s)

Nt

I S \C) B
>CUE B H T(j+s/2T(G —s/2) Ly(s). (2.1.18)

Jj=1

is partly due to the fact that from them we obtain the generating functions
for the moments of the imaginary and real parts, respectively, of the log of Z.

The real log moments are generated by My(s), so we have

= {(log |Z| CUE &, (2.1.19)

J=0

and, defining (), as the cumulants of the real part of the log,

log My (s Z (2.1.20)

For the imaginary part of the log if we define Ly (s) = Ly(—is), then Ly(s)
is our generating function. In this case we let I?; denote the cumulants, and

we obtain
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2.2. Moments of Relog Z

= ((Im1 Z ;

Z mog Yeus ;. (2.1.21)

j=0 )

and
- e R; .
log Ly(s) =) s, (2.1.22)

X J-
=1

We can see now that by taking derivatives of My(s) or Ly(s) at s = 0
we recover the moments of the real and imaginary parts of the log of Z. The
cumulants are obtainable by performing the same procedure on the log of M

or L.

2.2 Moments of Relog 7

In the previous section we applied Selberg’s integral to tease out the result

My(s) = (|Z2]")our = 1—[1 % (2.2.1)

We turn our attention now to its role as a generating function for the mo-

ments of the real part of the logarithm of Z. The principle is straightforward;
firstly we note that

(Z*)ovr = (") cup, (2.2.2)

SO we can write

dn
(toglzevs = (e )
§ s=0/ CUE
d’n

= =z
120 v,

d’n
= @MN(S)‘SZO. (2.2.3)
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Thus the moments of log | Z| can be calculated merely by taking derivatives
at s = 0 of the moments of |Z].

Trivially, for n = 0 we have just

((log|Z))*)cve = Mn(s)|,_, = 1. (2.2.4)

For the first moment of log |Z| we need the first derivative of My (s):

dMy(s) LT+ s) ﬁf(j +5/2)
ds N (z_; LGG+s)  I(j+s/2) (223)

= (Z1/Jj+s j+s/2))

where we have introduced the polygamma functions (™ (z2) = ddn;fl logI'(2).
The digamma function is 9(z) = ¥ (2).

Evaluating (2.2.5) at s = 0 gives

dMN (S)
ds

= 0. (2.2.6)
s=0

< (log|Z|)! >cup=

Further derivatives produce the pattern

dn]:ﬁ,z(S) _ %Qﬁ\f 9 <n I 1) %QQ(]\L s) (2.2.7)
NI <Z:;> dMn (s )Qn (N, s) + (Zj)MN(s)Qn(N,s),
where
Qn(N,s) = %logMN(s)
Y Wi+ )~ i+ 5/2) (2:28)
= 3 (#G ) = e 5/2))
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2.2. Moments of Relog Z

forn =1,2,3,.... The cumulants, Q,(N,0) = @, are exactly the derivatives
of the logarithm of My (s) defined in (2.1.20), and prior to moving on to the
second moment, it is useful to consider these quantities in more depth.

The relation between the @, (N, s) for consecutive values of n is

d

EQR (N; 5) = Qn+1(N7 8)' (229)

To calculate the moments, we need the values of @,(N,0). These are

N

n—1 __
Qu(N,0) = T TS 0, (22.10)
i=1

This is a beautifully concise formula for the cumulants for finite /V, but we
would like to know what the behaviour of these quantities is to leading order
as N becomes large.

It is clear from (2.2.10) that @1(NV,0) = 0 but a little more work is needed
to prise the asymptotic behaviour out of the higher cumulants.

We start with the second cumulant. We use the asymptotic expansion for

the polygamma functions [AS65]

o0

B2n

1
~logz — — — 9.9.11
and
Wy et [=D 0 nl R (2k+n 1)
" (2) ~ (=1) [ o +22n+1+;Byc R (2.2.12)

for |z| — oo with |argz| < m. Here the By are Bernoulli numbers. Also useful

are the integral forms of the digamma function

[e ] eft _ 6fzt
= —dt 2.2.1
v +1= [ =5 (22.13)
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and the polygamma functions

00 tne—zt

¥ (2) = (_1)n—1/ it (2.2.14)

From (2.2.12) we see that the second cumulant is of order log N as N

becomes large:

QN0 = 33 u()

log N. (2.2.15)

The lower order terms can be found with the help of (2.2.14):

L Z/oo ff: (2.2.16)

so interchanging the order of integration and summation yields

1 o] tft 1— —Nt
Qs = —/ ¢ gt
0

2 l—et1—et
1 [e’s) t —t t 7(N—|—1)t

- —/ c___r dt (2.2.17)
2 ), (I1—e)?2 (1—et)?

—t et

We now integrate by parts, using %lfe,t = e The result is three

integrals which can again be written in terms of polygamma functions using

(2.2.13) and (2.2.14).

1 00 eft —(N+1)t Oote (N+1)t
= = - N
@ 2{/0 l—e*tdt /0 —etdt+ / 1—et ]
1
= S0+ +1) + NyW(N +1)]
1 1 1 1 1
= §lOgN+§(’Y+1)+W—W+O(W>, (2.2.18)
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2.2. Moments of Relog Z

where the final line utilizes (2.2.11) and (2.2.12). This same result can be
achieved using another method often found to be very useful for random matrix
calculations, shown in Appendix A.

While Q- (N, 0) diverges like log N, the higher cumulants tend to a constant
in the limit as N — oo. This can be seen by proceeding as in (2.2.15) but with
the asymptotic expansions for the higher polygamma functions. This method,
however, would not give the value of the constant leading order term of each

cumulant, so instead we again use (2.2.14) and write, as for @y,

nl 1 & '
G = T [ (2.2.19)

on—1 _ 1 oo yn—1o—t 0o yn—1 —(N+1)t
= S (m —° _a— [ ).
-1 o =Pty A=
The first integral integrates by parts to yield the integral representation of

the Riemann zeta function,

oo tmfl

et —1

D (m)C(m) = /0 dt, (2.2.20)

valid for m > 1, and the second is expressible in terms of polygamma functions:

Q0 = 2 [ 1)Cn 1) — (0= (1 N )

+N(=1)"p®™ (N +1)] . (2.2.21)

Applying (2.2.12) once more we obtain

ol 1
2n—1

(=1)" (r(n)g(n —1)— (7;\;_32)!) +O(N"™),  (2.2.22)

Qn:

for n > 3.
Turning now to the moments, via (2.2.7), and remembering that dMy(s)/ds|s—o =

Q1(N,0) =0, we find
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1 1 1 1 1
log | Z|)? = N,0) = -1logN + — 1 ——— 40| —=|.
((1og |Z])2) cvs = Qa(N,0) = S10g N + S (y+1) 4 5y = o + (N)
(2.2.23)

For the third moment,

dSMN(S)

((log |Z))*) v = 753

= Q5(N,0) (2.2.24)

s=0

and so, asymptotically, we have (using (2.2.22))

(log|ZP)evs = (~1P22¢@T(3) + (~1)*2 _1i+0< 1 )

22 22 N m
—7'('2 3 1
o vt (m) (2.2.25)
Similarly,
d4MN(3) d3MN(S) dQMN(S)
T dst TQI(N, s)+ 37622(]\7, s)
dM
+3T12(5)Q3(N, s) + My(s)Q4(N,s). (2.2.26)

Evaluating this at s = 0, using all the previous results for the lower moments

and cumulants, yields the fourth moment asymptotically as

1 1 1 2
{(log|Z))"Yeve = 3(§logN+ 5(7+1)+W+---) (2.2.27)
T ;71

BT + (1) g 5m + O(N7?),

+(=1) 8 N2

because Q3(N,0) = d?My(s)/ds?| _, and Q1(N,0) = dMy(s)/ds| _, = 0.
The knowledge of the leading-order behaviour of each cumulant, summa-

rized here,
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2.2. Moments of Relog Z

Q1 =0 (2.2.28)
Q2 = ((log|Z)*)cvrs = %lnN—i-%(’y—i-l)—i-ﬁ—i—O(N_‘*)

n—1
Qu = (2 Tlm-nrm + o), nxs,

2n—1
is all that is necessary to deduce the asymptotic behaviour of the moments

themselves:

(1081 Z))")com = 5 M(3) |,
2k — 1)!{(log | Z)®)* + O((In N)¥=%)  if n = 2k

_ (2.2.29)
O((In N)k-1) ifn=2k+1

When the moments are written in this way it can be seen that the distribu-
tion of log |Z|//(1/2)log N is asymptotic to a Gaussian, as N becomes large,
because the 2k™ moment of this latter distribution is equal to (2k — 1)!! times
the k' power of the second moment, while the odd moments are zero. The
same result is evident from the cumulants (again normalized by /(1/2)log N)
as the cumulants of a Gaussian distribution are all zero except for the second.

One last comment concerning computations of the above moments and
cumulants: when N becomes very large, the time necessary to evaluate Q;
using the sum over polygamma functions (2.2.10) becomes infeasible. As we
know the leading-order behaviour of these parameters, see (2.2.22), we can
determine the order in IV of the error involved in using an asymptotic form for
the Q’s in the calculation of the moments.

If we use just the first two leading-order terms from (2.2.22) for the third
cumulant and higher, and the terms down to and including N~* for the second
cumulant, ( 2.2.18), then the error due to leaving out the lower order terms is
O((log N)k~3)/N?) for the 2k*" moment and O((log N)*~!/N?) for the 2k + 1%
moment. These errors become negligible around N = 100 and immense savings

are made in computation time.
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2.3 Value distribution of Relog 7

It was seen in the preceding section that the function My(s), the s moment
of |Z|, acted as a generating function for the moments of the real part of the
log of Z, but its usefulness is not yet exhausted. The information about all
possible moments is concealed within the probability density function for the
value of a given function, and it is this which we will next determine for log|Z]|.

The probability density function for the values taken on by log|Z| is given
by

pn(z) = (6(log|Z| — z))cvE- (2.3.1)

Taking the Fourier transform of this,

) = </°° ei5$5(10g|Z|—m)da:>

—00

. CUE
= (el (2.3.2)

we obtain the moments of |Z| itself, My (is). Therefore, the distribution of

log |Z| is

on(z) = i h e My (is)ds (2.3.3)

N
— / H F( ) .7 +ZS) —ismd
= S.
e (T(j +1is/2))

This is the exact distribution function for log|Z| - no asymptotic approx-
imations have been made. Unfortunately, it does not appear to be a simple
matter to perform the Fourier transform of My(is) analytically; so far the
transform has only been computed numerically. This is not entirely satisfac-

tory, as the oscillatory nature of the integrand means that it is only feasible to

integrate over a finite range of s. For instance we integrated over s in (-10,10)
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2.3. Value distribution of Relog Z

for the value of NV and the range of x featured in Figure 2.1. The integrand
is very small, though, when |s| is large, so the error is not visible when the
distribution is plotted.

On the other hand, more can be done analytically if we consider asymptotic

approximations to the distribution. We now write py(z) as

pn(z) = M/OO exp (—isx + Z(logF(j +1is)

2T s

—21logT(j +is/2))) ds, (2.3.4)

=1

and then expand the exponent as a power series.
The coefficients in this expansion are just the cumulants studied in the pre-

vious section, multiplied by some extra factors of i. So, letting Q; = @Q;(V, 0),

on(z) = M /oo exp (—isx — logHP(j) 10-5+Q, (is)?

- 2

(is)°
3!

=1

+Q@s + Q4 Gs)” +-- ) ds (2.3.5)

S

4!
1 00

= 2_/ exp (_isx - Q232/2 - ’iQ383/3! + Q484/4! + - ) ds.
TJ-o0

Now let y = sv/Q2,

onl(z) = ;/C’O ep [T V0 _Qw Qu' )
21V Q2 J o V@2 2 3!@3/2 4163

o0 ; 3 4
- ! / VT VT 1P [2 (1 _iQsy’ | Quy
—00

2my/Q2 3QY? 4103

2
—iQ 3
+(3:,T§/y2+) /2+... dy. (2.3.6)

For large N, (2 tends to (1/2)log N and @, tends to a constant for j > 3.

Therefore,

Q;
Qy*

—0 as N — oo, for j > 3. (2.3.7)
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Thus as N — oo,

1 Rl 2
~ —iyz/VQ2 o —y*/2 4
pu(z) 21/ Q2 /oo ‘ ‘ Y
1 —z? .
~ 0 exp 20, = pu(x). (2.3.8)

Thus, to leading order, the distribution is a Gaussian. Terms of lower order
in N can be obtained by returning to (2.3.6), separating off the Gaussian term,

then grouping the remaining terms according to their powers in y:

_ G 1 . z/vVQz ,—y?/2 Qs(iy)® | Qa(iy)*
o) = o)+ g [ e (3!@3/2 1

2
Qs(iy)® | Qu(iy)*
+<3!Q§/2 <0 +) /2!

3
Qs(iy)® | Qaliy)*
(S Saat ) fre )

= pi(z) + 1/— / R U + As(iy)"
27T QQ —00 3/2 Q%

+—A;(§%)5 e ) &y, (239)

2

where A3 = Q3/3!, Ay = Q4/4!, A5 = Q5/5!, but Ag and higher are more

complicated combinations of the cumulants.

The standard Gaussian distribution (mean 0, variance 1) is

55 (2) = Qa0 (v Qo) (2.3.10)

so we will standardize the distribution py(z) in the same way.
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2.3. Value distribution of Relog Z

1 o0 )
pula) = () + o / emivr )2
™ ] _

o0

; (Ag(z:w?’ L Auliy) | As(i)® ) "

3/2 Q% 5 /2

— e WY 2ym gy, 2.3.11
Qﬂ- m/2

The remaining integrals can themselves be expanded as a sum, and the

final result for the standardized distribution is therefore

ﬁN(x) = Z m/g

m32

n ™ P(m—p—1!, m—p even
x 3 <m>x” (m=p—1) P 93.12)

p=0 \P 0, m —p odd

From this expression it can be seen that after the Gaussian term, the

—3/2 The size of the correction, however,

next correction is of order (log N)
is dependent on z.

An alternate method for retaining lower order terms than the Gaussian,
and one which displays more clearly than ( 2.3.12) the role of these terms,

requires that we go back to (2.3.6) and this time approximate py(z) with

1 o0 —izy  y? Qs
A _
T) ~ )= exp - = - dy. 2.3.13
pN( ) pN( ) 271_\/@ - (\/@ 2 3'Q3/2 ( )
It is possible to write agz + a12? + as2® = as (z + 3@2) — 3a2z+a0z 27a§,
so we let
—ix -1 —iQ3
= — =— Qp=——, 2.3.14
a() Q2 aq 2 2 3'Q3/2 ( )
and write
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A 1 Q62 [ —iQs 3 3
o = e [ o (29 (., 9
we) 21V Q2 —00 3!Q3/2 Q3

ir QY
7z, ) dy. (2.3.15)

Figure 2.1: A comparison of the standardized exact distribution of log|Z|
(green), the Airy approximation (blue) and the Gaussian (black) for N = 42.

Let 2 =y — Q3" /Qs:

. 3/2 . 3/2
A L oyead (Jéffgs )(%23 )
X = —e V2 e
:ON( ) 271_\/@

X/OO—ng/z/Qs —iQ; , it N ng/Q ;
exp | ——=2° — z | dz.
—00—iQY?/Q3 3!@3/2 V@2 2Q3

As the integrand has no poles and tends exponentially to zero as the real

part of z approaches +oo in the upper half-plane (and Q3 < 0) the line of
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2.4. Moments of Imlog Z

integration can be shifted back to the real axis. Then, as the exponent in the

integrand is an odd function, we can discard the sine term and are left with

1 QQ +mQ2+ Q2 oo Q T 3/2
A _ T6Q2 " Q3 203 3 .3 2
r) = ———e 3 COS — + 2| dz
D = o (3@3/2 V& 20

_9\ /3 /
= <Q_2> eSQa Ai (21 o + @ ) . (2.3.16)
3

1/3 4/3
Q3/ 22/3@3/
This is what we will call the Airy function approximation to the distribution

of log |Z|. The order of the error in this approximation can be determined in

an identical manner to the Gaussian case and the result is O((log N)2).

2.4 Moments of Imlog 7

From Section 2.1 we remember that

A 3 ()T G)
LN(S):<<?> >C Hrg+zs/2 T(j—is/2) (24.1)

Jj=1

In this section we intend to use the function Ly(s) to carry out a study
of the moments of the imaginary part of the log of Z. We will show that the
distribution of the imaginary part of the log is Gaussian, just as that of the real
part was. This result is of wider interest because 1 Imlog Z(U, ) = N(6), the
fluctuating part of the spectral staircase function. The full staircase is created
by summing a series of unit step functions, one at each CUE eigenphase,
#;, 1 < j < N, and when the mean is subtracted from this the fluctuating
function results. This relation between the imaginary part of the log of Z and
the staircase function is detailed in Appendix B. Our results show that the
distribution of values of the fluctuating staircase function is Gaussian. This has
already been determined for the Gaussian matrix ensembles, GUE, GOE and
GSE, in terms of the random variable which gives the number of eigenvalues

in an interval of length L of a matrix from one of the above ensembles [CL95].

47



Chapter 2. Random Matrix Theory takes Centre Stage

This statistic is very closely related to the staircase function and was found by
Costin and Lebowitz to have Gaussian distribution.

Returning to our generating function (2.4.1),

dlc

dk
((Imlog 2)"cvp = e <e<lm1°gz>3> (2.4.2)
CUE

s=0 s=0
When writing the imaginary part of the logarithm of Z it is to be remembered
that we are using the definition given in Section 2.1 .

The zeroth moment is one, as expected, and the first moment of Imlog Z

turns out to be zero in a similar manner as for the real case, see Section 2.2.

The n'* derivative of Ly(s) is

d"Ly(s) _ d"'Ly(s) n—1\d* 2Ly (s)
dsm - dgn—1 Ri(N,s) + 1 WRZ(N73)+...
n—1 df/N(s) -
+(n_ 2) 75 ftn1(N,8) + L () Bu(N, 5), (2.4.3)
where
Ro(N,s) = L logTn(s)
e N ds” N
n—l 1 N
T g1 52 —ip(j +is/2) +ip(j —is/2)) |,
7j=1
" &
]:1
0 if n odd
- (=1)n/2Ht . (2.4.4)

e Z] LY Hy) if n even

These parameters, R,(N,0) = R,, are the cumulants defined in (2.1.22).

Note that for the even cumulants

(-1t
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2.4. Moments of Imlog Z

As all the odd R(N,0)’s are zero and the first moment is also zero, it is
clear by induction that at s = 0 all odd derivatives of Ly(s), and therefore all

odd moments, are zero. The form of the even moments reduces to

. .

2k — 1\ d** 2 Ly(s)
2k — N

(Imlog Z2)*YcvEe = g (2]._ 1>W

=1

Ryj(N,0). (2.4.6)

S

From (2.4.5) and (2.2.22) we see that the asymptotic form of the even R’s

must be

(~1y+

Ry;(N,0) = 51

(25 — 1)I¢(25 — 1) + O(N*%), (2.4.7)

for j > 2, and Ry(N,0) = Q2(N,0).

The asymptotic form of the moments of Imlog Z therefore follows as

{(Imlog Z2)*Ycrp = (2k — 1)!{(Imlog Z)*)&,p + O((log N)¥7%),  (2.4.8)

where the second moment is just the same as the second moment of the real

part of the log, given in (2.2.18),

1 1 1 1 1
2 —
((Imlog 2))cuw = 5 log N+ 5 (v+ 1) + 575 — gona T ¢ (F) :

(2.4.9)

Thus the even moments are Gaussian to leading order, and the error for the
2k™ moment is of order (log N)*~2. Being zero, the odd moments are exactly
Gaussian.

As mentioned in the discussion on the real log moments, much time can be
saved in the computation of the moments if an asymptotic form is used for the
cumulants. This time, due to the lack of odd R’s, it is sufficient to keep just
the leading-order (constant) term in the expansion of R;, j > 4, (and terms up
to O(N™%) for Ry(N,0), as in (2.4.9)) and still the error on the 2k™ moment
is O ((mgjzvv#)
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2.5 Value distribution of Imlog Z

In the manner of Section 2.3, we now consider the distribution of the values
taken by Imlog Z. The distribution is again Gaussian in the limit as N — oo.
We could see this from the moments and cumulants calculated in the previous
section, but it is informative to study the distribution itself and the corrections
to the Gaussian limit.

The distribution of Imlog Z is

o(xz) = (0(Imlog Z — z))cvE. (2.5.1)

Taking the Fourier transform of this,

(k) = < / h e**§(Imlog Z — ac)>

—00 CUE

— <eikIm10gZ>CUE’ (252)

we obtain the moments of exp(i Imlog Z) which we have already calculated in

(2.1.18). Therefore, the distribution o(z) is

1 R )
0'($) — % i efzsw<ezslmlogZ>CUEds
N .
1 (T())?
= — e ds. 2.5.3
o L Usgmprg ™ ¢99)

j=1
As in the case of the distribution of log|Z|, this transform has not been cal-
culated analytically, so instead a numerical approximation has been used to
plot o(x), in which only integration from -8 to +8 was possible. The error due
to this truncation of the range of integration is bounded for all values of x by
(1/m) [ e(R25*/2ds. This bound evaluates to 3.19 x 10~5 when N = 42, and
becomes even smaller as /N increases.

Looking at the distribution asymptotically, however, approximations can

be made to a certain extent analytically, as for log|Z|. We begin with

20



2.5. Value distribution of Imlog Z

olx) = % h exp (— isx + 2(2 log'(j)
—logT'(j +s/2) —logI'(j — 5/2))) ds. (2.5.4)

We want the coefficients of the power series,

N

Z 21og'(5) —logT'(j + 5/2) — log['(j — 5/2))

=1

= Ry + Ryis + Ro(is)?/2! + R3(is)® /3! + - - - | (2.5.5)

but these are just the cumulants studied in Section 2.4. Thus Ry = 0 and

0 n odd
R, = . (2.5.6)

(_1)n/2+1

g >0 ¥ (4) n even

Therefore,

o) = 5- / T riseRast 2 Rest it g (2.5.7)

If we let y = s\/ Ry, then

1 [ —yx  y? Ryt dy
_ 1 v _ 92.5.
o) =5, /_oo exp (\/R2 > TR T ) UR (2:5.8)

Since Ry = O(log N) and Ry, = O(1), k = 2,3,..., Ry/RE will be small as
N grows. We therefore approximate exp(R4y*/(4!R2) + --+) by 1. Thus for

large N we have

o(x) ! h exp (—iy:v - y_2> dy
271'\/ Rg —0 vV R2 2
NoT exp (2R2> =o"(x). (2.5.9)
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Chapter 2. Random Matrix Theory takes Centre Stage

This is exactly the asymptotic result we expected, a Gaussian with variance
Ry = ((Imlog Z)?)cus.

As in the log|Z| case, we would like to know what error is incurred by
making the Gaussian approximation. Expanding the second exponential in

the following integral,

o(z) = ! /00 exp (—iya; - y_2>
21/ Ry J_ oo VR, 2
X exp (Z‘%ﬁ - g%gg ¥ ) dy (2.5.10)
1 o0 —i 2
- @ [ (7 5)
[014{ N C;gﬁ N oégs L } "

where Cy = R,/4!, Cs = —Rg/6! and the higher coefficients are more compli-
cated combinations of the R’s.

The standardized Gaussian distribution (mean zero, unit variance) is

5%(z) = v/ Ry0%(\/ Ry), (2.5.11)

so changing variables in o(z) in the same manner yields

1 o ©
5(z) = 6%(x) + — Z CL/ e WY 22y, (2.5.12)

1 & >
F(r) = 6G(m)+—z 02%*”” /2 (2.5.13)

X (9m, ) (2m —p—1)! if 2m — p is even
X (—ix)? )
0 if 2m — p is odd



2.5. Value distribution of Imlog Z

If we keep one more term in the exponent in (2.5.8), then we end up with a
distribution in the form of a Pearcey integral. This will be called the Pearcey

approximation:

. 2 4
ey, Ry ) dy. (2.5.14)

1 o
P R — p—
= ey Lo (U~

CUE
_— Pear cey
0.2t
_— Gaussi an
0.1
/ \
4 2 2 4

Figure 2.2: A comparison of the standardized exact distribution of Imlog Z
(green), the Pearcey approximation (blue) and the Gaussian (black) for N =
42.

The correction to this approximation can be found in the usual way.
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Chapter 2. Random Matrix Theory takes Centre Stage

~ 1 o0 y2 R4 4 R yﬁ
3@ = @)y [ “exp (—zym ST (- Rgﬁ, o (2515)
R6y6 2 Rﬁy
( RI6 ) /2+ “Riel T /3'
Doy, y2 R4y4
= 27r Z ™ exp (—zyx - =+ 724l dy,

where the D’s follow the usual pattern,

D = —RG/G' Dg Rg/g' and D10 = —R10/10' (2516)

while the higher D’s are more complicated.

2.6 Joint distribution

We are looking here at the joint distribution of the real and imaginary part of
the log of Z. The aim is to show that the distributions are independent in the
limit N — oo where they each tend individually to a Gaussian.

Firstly we devise a generating function for these joint moments. The

method here is identical to that used in the earlier sections in this chapter.

<|Z‘t s ImlogZ)

Nu 2m)N / / doy---doy ] [ — e[’

1<j<lc§N

S e T s sin[(6, — 0)m)]
><H|1—e n ‘ Hexp —zSZT
n=1 n=1 m=1
:#/%.../%dg...dg H |e’i0j_ei9k|2
NI@2m)N Jy 0 ' N

1<j<k<N
al al = sin(#,m)
X — ¢itn ]’ —i — . 6.
H|1 e ‘ Hexp( zsz — ) (2.6.1)
n=1 n=1 m=1
We know, as in Section 2.1, that
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2.6. Joint distribution

Y smgka) =% o<z<om (2.6.2)
k=1

SO

<|Z|t Zs(ImlogZ

- 5 / S

1<j<k§N

N N B
H ‘1 — 6’0“|t H exp (—is 5 n) : (2.6.3)
n=1 n=1

Now, using the relations in (2.1.4), we have

(2]t D) opp = LN 2t " o
CUE — PJ'QW 1°

x H in0,/2— 0/2) [ | sin(0u )]

1<j<k<N

x n: exp (—is (g - %”)) . (2.6.4)

Then, letting ¢; = 0;/2 — /2,

<|Z‘t€is(lmlogz))CUE — 2V otV / /
N' 271' —7/2 —7/2

X H ‘sm ¢k‘H|cos¢n

1<j<k<N

N
X H(cos On +isin @,)°. (2.6.5)
n=1

Noting that sin(¢; — ¢x) = (tan ¢; — tan ¢, cos ¢; cos @, we obtain

95
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<|Z|teis(1mlogZ)>CUE — 2N otV / /
N' 27T —m/2
2 _
X H | tan ¢; — tan ¢y| H(cos fn)? N
1<j<k<N n=1

N N
X H(cos bn)" H(cos ¢on +ising,)’.  (2.6.6)
=1 n=1

Now we change variables and let z; = tan ¢;:

<‘Z‘t zs(ImlogZ))

2N22tN )
N' o) / / dxy - - H |z; — x|

1<j<k§N

1\ V2 1 ’
I (57) H( =)
1422 \/14—7332 m
9QN?9tN
L T

1<j<k:§N
N
% H(]- + ,L'l,n)—N—t/Q—f-S/?(l _ 'l:./L'n)_N_t/Z_S/2

2N2 2tN

~ NN

3 JL(E + )
HF]+1§/2—|—3/2) T(j+t/2—s5/2) (2.6.7)

———J(1,1,N +t/2—s/2,N +t/2+ 5/2,1,N)

J=1

The conditions on the validity of Selberg’s integral translate into the re-
strictions Ret/2 + Res/2 > —1, Ret/2 — Res/2 > —1 and Ret > —1.

In our quest for the joint distribution of the real and imaginary parts of
the log, we need to determine the joint cumulants of the distribution. This
necessitates expanding the log of our generating function around ¢t = 0 and
s=0.

Firstly, we write
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2.6. Joint distribution

<|Z|t is(ImlogZ)>CUE

PG +7)
H TC(j+t/2+s/2)T(+t/2—s/2) (2.6.8)

= exp (ZlogF(j) +logT(t+7) —logT'(j +t/2+ s/2)

—logT'(j +t/2— 5/2)>,

and then we want to express the exponent as a power series in s and . Let

f(t,s) = ZlogF(j)—i—logF(t-l—j) logT(j +t/2 + 5/2)
—logI'(j +t/2 — s/2)

(0% (0% Q
= Qo + alot -+ 1S -+ %IQ =+ O!lltS -+ ﬂ 2 =+ ﬂtii -+ ilfQS

2 3! 211!
Qp3 3
+Wt + ?S + -
of of 1[0°f 2 o OPf
0,0 —— t+ — — | == t 2
10,0+ ot 1(0,0) + 05 1(0,0) [0252 (0,0 + 0t0s 1(0,0)
0? 9 1 [0%f 3 o3 f 9
— — | == t 3 t
+882 (0 0)8 ] + {at?’ (0,0) 0t20s 1(0,0) 5
03 f 03 f
3 2+ 4 2.6.9
+ 0tds? 1(0,0) s 0s3 (0,0)8 ] T ( )
SO
O f(t, s)
g B 2.6.10
i otrds? ‘ (0,0) ( )
The result is that
o = @, (2.6.11a)
aon = "Ry, (2.6.11b)

and if n # 0 and m # 0,
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m

N
= (n=1)( 2+5/2
o, o Z (=D (G +1/2+5/2)

(=)D 4 1/2 — 5/2))
00

al 11 n+m—1)( -
= D g ¥V + /24 5/2)
j=1
(

(=) /2 = 5/2)] )
0 if n odd

- . . (2.6.12)
st 2o WU (G) if neven

We now turn our attention directly to the joint distribution of the real and

imaginary parts of the log of Z. We carry out the following manipulations:

(|Z[teisumio D) oy = < | etiog| 2|~ )z

—00

X / e"*¥§(Imlog Z — y)dy>
CUE

= / dx/ dy etV (§(log | Z| — z)
xd6(Imlog Z — y))cur- (2.6.13)

This is the Fourier transform of the joint probability density function

(6(log|Z| — z)6(Imlog Z — y))cvr- So,

T~ (z,y) = (0(log |Z| — z)0(Imlog Z — v)) cym (2.6.14)

1 oo oo
—(itz+isy) / itlog|Z| isImlog Z
tdse <e e > CUE

= 12
47T — 00 —00

d
dt ds e —(itz+isy) )F(lt + ])

/
47r2/oo/oo ,le (j+it/2+4 s/2)T(j +it/2 — s5/2)
“w ..

dt ds e~ +isY) exp (alozt + o118 + 7(115)

G2 2 2 Qo3 3
ps+ 2022 ) D0 pys | 02 g2, K240 003 )
+oqqits + 5 + 3,( )3 +2,1,( )%s +2,1, + 3 + -
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2.6. Joint distribution

As a start, we know that a9 = ag; = a;; = 0. Next, the second cumulants

are related to those for the individual real or imaginary distributions, so

1 1 1 1 1

Lastly, from comparison with the cumulants of the real distribution alone,
Umn = O(1), for m+n > 3, so we will make the change of variables v = t1/|ag|
and w = sy/|ag| and then keep just the leading-order contributions to the

integral:

(2.1) 1 /°° /°° i d vz wy  v? w?
(z = vdwexp | — —_— = — = —
Y —o0 J —00 P vV @20 Vv @20 2 2

+—a30 (1v)® + 21 (iv)Zw—i-—al2 ivw?
3l 2l 2

3/2 3/2 3/2
2(/) 26 !0426
o
+%w3 _|_ .. .)
3103/

HePn
1 ®© /°° I duw e vz wy  v? w?
= X _ - -
412090 ) oo J oo P V@20 /O 2 2
1

To leading order we ignore the O (W) term. Thus

1 o0 __ivz _ﬁ o _ _iw _w_2
T(z,y) ~ / dve Ve 2/ dw e Vo ? (2.6.17)

2
4 20 J_o

1 —x? 1 —?
ex ex .
vV 271'0!20 P 2(]{20 vV 271'&20 P 20120

We see, therefore, that to leading order 7(z,y) is the product of two Gaus-

sian distributions. Thus the real and imaginary distributions are independent

in this limit, but at the next order there will be cross terms.
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Chapter 2. Random Matrix Theory takes Centre Stage

2.7 Asymptotics of the generating functions

In preparation for our eventual comparison of these random matrix calculations
with the moments of other relevant functions we now consider the leading-order
behaviour of My(s) and Ly(s) as N becomes large.

Starting with My (s), when s is an even integer we can work out the leading
order behaviour very simply. (We note that the second moment was calculated
prior to this work by [HKS'96] using a method similar to that in Appendix
A.) We see that if k < N —1

(1Z*)ove =

ol (N =1I2k)!1(2k +1)!--- (2k+ N — 1)!
K+ (k+N-D)EE+1) - (k+N-—1)!
ot--- (k=D k+ N k+N+1)!---(2k+ N —1)!

NN +1)!---(E+N — Dk (E+1)---(2k — 1)!

= k,(kﬂi'l)'(k(_zkl)_' 1)![(N+1)---(k+N)] [(N+2)---
(k+N+1)]----- [(k+N)---(2k+ N —1)]

— T 7! k2 k2—1

= 11 (k+j)!N + O(N" 7). (2.7.1)

Following this work, Brézin and Hikami have determined that the above
formula holds for the integer moments of characteristic polynomials of matrices
belonging to other random matrix ensembles, including the GUE [BH99].

For general s, using (2.1.20) with the asymptotic expressions for the cu-
mulants, (2.2.18) and (2.2.22), we define the leading-order coefficient, for large
N, as

fevr(s/2) = lim Muy(s) (2.7.2)

NS00 N(5/2)°

— exp ((3/2)2(7+ 1)+ (=s) (2;_: 1) C(jj_ ”) .

Jj=3
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2.7. Asymptotics of the generating functions

We can see here that the N dependence of the leading-order term comes
from the order log N term in the second cumulant, Q2(N,0), and it is the
constant term of each of the cumulants which features in foyr(s/2).

It turns out that foygm(s/2) can be expressed in terms of the Barnes G-

function [Bar00, Vor87, Vig79],

G(1+2) = (2m) e (02 TT [(1 + z/n)te M| (2.7.3)

n=1

which has zeros at the negative integers, —n, with multiplicityn (n = 1,2,3...).

Other properties useful to us are that
G(1) = 1, (2.7.4)

and furthermore, for |2| < 1,

logG(1 + z) = (log(27) — 1)% —(1+ 7)% + Z(—l)"‘lé(n - 1)% (2.7.5)

Comparing the final line of (2.7.2) with (2.7.5) we see that for |s| < 1

(G +5/2))*

2) = 2.7.6
fevg(s/2) Gits) (2.7.6)
and so this equality holds by analytic continuation for all s.
Through the use of (2.7.4) we see that
n—1
Gn)=]]rG), n=234..., (2.7.7)
7j=1

and so we can check that for an even integer s = 2n:
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(G(1+n))? [[-.TG)?
G(1+ 2n) [12, T'(m)
[ TG)
Hf:zn—l—l ['(m)
I175 4!
1=, m!

_ b n
= 311) G+n) = feur(n), (2.7.8)

which is exactly the same as (2.7.1).

We note here a very important point on the deviation of individual matrices
from the average ensemble behaviour. If we consider a function f(U) depen-
dent an a matrix U, and examine the variance of f(U) from the ensemble

average value f, = (f2(U))cur, we see that

— 2

((f°(U) = f2)*)eve = (f*U))ove — fa (2.7.9)

Normalizing with respect to f.,

<<@ - 1)2> = 7“4@20”}3 ~1. (2.7.10)
fa fa
If f(U) = RelogZ(U,#®) for some fixed 6, or if f(U) = Imlog Z(U, ), we
see from (2.2.29) and (2.4.8) that (2.7.10) tends to a constant as N — oc.
However, if f(U) = |Z(U,0)|, since {|Z|*)cur o« NG/2* (2.7.10) diverges as
N — oo and the deviation of the behaviour of |Z| for one particular matrix
from the ensemble mean could be huge. This is a warning to be heeded in later
attempts to compare average random matrix results to individual functions
with zeros displaying random matrix statistics.
Returning now to Ly(s), and following the same procedure as was applied

earlier in this section to My(s),
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2.8. The COE and CSE ensembles

: 2 : I'(5))? 2
lim Ly(s)N*/* = 1 ( Ne/4 2.7.11
i L (s) Nirféor T+ s/2T( — 5/2) (2.7.11)

— exp(( () ZC2J2;; )

This has a similar form to (2.7.2). This time we guess that the leading-order
coefficient of Ly (s) is G(1 — s/2)G(1 + s/2), which has zeros of order n at the

points £2n forn =1,2,....

log(G(1 — s/2)G(1 + s/2))

=logG(1 —s/2) +log G(1 + 3/2)

(log(%)—l)g_ L+ +Z ”_1)(;2&"
| ) . S ) 82 1n—1 1 sn
+(log(27) — )Z_( +7)§+;(—) ¢(n— )%
o] . (_ )2n
—(1+7) %4—22 > 1¢ n—l)%
2 ((2n—1)s
1+7£Z Z ”22nn (2.7.12)

As the above holds for [s/2| < 1, limy_,s L (s) x N**/* = G(1—5/2)G(1+

s/2) for |s| < 2 and so, by analytic continuation, for all s.

2.8 The COE and CSE ensembles

Although this work was motivated by connections between random matrix
theory and the Riemann zeta function and so the initial work was done on
the CUE ensemble, it can be extended to include two other random matrix
ensembles: the Circular Orthogonal Ensemble and the Circular Symplectic
Ensemble. In fact it is fairly straightforward to repeat the calculations for

these two cases as the method involving Selberg’s integral is equally applicable

here as for the CUE.
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For a general circular ensemble, the integral corresponding to (2.1.1) is

(1Z2(U,0)1°) raer

2)1v o
Nﬂ% / / 0y - IT e —e
1<j<m§N
H (1 — ¢ilfn— 9))

n=1

X , (2.8.1)

where g =1 if Z(U,0) = Hivzl(l — €%2=9)) is to have zeros distributed like
the eigenphases of a COE matrix, 8 = 4 for CSE statistics and 3 = 2 is the
CUE result already considered. Exactly the same method as was applied in

Section 2.1 is used here to obtain

=ra +Jﬂ/2 L(1+s+3j3/2)

I(1+s/24356/2))2
(ﬂ, )- (2.8.2)

(1Z°) raar

I:1

This leads to an equivalent version of (2.2.7),

" _ " (n—1\d" T My(B,s) 5
((log |Z])") rmrr = 2. (j B 1) T s:ij (N,0), (2.8.3)
where
on—1 N-1
QP (N, 0) —1 ) T+ 5p)2). (2.8.4)
7=0

As in the CUE case, Q°(N,0) = 0. Applying the recurrence formula for

the polygamma function,

P (z4+1) =W (2) — = (2.8.5)
we have in the CSE case that
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2.8. The COE and CSE ensembles

Q3(N,0) =

In the COE case we follow a very similar procedure, except that as we now
have polygamma functions of half-integers, we need to consider the case of
even and odd N separately. We start with N even, relating the polygamma
functions of integers back to ¥(!)(1) and those with half-integer argument to

¢ 1 (1/2), and find that

QYN0 = S U +i/2)

§=0
1 (N N L AN/2—k+1)
_ N oy 4 Nemare -
o RGBS (e
(N-2)/2
N/2 -k

2 e

k=1
= logN+1+7— 2@“(2) +O(N7. (2.8.7)

The calculation for odd N is very similar and the result is the same.

For Q?(N,0), n > 3, the sum converges as N — co. To find this limiting
value Q> we write the polygamma function in its integral form (2.2.14)
and interchange the order of summation and integration, as we did for the

cumulants in Section 2.2, to obtain
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Qﬁoo = lim Qﬂ(N 0) = 2”_17_1(_1)” /°° e tnt dt
" N—oo " 2n-1 s (I—e b1 —ebu2)
2n71 -1 o 00 o0
— W(_1)7122/ (s tBr/2)tm1 gy
r=0 s=0 "0
2n_1 _ 1 . oo oo .
= 5 (F0" YD T()(s +pr/2) (2.8.8)

r=0 s=1

Now if # = 4, then the number of ways in which s + 2r = k is k/2 if k is
even and (k 4+ 1)/2 if k is odd. This leads us to

fo 2P o1 = k =k
O = e (VT (k_l 2k — 1) +kz_; (2k)")
nl—1, 1 2k—1 = 1 = 2k
- zn_;n_ 1(—1)"F(n) (g(n - 1)+ (1 - 2% C(n)> (2.8.9)
Similarly,
QL = (2! —1)(=1)"I'(n) (C(n —1) - (1 - 2%) C(n)> - (2:8.10)

The asymptotic convergence of these () parameters ensures that the distri-
bution of the real part of the log of Z(U, ) is Gaussian for large N when the
zeros are distributed with COE or CSE statistics, just as it was for the CUE.
All the calculations carried out for the CUE transfer immediately to the other
two ensembles by replacing Q,, with Q°.

Among other things, we can once more write the leading-order (for large
N) coefficient of My (3, s) in terms of the Barnes G-function (2.7.3) and the
gamma function. Using the asymptotics of the cumulants Q} just derived, we

have for the CSE
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2
Mny(4,s) = exp <(ilogN+ %(1 +7) + %logQ + %C(?) +0 <%)> %
X on—-1 _
3T ) - D)
n=3
1 n
+ (1 - 27) C(n) + 0(1)> %) , (2.8.11)
which gives us
My (4 2
Jlim. ]’\j( /’88) exp (%(1 +9) + %log? + %g@)) % (2.8.12)
& 1 1 1
#3056 1) = o6 =1)+ 3¢0)
n=3
1 1 1 "
The result is therefore, using (2.7.5) and
logT'(1+2) = —yz+ Z ¢(n) (_i)n, (2.8.13)
n=2
valid for |z| < 1, that
. My(4,5) _ _esG(145/2)y/T(1+5)(1+5/4)
N TN VG + )01+ s/2)T(1+s/2) (2.8.14)

which has poles of order k at s = —(2k — 1) and simple zeros at s = —(4k — 2)
fork=1,2,3,....

This reduces to a simpler expression when s = 4k, for integer k:

67



Chapter 2. Random Matrix Theory takes Centre Stage

o2k? G(1+ 2k)/T(1 + 4k)T(1 + k)
VG(1+ 4k)T(1 + 2k)D(1 + 2k)

(Hﬁil F(j)) T(1+ k)/T(1 + 4k)
\/(Hji1 r(j)) (1 + 2k)D(1 + 2k)

e 12k=192k=2 (2% — 1)k!\/(4F)!
\/141c—124k—2 -+ (4k — 1)(2k)!(2k)!

2
_ 22k

_ o 12k=122k=2 . (2k — 1)k, /2% (2k)!/(4k — 1)I!
IPF=T3E=351R=5 " (4f — 1)(2k)1226—1426-2 . .. (4k — 2)(2k)!
_ g 12k=192k=2 . (2) — 1)k12k
JTHF23 = A51h—6 . (4f; — 3)22%5%1 1126-1926~2 ... (2 — 1)(2k)!
22k 12k
~ 2k—132k—252k-3 . .. (4k — 3)(2k)!12(2k—1)(2k)/2
2k

- [H?ﬁ]l(% . 1)!!} 2k — 1)1 (281

We can check this by examining My (4, 4k) directly:

P 1+2] (1 + 4k + 25)

(1 + 2k +2j))?

=0

<.

T(1)L3)L(5)---T(2N — 1)I(1 + 4k)F(3 +4k)---T(2N — 1+ 4k)
(D(1 + 2k)L(3 4 2k) ---T(2N — 1 + 2k))?

012141 . (2N — 2)!(4k)!(4k + 2)! - - - (2N — 2 + 4k)!
B ((2k)!(2k + 2)! - - (2N — 2 + 2k)!)?

_01241-- - (2k — 2)!(2N + 2k)!(2N + 2+ 2k)! - - - (2N — 2 + 4k)!
O 2N)I(2N 42)! -+ (2N — 2 + 2k)!(2k)!(2k + 2)! - - - (4k — 2)!
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2.8. The COE and CSE ensembles

oMl (2k — 2)!
—(2k)!1(2k +2)!- - - (4K — 2)!
[(2N +3)(2N +4) - -- (2N + 2 + 2k)] - - -

[(2N +1)(2N +2) -+ (2N + 2k)]

[(2N — 1+ 2k)(2N + 2Kk) - - - (2N — 2 4 4k)]

((2N)2k)k:12k—222k—232k—442k—4 . (Qk _ 3)2(2k _ 2)2
126—192k—132k—242h=2 .. (2 — 1)k (2k)F - - - (4k — 3)(4k — 2)

(2N)2k*12k- 192623263 . (9 — 2)2(2k —1)/(2k — 1)!!
= 9(2k)(2k—1)/212k—192k—2 . . . (2k — 1)12k—132k—252k=3 ... (4f — 3)

2]€2 2k
=N : (2.8.16)

[HQ’“ N5 — 1)!!] (2k — 1)1

We see that this agrees perfectly with (2.8.15), as expected.
In a similar manner, we can consider the leading-order behaviour of My(1, s).

2

My(1,s) p ((logN +1+79— %C(Q) + O(N_1)> % (2.8.17)

o0

+) @7 =D=M =D —1)

_”:1 - 2%) ¢(n) + 0(1)> %) :

giving

My(1 2
Jm SR = eXP<<1+7——C )% (2:518)
+D (-D)" (" —-1) = ((n—1)
n=3

In this case,

i My(Ls) G+ 9T +5)T+3)

N—oo  N**/2 7 (14 5/2)\/G(1+2s)[(1 + 25) (2.8.19)
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Chapter 2. Random Matrix Theory takes Centre Stage

This combination has a kth order pole at s = —(2k +1)/2 and simple poles at
—(2k—1)for k=1,2,3....

In our usual manner, we will now consider moments where s = 2k.

G(1+2k)[(1 4 2k)/T(1 + 2k)
I'(1+k)\/G(1 + 4k)[(1 + 4k)
15, T(j) T(1 + 2k)/T(1 + 2k)
D(1+ k) /TT5 DG) D1+ 4)
_ [T5, (7 — 1)!(2k)!/(2F)!
RyITE G - 1)
126-122k=2. .. (2k — 1)( (2k)!
k'\/14k24k 134%-2... (4k — 2) (4k 1)2(4k)
B 126-1926=2. . (2k — 1)(2k)! (2k)'
 kN12kQ26-132k-142k-2 . (4 — 2)(4k — 1)\/2 - 4- - - (4K — 2)4k
_ 12k—122k—232k—3 . (2k _ 1)(2k)
T k112k92k-132k-142k-2 . .. (4k — 2)(4k — 1)2*
_ 12k22k7232k7242k7452k74 . (Qk _ 3)4(2k _ 2)2(2k _ 1)2
C o 12k22k-132k-142k-2. .. (4f — 3)2(4k — 2)(4k — 1)
(2 —1)1%(2k — 3)1%(2k — 5)12 .- - 31311111
~ (4k —1)!(4k — 3)!(4k — 5)!---5!3!1!

2k —1)!(2k - 3)!(2k — 5)!--- 311!
 (4k —1)!(4k — 3)!(4k — 5)! - - (2k + 1)!
b (25— 1)
:Eﬁ (2.8.20)

This agrees with a determination of the same leading-order coefficient di-
rectly from the formula (2.8.2) for My(1,2k).
If we now consider the generating function for the imaginary part of the

log of Z(U, 6), we have for the three circular ensembles that

N-1

18 ImlogZ (1+.75/2))
(e ]H TGA2+ 1+ s/2T(8/2+1—5/2) L (B, ),

(2.8.21)
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2.8. The COE and CSE ensembles

and again the odd log moments are zero and the even ones are

<2k — 1) d*-2 Ly (8, —is)

B
2 -1 ds2k—2j Ry;(N,0), (2.8.22)

s=0

((Imlog 2)*)pur = |

j=1

where

0 if n odd

(71)n/2+1

RJ(N,0) = _
=1 Z;y;ol@bn_l(l +37B/2) if n even

(2.8.23)

1)n+1

We see from (2.8.4) that R5(N,0) = Q5(N,0) and that Ry, = G-Qf |
so the value distribution of Imlog Z is Gaussian for the COE and CSE as well
as for the CUE.

The leading-order behaviour of Ly(4,s) is

e = on{ (e e e o ()
3 ;)RH (2n — 1) (¢(2n — 1)
+ ( 22n) n) + 0(1)) ((l;r);) : (2.8.24)

SO

2

1 1 3 s
lim Ly(4,s) x N¥/% = exp (— (Z(l +7) + 110g2+ EC(Q)) 0}

N—oo
o0
1 1
2n

—%C(Qn)> ‘;—n> . (2.8.25)

From our usual expansions of the G-function (2.7.5) and the gamma func-

tions (2.8.13), we find that
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lim Ly(4,5) x N*/8
_ gy [G(L4/2)G(1 = 5/20(1+ 5/9T(1 — 5/4)
B [(1+s/2)T(1 - s/2)

, (2.8.26)

which has zeros of order k at s = +(4k — 2) and also at s = +4k for k =
1,2,3,....
For the COE, we have

Ly(1,8) = exp (logN +14+7— 24(2) L0 (%)) (iz)z

+) (=)™ 2n-1)!(@2n -1)

n

(2n)!
Jim N¥Ly(1,s) = exp (— (1 +— %g@)) %2 (2.8.28)
=D (clen =1 = clon + gcee ) %)

Thus we see that

,(2.8.29)

N—o0

. 279 |G+ 8)G(1 = s)I(1+s)(1 — s)
lim N*FLy(Ls) = \/ T(1+s/2)0(1— s/2)

a combination which has zeros of order k£ at s = +2k as well as zeros also of

order k£ at s = +(2k + 1).

2.9 Uncorrelated eigenvalues

In this chapter so far we have considered functions with zeros distributed like

the eigenvalues of matrices from the CUE, COE and CSE ensembles described

72



2.9. Uncorrelated eigenvalues

in Chapter 1. The positions of these zeros were not mutually independent;
they displayed features such as level repulsion (see Figure 1.1) characteristic
of the random matrix ensembles. However, in this section we explore mean
values and the value distribution of a function with completely uncorrelated
zeros. We are still considering a function with NV zeros on the unit circle, but
each phase is independent of the positions of the others, and has a uniform
probability of lying anywhere in [0,27). Such zeros would be expected to
display Poisson statistics, for example with a nearest neighbour spacing as in

Figure 1.1.

We will once more call the function Z(6) = Hi\;l(l — €%=9) but here

the set of phases 8,, n = 1,2,... N are uncorrelated. We examine the same

mean values as in the circular ensemble cases, so we begin with

. 1 2w or N )1
(12@)) = W/o /0 [ 11— € Dpdo---doy. (2.9.1)
n=1

The second moment, (|Z(6)|?) has previously been calculated by [HKS*96].

Due to the lack of correlation between the phases, this integral separates
into a product of N identical integrals. Each integral is independent of 6,

which can be removed by a change of variables.
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(1z@)Pr) =

N
/ . z(ﬁn—ﬂ ‘ do )
0
N
/ _ zen‘sde)
0

2w N
(2sin(6,/2))° )
0

(

(

( N
:(;A mmm@

(=

(e

= [ [~

RN
)

1 1
25—|—2 8+ S o
27 )

[(1+s) N
I'( 1—|—s/2 (1+s/2)

(2.9.2)

We notice that Mp (N, s) has an Nth-order pole at s = —1,—3,—5,... and an
Nth-order zero at s = —2,—4,—6,....
Once again, we are interested in the cumulants b; of the distribution of

log |Z| and so we write

Mp(N,s) = exp(bis + bys®/2 + b3s® /31 +--+), (2.9.3)

and we calculate b; by taking the ith derivative at s = 0 of

log Mp(N,s) = N(logT'(1+ s) —2logI'(1 + s/2)). (2.94)

Thus

b= N@(+s)—v(1+s/2)|,_,=0,
b= NEOQ) - 5u00),
b= NEOQ) - o), (2.9.5)
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2.9. Uncorrelated eigenvalues

and

b = N e
= N(-1)"(n—1)1(1 - %)C(n). (2.9.6)

We see that these cumulants differ from those related to functions with zeros
displaying random matrix statistics in that all the cumulants are of exactly the
same order in N. We also note that as N grows Mp(N, s) is not of the order

of any power of IV, but rather varies exponentially with N.

However, if we normalize by the second moment and consider log|Z|//3¢(2)N,

we find that the distribution as N — oo is once again Gaussian.

(6(z — log| Z| /r/C(RIN/2))
=%/ewwwwwmmmmy

:imammCMlNW)“W +mwy

2 ) 2> T N
1 —x?
~ Ner exp (T) : (2.9.7)

Now we consider the mean values of Z(0)/Z*(f), as these will lead to the

distribution of values of the imaginary part of the log of Z,

Imlog Z(6) = - 3 i M (2.9.8)

The mean values are therefore
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())
0)

— <eisIrnlog Z( )

1 2 2r N . = sin[(8, — 0)m
o [ Hexp(_wz%)d&...d%

= (% /OQW exp (—is Oj W) d9n> . (2.9.9)

With the help of

sin(kz) 7wT-—=x
= 2.9.10
; p 5 ( )

which holds for 0 < x < 27, we obtain

<(Z£)/2> - (% /0% exp (—isw _29”) d&n)N. (2.9.11)

Next, with a change of variables ¢,, = 6,,/2 — 7 /2, we find

7\ *? 1 [m? . :
() - (e
1 w/2 N
= (; /w/2eXp(i5¢n)d¢n)

_ <3M)N, (2.9.12)

™ S

We can write this answer in terms of gamma functions using

4

F1+2)Ir'1—-z2) = (2.9.13)

sin(mz)’
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2.9. Uncorrelated eigenvalues

so that finally we have

<(;>8/2> N (F(l + 3/2)11“(1 _ 5/2)>N = Lp(N,s). (2.9.14)

To determine the cumulants B; of the distribution of the imaginary part

of the logarithm of Z, a function with uncorrelated zeros, we take successive

derivatives at s = 0 of

log Lp(N, —is) = N(—logI'(1 —is/2) — logT'(1 + is/2)). (2.9.15)

This results in

(1 —is/2) — —¢(1 +is/2))| _, =0, (2.9.16)
(1 —is/2) — ;; W1 +is/2))|,_, = %w)a),
)3 )1 —is/2) — ;z ®(1+1s/2))|,_, =0,

(1= is/2) - 01 +is/2)|,_y =~ (1),

0 if n odd
B” = 1)n/2+1 7 .
Hgni—ldj(nfl)(l) = 2 (—1)"* 1 (n — 1)I¢(n) if neven
(2.9.17)

Once more we notice that each of the non-zero cumulants is of order N.
In this case of the imaginary part of the logarithm, as opposed to the real
part, the odd cumulants are zero, implying that the distribution of values of
Imlog Z is symmetric. If we normalize by the second log moment, we discover

our usual Gaussian distribution in the limit as N — oo.
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(3(z ~ Imlog Z(6)//C2)N/2)
= or | LoV, VECIN )y

_ 1 iy v N y*
=5 [ e (- 2 Wiy )
1 —z2
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Chapter 3

Enter the Riemann Zeta

Function

We now want to put to use the random matrix calculations developed in Chap-
ter 2. As was mentioned in Chapter 1, the Riemann zeta function, {(s), has
zeros which, high on the critical line, have statistics tending to those of the
eigenvalues of the CUE ensemble. Thus the zeta function is comparable to
the characteristic polynomial, Z(U,#), introduced in the previous chapter, in
the sense that they have the same zero statistics. Much study has been made
of mean values of the zeta function and its logarithm along the critical line
and it is our purpose to show that we can obtain a great deal of insight into
these mean values by comparisons with the random matrix calculations. Mean
values of the logarithm of ((s) are predicted asymptotically by random matrix
theory (RMT) and moments of zeta itself show a distinct split into a contri-
bution specific to the Riemann zeta function and one which is purely derived
from random matrix calculations and depends only on the zero distribution of
the zeta function. Again this result is in the asymptotic limit as we move very

high up on the critical line.
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Chapter 3. Enter the Riemann Zeta Function

3.1 The value distribution of log ((1/2 + it)

We will examine first what is known about the distribution of log ((1/2 + it).
Of most interest to us at this point is an unpublished theorem by Selberg. It

states that for a rectangle £ in R?,

1 log C(1/2 + it
lim - (ds:T < ¢ <o 8CU2HH) g (3.1.1)
T—o0 V1/2loglogT

= o | [
2m B

that is, in the limit as 7', the height up the critical line, tends to infin-
ity, the value distribution of the real and imaginary part of log((1/2 + T/
\/G/Q)lw each tend independently to a Gaussian.

As we pass to lower than leading-order results, however, the amount known
analytically for the Riemann zeta function decreases. We turn, therefore, to the
numerical work of Odlyzko [Od197]. Inspired by Selberg’s theorem, Odlyzko
has carried out extensive numerical computations on the value distributions of
the real and imaginary part of the log of the Riemann zeta function, expecting
to see agreement with the Gaussian curve. Although this work is performed
extraordinarily high up the critical line (where T' ~ 10'?), still the distributions
have not converged to the Gaussian, as can be seen in Figure 3.1.

Odlyzko also studied the moments of the distribution. If P(z) is one of the
curves in Figure 3.1, then the £ moment is [°° 2*P(z)dz. These are shown
below in Table 3.1 as a comparison between the moments of the Gaussian
distribution (with mean zero and unit standard deviation) and the numerical
Riemann zeta moments normalized in the same way. Each of the two sets
of Odlyzko’s Riemann zeta function moments is calculated using a slightly
different interval along the critical line, so the extent to which they disagree
gives an estimate of the error due to the choice of the range over which the
zeta function is averaged.

It can be seen that the odd moments for the Riemann zeta function are not
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—Ri emann Zeta

—— @Gaussi an

Figure 3.1: Numerical data (due to Odlyzko) for the probability density func-
tion for the values of log|((1/2 + it)| near the 10%°*" Riemann zero compared
to the standard Gaussian

Moment | Odlyzko a) | Odlyzko b) | Normal
1 0.0 0.0 0
2 1.0 1.0 1
3 -0.53625 -0.55069 0
4 3.9233 3.9647 3
3 -7.6238 -7.8839 0
6 38.434 39.393 15
7 -144.78 -148.77 0
8 758.57 765.54 105
9 -4002.5 -3934.7 0
10 24060.5 22722.9 945

Table 3.1: Moments of the distribution of log |((1/2 + it)| near the 10?°th zero
(T =~ 1.520 x 10'9)

81



Chapter 3. Enter the Riemann Zeta Function

zero, as they are for the Gaussian. In fact the 9** moment is hugely different,

indicating again that convergence to the Gaussian distribution is very slow.

For the imaginary part of the logarithm of zeta Odlyzko has made similar

computations. The distribution is shown in Figure 3.2.

—— Ri emann Zeta

—— (aussi an

Figure 3.2: Numerical data (due to Odlyzko) for the probability density func-
tion for the values of Imlog ((1/2+it) near the 102°* Riemann zero compared
to the standard Gaussian

In this case the distribution appears symmetric, and so looks more similar
to the Gaussian, but it can be seen that here also the curve has not converged
to its limiting form, despite the height up the critical line at which the com-
putation was made. The table of moments in Table 3.2 also indicates how far

the moments are from being Gaussian.
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Moment ¢ Normal
1 —6.3 x 107° 0
2 1.0 1
3 —4.7 x 107* 0
4 2.831 3
5 —-9.1x 1073 0
6 12.71 15
7 -0.140 0
8 76.57 105

Table 3.2: Moments of Im log ((1/2+4t) near the 102°th zero (T ~ 1.520x10'?).

3.2 Comparison with the random matrix cal-
culations

We now wish to test the predictions of random matrix theory against the Rie-
mann zeta function results of the previous section. To do this we need to know
how to compare the asymptotic variables T, for the Riemann zeta function,
and N, for random matrices. The limits as each of these parameters tends to
infinity are equivalent, as in each case we are considering a growing density of
zeros, but the relative rate of approach to the limit remains to be determined.
We accomplish this by equating the density of zeros in the two cases. For the
Riemann zeta function, this density is asymptotic to (1/27)log(7T’/27), while
there are N CUE zeros on the unit circle, yielding a density of N/2w. Thus

the equivalence is

N ~ log(T/2nm). (3.2.1)

The results of the previous section already look promising when compared
with the random matrix results of the Chapter 2. Selberg’s result in (3.1.1)
agrees with the fact that in the CUE case the distribution of the real and imag-
inary part of the logarithm of Z are independently Gaussian in the large N

limit. It seems, therefore, that the log distribution is universal in the asymp-
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totic limit; the random matrix calculation predicts exactly the known value
distribution for the log of the zeta function.

To consider lower order, non-Gaussian, contributions we plot the exact dis-
tribution of log |Z|, as shown in (2.3.3), against Odlyzko’s data. As Odlyzko’s
calculations are performed around the 10?°th zero (T=1.520 x 10'?), the proper
value of N is 42 (although the distribution does not change visibly if N is var-
ied by £1). The remarkable result is shown in Figure 3.3. We can also produce
a table for the moments of the real part of the log, Table 3.3. This is the same

as Table 3.1 except that the random matrix moments are included.

CUE

—Ri emann Zet a

- —— (@ussi an

Figure 3.3: A comparison of the CUE value distribution for log | Z| with N=42,
Odlyzko’s data for the distribution of log |¢| near the 102° zero and the stan-
dard Gaussian

Both the value distribution and its moments show that although the com-
mon asymptotic Gaussian limit has not been reached, still the value distri-
bution of the log of the real part of the zeta function and that of the CUE

characteristic polynomial agree convincingly well.
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Moment ¢ a) ¢b) CUE | Normal
1 0.0 0.0 0.0 0
2 1.0 1.0 1.0 1
3 -0.53625 | -0.55069 | -0.56544 0
4 3.9233 3.9647 | 3.89354 3
5 -7.6238 | -7.8839 | -7.76965 0
6 38.434 39.393 | 38.0233 15
7 -144.78 | -148.77 | -145.043 0
8 758.57 765.54 758.036 105
9 -4002.5 | -3934.7 | -4086.92 0
10 24060.5 | 22722.9 | 25347.77 945

Table 3.3: Moments of log || near the 102°th zero (T ~ 1.520 x 10'?) compared
with the real part of the log for the CUE characteristic polynomial with N =
42.

If we now move on to the imaginary part of the logarithm, the results
are not as impressive, as the distributions are already very close to Gaussian,
but none the less they suggest that the Riemann zeta distribution agrees with
the ensemble average at lower than just the Gaussian leading order. The
probability density functions for the values achieved by the imaginary part
of the logarithm are shown in Figure 3.4. The moments of this distribution

are tabulated in Table 3.4. Once again, these are all standardized so as to be

compared with the Gaussian of mean zero and variance one.

Moment ¢ CUE Normal
1 —6.3 x 107 0.0 0
2 1.0 1.0 1
3 —4.7 x 107* 0.0 0
4 2.831 2.87235 3
5 —9.1x10°° 0.0 0
6 12.71 13.29246 15
7 -0.140 0.0 0
8 76.57 83.76939 | 105

Table 3.4: Moments of Imlog ¢ near the 102°th zero (T &~ 1.520 x 10'%) com-
pared with Imlog Z for N = 42.

85



Chapter 3. Enter the Riemann Zeta Function

CUE

—— Riemann Zeta

\— Gaussi an

Figure 3.4: A comparison of the CUE distribution for Imlog Z with N=42,
Odlyzko’s data for the Riemann Zeta function, Imlog(, near the 102 zero
and the standard Gaussian

The excellent agreement found between the Riemann zeta function and
random matrix theory is surprising not only because it implies that merely the
manner of distribution of zeros determines the statistics of the values attained
by a function’s logarithm, but also because it implies that not only the Gaus-
sian leading-order term in the distribution is universal, but something of the

lower orders too.

We know, however, that the moments of the log of the Riemann zeta func-
tion are not universal at all orders because the next to leading order term of
the second moment of the imaginary part of the log has been calculated by
Goldston [Gol87] assuming Montgomery’s pair correlation conjecture for the

Riemann zeros (the sign on the 1/m term is incorrect in the above reference):
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3.3. Mean values of the Riemann zeta function

1 T
T/ (Imlog ¢ (1/2 + 4t))?dt (3.2.2)
0
1 T 1 > 1 1\ 1

m=2 p

Here we see immediately that there are non-universal contributions in the
constant term. Prime numbers are a feature specific to the Riemann zeta
function and we cannot expect that our random matrix calculations will pre-
dict these prime sums; they are beyond the universal range of random matrix
theory.

If we compare, however, (3.2.2) with the random matrix second moment,

1 1
((Imlog Z)*)cvr = glog N+ (v +1)+ O(N7?), (3.2.3)

remembering the equivalence N ~ log(7T/2w), we see that RMT predicts ev-
erything but the prime sums. There appears to be a neat division between the
universal and the non-universal components of these moments.

In order to study these non-universal terms a little better, we will turn
to mean values of combinations of the zeta function itself, rather than its

logarithm.

3.3 Mean values of the Riemann zeta function

In this section we will review the current knowledge in the number theoretical
community on the moments of |((1/2+73t)|. It is conjectured that the following

limit exists:

1 1 (T

lim —— — 1/2 + i) 3.1

Jim e [l i) P (331)
) 1 1
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The evidence for this follows. If we start our history with the integer mo-
ments, the second moment, evaluated to first order by Hardy and Littlewood

[HL18], has been calculated in the form

/T 1C(1/2 + it)|2dt = T'log(T/27) + (2y — 1)T 4+ O(T/?*e) (3.3.2)

by Atkinson [Atk39], and with an error term of O(T*/2logT) by Ingham
[Ing26).

Headway has also been made with the fourth moment. While Ingham
[Ing26] first came up with the leading-order term, Heath-Brown [HB79] gives

us

T 4
/ IC(1/2+ it)‘4dt = Z cnT(logT)™ + O(T7/8+€), (3.3.3)
0 n=0
1 2 CI 2
where ¢, = o2 =3 (4’)/—1—10g(27r)—12 752)> )

It is interesting to note that if the moments are defined slightly differently,
with a smooth cut-off instead of finite limits to the integral, then the fourth

moments agree at leading order, but not at next-to-leading order [Atk41].

o 1
/ 1C(1/2 +it)|*e™dt = = Alog‘ll—i—Blog?’l-i—C’long-l—Dlog1
; 5 5 5 5 5

+E+0 ((%) 13/14+6>) :

A=_— B = —% <10g27r — 3y + 12C'(2)) . (3.3.4)

2
Although nothing has been proven about the higher integer moments, there

is a conjecture by Conrey and Ghosh [CG92] that

T 42
/0 |C(1/2 + it)|%dt ~ aangog9 T, (3.3.5)
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3.3. Mean values of the Riemann zeta function

where

a=IJ0-1/p" (Z (o) pm> , (3:3.6)

P m=0

and one for the 8th moment by Conrey and Gonek [CG98| that

T 24024
/ €12+ it) %t~ 20T log o T (3.3.7)
0 .

In addition, there is a whole range of results supporting the conjecture
(3.3.1). For a start, Conrey and Ghosh [CG84], assuming the Riemann hy-
pothesis (RH), deduced a lower bound for moments with & > 0, which was
extended to k > —1/2 by Gonek (with the extra assumption that the zeros

are all simple):

I(T) > [Cp+o(1)]T(logT)¥ (3.3.8)
1-1/p)" > (%) pm

m=0

where Cj = (F(k2+1))’1H

p

If we write (noting that if conjecture (3.3.1) holds then limy_, o gx(7) will

converge to a constant)

gx(T) = (ﬁTbgkz T>_ I(T), (3.3.9)

then Heath-Brown [HB93] proved an upper bound, again with RH, for 0 <

Heath-Brown also proved that [HB81]

T(logT)* << I(T) << T(logT)* (3.3.10)

for k = 1/n with n an integer. Here we define A << B to maen that there
exists a positive constant ¢ such that |A| < ¢|B| for all T'. Jutila [Jut83] noted
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Chapter 3. Enter the Riemann Zeta Function

that the constants implied by the inequalities in (3.3.10) are independent of
k. Also, I(T) >> T(logT)*" for half-integers [Ram80] and for all positive
rationals [HB81].

The results in the previous paragraph are regardless of the truth of RH,
but if it is assumed to be correct then Ramachandra showed ([Ram80] and

[Ram78] respectively)

I, << T(logT)* 0<k<?2 (3.3.11)
I, >> T(logT)** k> 0.

There is also a result for the moment with the smooth cut-off [Tit86] p174,

for integer £ > 0

k21

/ |§(1/2+it)|2ke‘5tdt>>§log 5 (3.3.12)
0

Two more results of Conrey and Ghosh [CG92] will be very useful to us as

we propose a conjecture for g, (see (3.3.9)). They are

Theorem 4. If k =0 or if the Riemann Hypothesis holds and k = 1, then

Tlggo% (W/l \C(1/2+it)\2kdt) . (3.3.13)

_d 1 e [~= (TE+m)\*

= dk (r(1+k2) 1;[(1 —1/p) (mi_:o( mIT (k) ) b )) ‘k:n
o(1) if k=0

2v—2 if k=1

and

Theorem 5. Assuming RH and the pair correlation conjecture

Tli_r&% <T(loﬁ/1 |§(1/2+z’t)|2kdt) |0 (3.3.14)
_ d2 1 k2 > F(k+m) ? —-m
_ﬁ(r(um)l}(l_l/p) (mzzo(m!r(k) ) b ))‘k:0+2
=2y Y (# - %) P42y 42
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3.4. A conjecture on the mean values of the Riemann zeta function

These theorems are of interest for Conrey and Ghosh in the study of their
lower bound for the moments I, but they help us test our conjecture on the
mean values of the Riemann zeta function, described in the following section,
because the derivatives of our conjectured moments agree with those of the

Riemann zeta function at the points mentioned above.

3.4 A conjecture on the mean values of the
Riemann zeta function

We have already calculated the s moment of |Z[; it is embodied in the func-
tion My (s) featuring in (2.1.9). This is very useful as My (2) is exactly what

we need to compare to the Riemann zeta moment,

1 1

=0(T) = = /OT 1C(1/2 + it)|*dt, (3.4.1)

discussed in the preceding section.

Conrey and Ghosh have expressed the conjecture (3.3.1) in the form

log"’ T, (3.4.2)
where

ay = {H(l — 1/10)>\2 (Z (%) p—m> } . (3.4.3)

p m=0

To simplify our notation, we will define

/T +X) = fr. (3.4.4)

We now consider what random matrix theory might be expected to contribute

to the pursuit of these Riemann moments.
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Chapter 3. Enter the Riemann Zeta Function

Before we begin, it must be stated that, unlike the case of the log mo-
ments, it is not to be expected that random matrix theory (RMT) will predict
even the leading-order term of these moments of |(|. For a start, we know
that there are non-universal contributions, ie. the prime sums, in the next-
to-leading-order terms of the log moments, and upon exponentiation, additive
contributions become multiplicative. Even more important, however, RMT
deals with statistics on short energy scales; we saw in Section 1.3 that eigen-
value correlations over energy scales long compared to the mean level spacing
depend on the distinctive short orbits of a system, or in the case of the Rie-
mann zeta function, long range correlations depend on the low prime numbers
in a non-universal way. Because of this, if the value of a function is determined,
at least asymptotically, by the positions of just the nearest zeros to the point
under consideration and the zeros have the statistics of the eigenvalues of a
RMT ensemble, then perhaps RMT might predict the value distribution of that
function. However, if the function depends on much more distant zeros, then
the long range correlations of those zeros are likely to induce non-universal
contributions in the value distribution of the function. For the log of the zeta
function there is an explicit asymptotic formula involving a sum over just the
zeros close to the point at which the function is being evaluated, but there is
no such formula for the zeta function itself; its value depends on all the zeros.

Despite this warning remark, we will forge ahead to examine the moments
of |Z| for any relation to the moments of ||. The first thing to notice is that
the asymptotic result, studied at length in Section 2.7, is

My (23) = (| Z)eus ~ VPNV, (3.4.5)

where f¢UF doesn’t depend on N. Remembering the equivalence between N
and logT, (3.2.1), we see that this implies asymptotic behaviour of the same
order as (3.4.2). We recall that for integer moments, this coefficient, f°YZ has

the simple form (2.7.1):
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3.4. A conjecture on the mean values of the Riemann zeta function

k—1
CUE n!
=] — A.
k EO (k +n)! (34.6)

The conjecture which we propose concerning this coefficient (not only for

integer \) is that

=" (3.4.7)

That is, we conjecture that the coefficient of the Riemann zeta function mo-
ments breaks neatly into two factors: one containing the product over primes,
ay, certainly non-universal information, and one derived directly from random

matrix theory, fy. We can also write this conjecture in another manner

1 T
Jim (logT)_)‘ZT / 1C(1/2 + it)|*dt (3.4.8)
— 00 0
- ]\}i_r)r;oN_)‘ZMN@)\) X ay,

where ay is defined by (3.4.3).

Before we examine the evidence, both numerical and analytic, for this
conjecture, a brief justification adds to its credibility. Remembering that it
is low primes, in analogy with the short periodic orbits, that are responsible
for non-universal contributions, we note that if we replaced each prime p with
p' and increased t, the prime product a, would tend to one. That is, if we
somehow imagine all the primes growing in size, and thus leaving less and less
non-universal information, then the limit limg_,o(1/7)(log T)™* I,(T) tends
to the random matrix coefficient, fCUP | just as it should do if the conjecture
is true.

More substantial evidence, however, is provided by comparing the random
matrix results with the few known values of f). The result of such an exercise

1S
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VE = 1=f, (3.4.9)
e

QCUE = %:fz

?,CUE = ngs?

s = D= h

where the question mark indicates those values of f, which are conjectures.
Another encouraging observation is that at integer values of k, fFV¥ > 1/T'(1+
k?), where the right hand side is Conrey and Ghosh’s lower bound.

This is as far as we can go in checking the conjecture against analytical
results for the mean values of the Riemann zeta function. However, Odlyzko
[Od197] has computed mean values for non-integral A. These are shown in
Table 3.5. The CUE result, without the prime product a, is included simply
to illustrate how clear it is that that alone, without the non-universal factor,
does not even come close to predicting the Riemann zeta value. It should be
noted that the limits 7" — oo and N — oo in (3.4.8) are far from being realized
in these numerics; /N is only 42. This is why it cannot be expected that the
column headed 'CUE with prime product’ exactly match the zeta function
column; even apart from any purely numerical errors. However, despite this
the agreement is quite convincing.

We can also gain support for the conjecture by comparing the distribution
of values of |Z| and [((1/2 + it)].

Starting with |Z|, let us call the distribution of values Py(z). So

My(s) = /000 z° Py (z)dz, (3.4.10)

which gives us
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3.4. A conjecture on the mean values of the Riemann zeta function

A | CUE with | r(\, H) C) CUE | % error | % error
prime (lower CUE with | CUE
product bound) primes
0.1 1.011 1.004 | 1.0042 | 1.0129 0.741 0.886
0.2 1.038 1.034 | 1.0172 | 1.0430 0.395 0.870
0.3 1.071 1.067 | 1.0381 | 1.0803 0.423 1.25
0.4 1.105 1.098 1.064 | 1.1171 0.649 1.74
0.5 1.133 1.123 | 1.0904 | 1.1466 0.914 2.10
0.6 1.151 1.135 1.1113 | 1.1631 1.37 2.25
0.7 1.152 1.132 | 1.1195 | 1.1616 1.77 2.26
0.8 1.133 1.107 | 1.1076 | 1.1386 2.38 2.85
0.9 1.091 1.06 1.069 | 1.0925 2.92 3.07
1. 1.024 0.989 1. 1.0238 3.52 3.52
1.1 0.933 0.896 0.901 | 0.9350 4.16 4.35
1.2 0.822 0.787 0.776 | 0.8307 4.48 9.59
1.3 0.699 0.667 0.637 | 0.7167 4.89 7.45
1.4 0.571 0.544 0.494 | 0.5996 4.99 10.2
1.5 0.446 0.426 0.36 | 0.4858 4.65 14.0
1.6 0.333 0.319 0.246 | 0.3806 4.27 19.3
1.7 0.237 0.229 0.157 | 0.2880 3.37 25.8
1.8 0.158 0.156 0.092 | 0.2103 1.41 34.8
1.9 0.100 0.101 0.05 | 0.1480 0.542 46.5
2. 0.0602 0.0624 | 0.025 | 0.1003 3.53 60.7
Table  3.5: Comparison of the mean value of r(\H) =
H Y logT)™ [27(¢(1/2 + it)|dt calculated numerically for the Rie-

mann zeta function near the 102°* zero, the equivalent quantity using random
matrix theory, with and without the prime product, (N = 42) and the lower
bound on the leading-order coefficient (Conrey and Ghosh), C,.
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My (is) = / (8T D (1) d. (3.4.11)
0

Taking a Fourier transform of each side we have

o0

/ e Y My(is)ds = / / e Y187 Py (1) dxds
_ —o0 J0
= 27T/ d(logz — y) Py (x)dx

0

= 27T/ d(z — y)Pn(€e®)e?dz

= 2mPy(e¥)ev. (3.4.12)
Thus
1 * —1is :
Py(z) = Ira _ooac My (is)ds. (3.4.13)

For any finite N we can plot Py(z) by numerical evaluation of (3.4.13).
This is done in Figure 3.5 together with data for the value distribution of
|C(1/2 + it)| when ¢ ~ 10%, which corresponds via (3.2.1) to N = 12.

If we consider large N, we can make the approximation

1 o
Py(z) = = exp(—islogr — Q8% /2! —iQ35% /3! 4+ Qus* /4! + - - - )ds

o0

1 /°° ] —islogz 2 iQs3s? N ds
_ < _2 L Tss
2/ Q2 J o P V Q2 2 3/23!

1 * —islogx 52>
~ | exp (0BT 5 s 3.4.14
2w/ Q2 /—oo ( V@2 2 ( )

B 1 —log?
= T exp ( ) : (3.4.15)

Here the parameters (); are the cumulants studied in Section 2.2.

This approximation is valid if log z >> —% log N, this region being that in
which the stationary point of (3.4.14), at s* = —ilogz/1/Q2, stays well away
from the first pole of My(is/\/Q2) at s = i/Qs.

96



3.4. A conjecture on the mean values of the Riemann zeta function

0. 6‘
0.5 | CUE
0. 4 _— Zet a
0.3
0.2
0.1} \\
0 5 10 15 20

Figure 3.5: The CUE value distribution of |Z| (green), corresponding to N =
12, with numerical data for the value distribution of |((1/2 + it)| (red) near
t =10°.

Asz — 0, on the other hand, we note that the integral (3.4.13) is dominated
by the pole of My (is) at s = i. The poles further from the real axis result in
higher powers of z, due to the factor exp(—islogx), but the single power of x

resulting from the lowest pole cancels the 1/z outside the integral, yielding

. R YR (N
lim Py (z) = ) ]Hl (F(j - 1/2)> : (3.4.16)

If N is large, this is asymptotic to [HKO]

1
NY4(G(1/2))? = exp (% log2 + 3¢'(—1) — 3 log7r> N4, (3.4.17)

All of this is relevant because when we write the conjecture as in (3.4.8), it

suggests that as t — oo, the value distribution of |((1/2 + it)| might tend to
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Pr(z) = —— / " e Iogs 4 75 19) Moy (i) ds. (3.4.18)

This would imply

Py (0) = a(—1/2) Py (0), (3.4.19)

which agrees with numerical computations which show that a(—1/2) =~ 0.919
and Pj»(0) ~ 0.671, yielding a(—1/2)P5(0) =~ 0.617. This is indeed close
to 0.613, which is the numerically computed value at zero of the probability
density function for values of |((1/2 + it)|.

Away from z = 0, in the region where (3.4.15) is valid, the stationary point
is at s* = —ilogx//Q2 so a(is*/2y/Q2) = a(logx/(2Qs)). Since a(0) = 1, as
long as |logz| << Qs then a is close to 1 and so the contribution from the
prime product recedes to the tail of the distribution when NV is large. This is
born out by the good agreement of the two curves in Figure 3.5.

Further evidence for the conjecture (3.4.7) is found by looking at the deriva-
tives of the leading-order coefficient of the moments of [((1/2+it)|. The values
which are known are stated in (3.3.13) and (3.3.14). Since we believe that

1 17
im (/22 — lm o+ ! ™
NIEI;ON as/2Mpy(s) = Th_r)r;o (Tog T) 0727 T/o IC(1/2 +dt)|°dt, (3.4.20)

we will take derivatives of the left hand side and see if they tally with the

Riemann zeta function results. We will use the notation that

(12" oy = Mn(s)as (3.4.21)
L TGITG +9) 2 o= (T(m+s/2)\? __
~wG+my '1;[{(1‘1”’)( " ;( ) P }

where the notation P has nothing to do with the average, but just reminds us
that we are artificially introducing prime contributions into the CUE average.

Conrey and Gonek [CG98| have written a; (k an integer) as
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3.4. A conjecture on the mean values of the Riemann zeta function

N k-1 712
I'(j ]+2k) k—1)2
—1/p) § r ,(3.4.22
g I'(j+k))? 1;[{ /p) — p’ )

which makes calculating a; easier for integer values in the following work.

The quantities we want are

d 2k
A}LH;O dk N*° (17| )CUE‘
. 1 2k log N
— i (s (2108 2112 — 0B 120
= lim (2D{y p(k,1) — 2klog NDGy (K, 0)) (3.4.23)
—00
evaluated at £k =0 and £ =1, and
. d? 1 e
]}1_1)20 k2 N#2 (17| >CUE
. 1 4k log N
— i (g (4008 12112 — LB (210812112
2log N 4k*(log N)?

e 1215s + B (25,
= hm (4D¢yg(k, 2) — 8klog NDeyp(k, 1)

(4k2(10g N)? — 2log N) D&y (K, 0)) (3.4.24)

at k£ = 0, where

D¢yg(k,n) = Nk2<|Z|2k(10g\ZD Yous- (3.4.25)

To calculate these D functions, we notice that

dr .
apMy(s) = (12 (3.4.26)

o \"
= (@)
CUE

= (1Z1(log |Z)") v
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In the same vein as the calculations in Section 2.2, we have that

d” -
ﬁas/QMN(S) = (

m=1

n— 1) dnfm(as/QMN(S))Km(N’ s), (3.4.27)

m—1 dsn—m

where the cumulants are now

and

d
—logas/, = (3.4.29)

ds
> 5o g (S2Em) ((s/2 4 m) —p(s/2) + 3 los(1 — 1/p))

2
00 I'(s/2+m —-m
p > =0 ( I‘((s//Z)m!)) p

In the above expression, @, (X, s) is identical to the cumulant (2.2.8) derived

for the real part of the log of Z in Chapter 2.
We now want to calculate D& (0,0), DE;£(0,1), DE;R(1,0), DELR(1,1)

and DE;(0,2). Again making use of what we know already,

Deyp(0,0) = 1, (3.4.30a)
1
Diyp(1,0) = NG'IMN(Q) (3.4.30b)
1
= —(1-(N+1)) =1+ —
Lo e =144,
Déyp(0,1) = 0, (3.4.30¢)
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DEy(1,1) = 3 (e My(2) K (N, 2)

= L0 (V4 1)) (10gN+’V‘1+i+O< 1>

2N NE
meo pr (Y(m 4+ 1) —1(1) +log(1 — 1/p))
()

=(1+1/N) <logN+7—1+O (%)
> ( mzmz L 4 g - 1/p>))

:(1+1/N)<1°gN+7_1+0(%)'

A () F s (g +g) (I +5+7) +

3 ( 2 DR
+log(1 — 1/p)>>

:(1+1/N><1°gN+7_1+0(%)

+Z (—log (1-1/p) = ;log(l —1/p) — » log(1 = 1/p) —

Yoo 7
+log(1 — 1/p)>)

=(1+1/N)(logN+~v-1+0 (%) +0)

log N
:1ogN+7—1+0<°fV ) (3.4.30d)
R 1 1
Deyi(0,2) 2 log N + 5(7 +1)
1 /1 1)1
Y (G- n) e (4300

Therefore we have, from (3.4.23) and (3.4.24),
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d 1 7|2k —
&%%Nkz (1Z2*)evE r—o 0 (3.4.31a)
d 1 ok
]\lrl_l;I;o%Nkz (121"")eve h—t 2y =2 (3.4.31Db)
fim L 722 — 2y 42 (3.4.31¢)
e dkZ N¥° CUE|, _, ~ g -4.01C
1
@YY ()
p m=2 p

which are precisely the Riemann zeta function results from (3.3.13) and (3.3.14).
So, the derivative of our conjectured leading-order coefficient for the Riemann
moment at A = 0 and A = 1, and the second derivative at A\ = 0 agree down
to the constant term with the derivatives of the moments of the Riemann zeta
function itself, which is what we would expect if the conjecture in (3.4.20) is
correct.

Before we leave this topic, it is instructive to see how the form of the prime
product proposed in (3.4.3) can be derived heuristicly. It appears straightfor-
wardly if we use the Euler product for the Riemann zeta function and assume
that the primes are uncorrelated. We should note that the prime product
does not converge on the critical line and so we must be very careful over our
truncation of the product.

If we warm up by tackling the second moment, then

(|<(1/2+it)|2>

((pta) () )
H< , ! , )> : (3.4.32)

( - 1/2€zt10gp) (1 - pl/2¢—itlogp

The extent of the average over ¢ can be defined in various ways, but to

Q

t

average over one cycle of the oscillatory component, exp(it log p), would imply

integration from ¢ = 0 to ¢t = 27/ logp.
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. logp 2m/logp do
2 ~
(lcaz+i)y ~ ] o /0 . )(1_+>
p I/Qewlogp p1/2e—z’610gp
. Hlogp% dz
. 21 Jpy= 1 zilogp —ﬁ) (l—pﬁ)
— H (3.4.33)
1= 1/p

As this product does not converge, we look for a sensible place to truncate
it. Since the mean spacing of the zeros of the Riemann zeta function is 27/ log t,
and the terms in (3.4.32) oscillate like exp(itlogp), we truncate the above
product at p = T, where T is the height up the critical line at which we are
calculating the moments. This truncation effects a loss of information about
the correlations between the Riemann zeros on a scale smaller than the mean
level spacing. Information about long-range correlations is retained, and as
this encodes material specific to the Riemann zeta function, this is exactly
what we want. However, given that the high primes, those related to the
short-range, universal distribution statistics of the zeros, have been removed,
it is not surprising that the method being followed here needs some help from
random matrix theory in order to predict correct-to-leading-order moments of
C(L/2+ )],

If we continue, and try to express the result to leading order in 7', we obtain

(IC(1/2+it)[*),

Q

1
H r1—1/p
= ( D log( 1—1/p))

p<T

exp( )
p<T

. T dz
X
P xlogx

= exp( oglogT loglogT,), (3.4.34)

Q

Q
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where the transition from a sum over primes to an integral makes use of the
knowledge that the density of prime numbers tends to 1/ logp for large primes
p. This is a consequence of the prime number theorem (see [Tit86]).

There is some ambiguity in what the lower limit 7, should be. 1 or 2 might

be reasonable choices, but instead we will define the lower limit so that

1
11 o= log T (3.4.35)

because we know from (3.3.2) that the leading-order term of the second mo-
ment is precisely log7. Having made this choice, we will continue to use it
consistently and treat (3.4.35) as a definition.

We now apply the same reasoning to the case of the general 2k moment.

Below we will use the expansion (1 —z) % =>>>_ (_nk) (—1)"z™.

(/2 + i)y, = H< ! >
(1- )/,

k
1 1
p p1/2+it> (1 T ple—it

00 —1)» —k 00 —1)m —k
~ H <Z (pn/)2+(innt) ng:o (pm32$$) >t

p n=0

Q
—
K
;-I\ 3
Lz

_ k2 RR+D
— 1;[ 1+p+ + ) (3.4.36)

[Ta-1/p* H<1—— %p;%...). (3.4.37)
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Now we have

—k

I, - 170 3, G
La-1/p"

where the product in the numerator converges, and so can be considered as

(1C(1/2+it)[*), =

(3.4.38)

running up to infinity.

Using (3.4.35) to cope with the non-convergent [ ,(1—1/p)~", we proceed

to

(lc1/2+it)[*)

- (H(1 -1/ (%) I%) (logT)*,  (3.4.39)
because

(—k)2 _ ((—kﬂ—k——D(—k——@--(—k——n#—ﬂ)Q

n n!
_ (ktn=1)-(k+2)(k+ 1)k’
~ Er(kwﬁ)2 ' ) (3.4.40)
— \rkn ) o

Thus we can gain, even from this heuristic derivation, a little insight into
the origin of the the product over primes a; figuring in the conjecture on the

moments of [((1/2+ it)|, as it is precisely the product in (3.4.39).

3.5 A second mean value conjecture

To maintain the balance between mean values of products and quotients of the

zeta function adhered to in the previous chapter, let us consider the moments

of (¢C(1/2414t)/¢(1/2 —it))Y/2.

To start with the second moment,
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Q

(G, - (o))
I1{(- ) (=) ),

n=0
oo _ [ _
e itnlogp ezt logpe itnlogp
> nj2 > (n+1)/2
n= n=
0 p 0 p t

~ [[a-1/p) ~ IO;T. (3.5.1)

This last step follows from the definition (3.4.35) we made in the previous
section.

Now we continue on to the 2k* moment (k need not be an integer):

<(C(1/2+z’t)>k>
c/z2—it)) /.
(U i ) >

(50 5005 )

11
“1}”0(2)(05
H<1_k_2+(k+1)k2(k—1)+m>'

P 2121p?

22
/\
/—\
[
Q
V]
‘i‘
\/

(3.5.2)

As in the previous section, we cancel out the 1/p term, but this time by

multiplying by (1 — 1/p)~*

(), = M) o

2o (’“)("“),}—n 1
~ 1;[( 1_1/p) )(1ogT)k2' (3.5.3)
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This result suggests that the 2k™ moment of (¢(1/2 + 4t)/¢(1/2 — it))'/?
behaves asymptotically like O((logT)~*"). We expect from this, using (3.2.1),
that the leading-order term of the moment Ly (2k) = ((Z(U,0)/Z*(U, 0))*)cvr
should be O(N~*).

This is exactly right, as we recall from Chapter 2 that as N becomes large

Jim Li(s) x N = G(1 - s/2)G(1 +s/2). (3.5.4)

This agreement in the asymptotic behaviour of the random matrix case
versus the Riemann zeta mean values (noting that the k& exponent used above
when working with the Riemann zeta function is equal to s/2) prompts us to

make the following conjecture:

lim (log T')*"/* x <(M>/2> = lim N*/*b,yLy(s),  (3.5.5)

Tho0 C(1/2 —it) N30

where the ¢ average is around the value ¢ = T and the notation is

b = ] ((1 —1/p) ¢/ (3.5.6)
- (14 s/2)L(1 - s/2) 1
; T(1+s/2—n)T(1—s/2— mmmﬁ) '

As there are no analytical or numerical results for the Riemann zeta func-
tion with which to test this, the only evidence at the moment for this conjecture
is the success of the similar proposal for || and the work on the log moments

in the following section.

3.6 Modified (-specific generating functions

We have one last method up our sleeve for checking the validity of our conjec-

tures. In (3.4.8) we see that the function My (2)) is modified by multiplication
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Chapter 3. Enter the Riemann Zeta Function

by the prime product ay in order to predict the asymptotics of the mean values
of the zeta function. My(s) is also, from Section 2.1, the generating function
of the moments of the real part of the log of Z. We now propose the use of
Mp(s)as/2 as a generating function, to discover if this will produce the correct
non-universal prime sums in the log moments; for example, that in (3.2.2). As
we did when just My (s) was the generating function, we can take successive
derivatives of My(s)a,/, evaluated at s = 0 and so obtain the moments of the
real part of the log of Z, plus extra non-random matrix contributions which
we hope will predict the non-universal terms of the Riemann log moments. We
will call these moments with primes included ((Relog Z)*)E, 5 to distinguish
them from the purely RMT ones. As the calculations are messy and it is truly
just a matter of differentiating, we will just set out the results here. They are

all asymptotic for large N.

(log |Z)cyp ~ 0 (3.6.1)
(108 |Z2)%E0s ~ 3logN + (v +1) + {;gﬁz (~+ ) pim}
(08 12))Eus ~ —oC(2) + {gégw(m) + v)pm;lz}
(togl2)%5us ~ 3 (5108 N + 51+ D)+

GEE () o
+ {32.::1 %: (—% g:l p,lan +9(m)* + 279 (m)
24 300m) - 300 )

In the above moments, the quantities in curly brackets are the extra con-
tributions obtained because we are multiplying My (s) by the product over
primes. The purely RMT generating function yields precisely everything but

these bracketed terms.
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3.6. Modified (-specific generating functions

Once again, there is little analytical work from the number theorists with
which to compare these, but in non-rigorous calculations of our own the mo-
ments ((log|¢(1/2 + it)])*); contain precisely the prime sums listed above.
These Riemann zeta function calculations use techniques which have proved
reliable in other important work ([BK95], [BK96]) but again involve the use of
the Euler product on the critical line where it doesn’t converge, so care must
be taken to provide an appropriate truncation of the product. The prime sums
in the moments above come directly from the most significant terms in sums
resulting from taking a logarithm of the Euler product, while the random ma-
trix terms (those outside the curly brackets) appear after applying to multiple
sums over primes the Hardy-Littlewood conjecture on the correlations between
primes, in the manner of the two references by Bogomolny and Keating cited

above.

These techniques have been used to check the prime sums in all four mo-
ments in (3.6.1), while the Hardy-Littlewood method vindicated our confidence
in the random matrix (unbracketed) portion of the first, second and third mo-
ment. The fourth moment would proceed in the same manner, but the tech-
nique is more time-consuming than the result merits, as at this stage it is the
prime contributions which we wish to check. The details of these calculations

appear in Appendix C.

Table 3.6 displays numerically how much the log moments are improved
when the prime product is included in the generating function. Since prime
sum contributions have not been calculated for the fifth cumulant and higher,
the moments higher than the fourth do not contain the full allowance of prime
contributions granted by the conjecture in (3.4.8). (This conjecture would
imply that the prime-modified cumulants, K, agree exactly with the cumulants
of log |¢(1/2 +it)| down to and including constant terms). However, the most
significant non-universal contributions result from the lowest cumulants, as can
be seen if we write the moments in terms of the cumulants alone instead of

relating them to lower moments in the manner of (3.4.27). Borrowing notation
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Chapter 3. Enter the Riemann Zeta Function

from (3.4.28),

K \™ /K \™ K.\ ™ k!
N 1 2 k
((log|Z))*)cve = Z (T) (7) (F) nilng!- - - ny!

Zf:lj"j:k
Ky \™ K\ k!
_ Ry (Be) T F 3.6.2
kz (2!) (k') nal - -] (36.2)
j=2J M=k

The first line is a general relation between moments and cumulants, and the
second holds because K; = 0 in the case of the real log moments. Remem-
bering that the second cumulant behaves asymptotically as (1/2)log N and
the higher cumulants are O(1), we see that the prime contributions to low
cumulants are more significant asymptotically than those connected with the
higher cumulants. Even so, the lack of the high cumulant prime sums is the
reason that the upper moments in Table 3.6 are not as close to the Riemann
moments as the lower ones. Still, the inclusion of the primes certainly effects
a definite improvement over the purely CUE moments. This table, apart from
column 4, is the same as Table 3.3, only the moments haven’t been scaled to be
comparable to a Gaussian with mean zero and unit variance. This is merely in
order that we have as many low moments as possible for comparison with the
Riemann zeta function, as moments one to four contain the complete prime
sum contribution due to the generating function My (s)a,/s.

Since the modification of the generating function proved such a success
for the real part of the log, it is natural to attempt to reproduce it for the
imaginary part as well.

We have not discovered any number theoretical work on moments of this
type, so our best test of the conjecture is to calculate the moments of the
imaginary part of the log using the product over primes multiplied by the
product of gamma functions Ly(s), as in (3.5.5), as the generating function.
These moments will be denoted ((Imlog Z)*)E,, with the P to remind us that
they include the prime contributions.

The resulting moments are
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3.6. Modified (-specific generating functions

Moment ¢ a) ¢b) CUE + primes CUE
1 -0.001595 | 0.000549 0.0 0.0
2 2.5736 2.51778 2.56939 2.65747
3 -2.2263 -2.19591 -2.21609 -2.44955
4 25.998 25.1283 26.017 27.4967
5 -81.2144 | -79.2332 -81.2922 -89.4481
6 655.921 628.48 663.493 713.597
7 -3966.46 | -3765.29 -4052.98 -4437.47
8 33328.6 30385.5 34808.2 37806
9 -282163 -250744 -304267 -332278
10 2.271x10°8 | 2.298x10° 3.082x10° 3.359x10°

Table 3.6: Moments of Relog( near the 10?°th zero (7' ~ 1.520 x 10'%) (aver-
ages in a) and b) taken over different intervals) compared with Relog Z with
and without the prime contributions, with N = 42.

(Imlog 2, ~ 0 (3.6.3)
1 1 1 & 1 1\ 1
2\P
(Imlog 2)*) e ~ 5logN+§<v+1>+{5Z§(—g+m)p—m}
<(Im10gz)3>gUE ~ 0

(Imlog 2\, ~ 3 (

The second moment, is exactly the rigorously calculated second moment of
the imaginary part of the log of zeta due to Goldston (3.2.2) and the prime sums
in the other moments again agree exactly with our own heuristic developments
of the moments for the Riemann zeta function itself (see Appendix C).

There is again numerical evidence, in the form of comparison with Odlyzko’s

computations with the zeta function. These are laid out in Table 3.7, where
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Chapter 3. Enter the Riemann Zeta Function

again the moments are unnormalized so that we have the maximum number

available for comparison.

Moment ¢ CUE + primes | CUE
1 —-1.0x 107° 0.0 0.0
2 2.573 2.569 2.657
3 -1.9x107° 0.0 0.0
4 18.74 18.69 20.28
5 -0.097 0.0 0.0
6 216.5 215.6 249.5
7 -3.8 0.0 0.0
8 3355 3321 4178

Table 3.7: Moments of Imlog ¢ near the 10*°th zero (T ~ 1.520 x 10'?) com-
pared with Imlog Z for N = 42 with and without the conjectured prime con-
tributions.

We see that for the imaginary log moments, as for the real ones, there is a
marked improvement if prime contributions are included, which both supports
conjecture (3.5.5) and adds evidence that when dealing with mean values of
¢, as opposed to its logarithm, the universal and non-universal components

appear to split neatly into separate factors, at least in the asymptotic limit.
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Chapter 4

A chorus of L-functions

Whereas in the previous chapter we concentrated exclusively on the Riemann
zeta function, here we will consider a wider range of functions: the L-functions.
These are closely related to the zeta function already discussed. In particular,
it is conjectured that their zeros lie on a line and that asymptotically high
on this line the zeros display CUE statistics in the same manner as the zeta
function [RS96, Rum93, Rub98]. We could, therefore, choose an individual
L-function and carry out the identical comparisons with random matrix the-
ory as were undergone in Chapter 3. However, much more interesting than
this is the fact that L-functions come in families, averages over which reveal
[KS99a, KS99b] that the low-lying zeros on the critical line appear to obey the
statistics of one of the random matrix ensembles defined by Haar measure on
the compact groups U(N), O(N) and USp(2N). Haar measure is the natural
choice as it provides a uniform weighting of the matrices in each group. Thus
in this chapter we perform averages of the characteristic polynomials of matri-
ces from the above ensembles and compare them with averages over families

of L-functions. This work can also be found published in [KS00a].
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Chapter 4. A chorus of L-functions

4.1 Zero statistics of L-functions

L-functions occur in various forms, but they share many of the properties of
the Riemann zeta function; they can be written as a Dirichlet series over the
positive integers or as an Euler product over the primes, plus they have a
functional equation. Examples are the Dirichlet L-functions, which take the
form of a Dirichlet sum but with the replacement of the 1 in the numerator
of (1.4.2) by a Dirichlet character (see [Dav80]), as well as more general func-
tions (for example see [RS96]). Each obeys a functional equation similar to
that of the Riemann zeta function, which relates the function at points in one
half-plane to points in the remainder of the complex plane. The L-functions
can be normalized so that the critical line dividing the plane in this way lies
at Res = 1/2. Then for L-functions, as for the Riemann zeta function, it
is conjectured, and widely believed, that the non-trivial zeros lie on the line
Re s = 1/2; this is the generalized Riemann hypothesis (GRH). Whereas high
on this critical line the zeros of any given L-function appear to have the same
statistical distribution as the eigenvalues of the CUE ensemble, or equivalently
the group U(N) of (large) N x N unitary matrices endowed with Haar mea-
sure [RS96, Rum93, Rub98], Katz and Sarnak [KS99a, KS99b| have proposed
that the positions of the lowest zeros - those nearest to the point s = 1/2 -
averaged over families of L-functions follow the statistical distribution of the
eigenvalues not always of U(NN), but in some cases of the compact groups O(N)
or USp(2N). This is supported by the fact that for the finite function field
analogue the equivalent of the Riemann Hypothesis is known to be true, and
Katz and Sarnak have discovered that zeta functions over function fields have

zero statistics which show exactly the behaviour just described.

Conrey and Farmer [CF99] have extended this idea that the low-lying zeros
of families of L-functions show particular statistics to the study of the mean
values of the L-functions L;(s) within families at the central point s = 1/2.

They have found evidence that the symmetry type to which the low-lying zeros
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4.1. Zero statistics of L-functions

subscribe also determines the behaviour of these mean values. In particular,

they conjecture that in general, as Q — oo,

ferF
c(f) <Q

where they choose V(z) depending on the symmetry type (V(z) = |z|? for
unitary symmetry and V(z) = z for the orthogonal or symplectic case); A
is a symmetry-dependent constant; the family, F, over which the average is
performed is considered to be partially ordered by the conductor, ¢(f), of
each L-function; and the sum is over the Q* elements with ¢(f) < Q. The
symmetry type of the family manifests itself in the expectation that it alone
determines the values of g and B(k). These functions are thus universal,
being independent of the details of the particular family in question. a(k), on
the other hand, is expected to depend on the specific family involved.

As an example we can consider one of the simplest families of L-functions,
those with real quadratic Dirichlet characters x4 (defined below). Thus we

have L-functions of the form

Lis,xa) = X‘;(?) =11 (1 . X%@) - (4.1.2)

These L-functions cannot be constructed for all conductors |d|, because the
Dirichlet characters are not real for every choice of d, but where real characters

do exist, they can be written as (for n > 0)

Xa(n) = (—) (4.1.3)

where the right hand side is Kronecker’s extension of Legendre’s symbol. This

latter symbol is defined for prime p as

115



Chapter 4. A chorus of L-functions

+1  if ptdand 2?2 = d(modp) is soluble
d
(—) =q 0 if p|d : (4.1.4)

—1 if ptdand 2? = d(modp) is not soluble

and the Kronecker symbol extends this to non-prime p. For some conductors
|d| there exist two real characters, one corresponding to |d| and one to —|d|,
and for some conductors there is zero or one appropriate character. Explicitly,
a real Dirichlet character exists where d is a product of relatively prime factors
chosen from -4, 8, -8, (—1)2®~Vp, with p > 2.

So, the mean value of Conrey and Farmer [CF99] sums over all such real

characters with conductor |d| < D and as D — oo they find that

1 1 k a(k) 1.1
— L{- ~ log Dz )zkk+1) 415
5 3 L(5) ~ ot tes D s

ld[<D

where D* is the number of quadratic characters included in the sum.

The family of L-functions with real quadratic Dirichlet characters are be-
lieved to belong to the symplectic variety of L-functions in that the statistical
behaviour of the zeros near to s = 1/2 is that of the eigenvalues of the uni-
tary symplectic matrices of USp(2N) which lie on the unit circle close to
one. The mean value (4.1.5) has the characteristic form for symplectic fam-
ilies of L-functions as (using the notation of (4.1.1)) for this symmetry type
B(k) = 3k(k+1) and A =1/2.

For orthogonal symmetry, on the other hand, B(k) = $k(k — 1) although
A still equals 1/2 [CF99]. The low zeros of these families show the statistics of
the eigenvalues of O(N), with Haar measure once again. In the random matrix
calculations to follow we will consider only SO(2N), orthogonal matrices with
even dimension and determinant 41, because a family of L-functions governed
by O(N) falls approximately into two halves; one displaying even symmetry

about s = 1/2, and the other odd symmetry. This latter class contributes
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zero to averages at the central value, while the zero statistics of the former are

expected to follow those of SO(2N).

4.2 Symplectic symmetry

4.2.1 Random matrices in USp(2N)

We are interested here in the group of symplectic unitary matrices, USp(2N).

These are 2N x 2N matrices, U, with UU! = 1 and U'JU = J, where

0 I
J = v and Iy is the N x N identity matrix. For these ma-

—Iy 0
trices, the eigenvalues lie on the unit circle and come in complex conjugate

pairs. Thus the characteristic polynomial of such a matrix with eigenvalues

eiﬂl’ e*iﬂl’ €i02, 671'92’ o eiaN’ e*iaN is
N
Z(U,0) = [ (1 =€) (1= ey (4.2.1)
n=1

As we are interested in the mean values of L-functions at the point s = 1/2
(the symmetry point for the zeros on the critical line), we look at Z at the
corresponding point, # = 0, this being the point around which the eigenvalues
are symmetric. The first task is to calculate the moments of Z(U,0) over
USp(2N). Taking Haar measure on the group, the joint probability density

function of the eigenvalues is [Wey46]

Ng, H (sin <@) sin (0 6 )) Hsm Ok, (4.2.2)
1<i<j<N

so noting that

cos(A — B) —cos(A+ B) = 2sinAsinB, (4.2.3)
the joint probability density function of the N independent eigenvalues is
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2 N
Ng, H <%(cos¢9j —cosﬁi)) l—Isin2 Oy (4.2.4)
k=1

1<i<j<N

Ng, is the normalization constant and can be determined by averaging
(4.2.4) over the full range, 0 to 27, of each 6; and setting the result equal to

unity. Thus

N 22N2 2N
— 93N H L+ N+)) . (4.2.5)
1+g I'1/2+3))?  «¥N!

The product of gamma functions is the most convenient form for us, but
after a little manipulation, it can be seen to be equal to the right side, which
is the more common form of this constant.

Armed with this normalization constant, we tackle the moments of Z itself.

Firstly,

= 2V]](1 = cosb,). (4.2.6)

Now we have that

<Z(U>0 USp(2N)
2 1 2

Ns

= Ng,2 / / dfy - --dfy H (5((:05 6; — cos 0,))
1<i<j<N
N N
X H sin® 0, H(l —cosb,)’
k=1 n=1

:NSPQNS”N_NQ/ / df; ---dfy H (cos6; — cos 6;)?
0 0

1<i<j<N
N N
X H sin® 0, H(l —cosb,)’
k=1 n=1
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which, after the transformation z; = cos 8;, becomes

(Z(U,0)*)usp(an

= Ng 2Ns—|—2N N2/ / dz,---dry H 2
1<i<j<N
N
X H 2y1/2 H(l —2,)°

b
—

— Ny 2Ns+2N N2/ / dry ---dzy H )2

1<i<j<N

(1 = z)/2F5 (1 4 ) /2. (4.2.7)

=

X

B
Il
—_

There is a form of Selberg’s integral (detailed in [Meh91]) which states

/ / [T 1= [0 =)o 0+ 25)da
1<]<l<n j=1

nfl

— 9m(n—1)+n(a+p-1) H 1+’7+]7 F(a+]7) (6"'.77)
FA+y)l(a+B+yn+j—-1))°

(4.2.8)

j=0

if Reaw > 0, Ref# > 0 and Rey > — min (1, Bea Reﬂ)

n’n—17n—1

In our case y =1, « =3/2+ s and 3 = 3/2, so

(Z(U, O)S>USP(2N) — NSP2N3+2N—N22N2—N+3N/2+Ns+3N/2—N

N-1

o F2+)r@3/2+s+75)r3/2+ ;)
1 =am

F2)CB+s+N+j—1)

N . . .

= Ng,22NstsN H L(1+)0(1/2+s+7)T(1/2+ j)
P e L(1+s+N+j)

22N5ﬁ T(1+ N +5)T(1/2+ s+ )

[(1/2+ ) T(1+s+ N +7)

Mey(N, 5). (4.2.9)

We now consider the cumulants c; in the expansion

119



Chapter 4. A chorus of L-functions

Mgy(N, 5) = ee15+e2s’/2cas?/3eas? /e (4.2.10)

As log Msy(N, s) is

N
log Ms,(N,s) = 2sNlog2+» (logI'(1/2+ s+ j) +log (1 + N + j)
j=1
—logl'(1/2+j) —logT'(1 4+ s+ N +j)), (4.2.11)

we find that

d
i = — IOngp(N, S)‘

ds 5=0

N
d
= 2N10g2+z <£logf‘(1/2+s+j)
=1

—dislogf’(l +S+N+j))

s=0

= 2Nlog2+ Y ((1/2+j) — (1 + N +j)) (4.2.12)

is the first cumulant, while the higher ones are given by

Cn = j— log Mg, (N, s)‘

N

= > (@24 5) -+ N +7)), (4.2.13)

7j=1

s=0

where ¥U)(z) = jzjj—i log'(2) is a polygamma function.
We seek the behaviour of these cumulants for large N. For the first cumu-

lant we use the asymptotic formula

o0

1 B,,
¥(z) ~logz — o— — -

— 4.2.14
2z — 2nz2n’ ( )
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which holds when z — oo with |argz| < 7, and the By, are the Bernoulli
numbers. Also, we need the integral form of the digamma function, previously

given in (2.2.13),

W(z) +y = /OOO et (4.2.15)

Applying (4.2.15), we obtain

d
a = - log Mg, (N, s)

s=0

N
= 2Nlog2+ > ($(j+1/2) —¢(j + N +1)) (4.2.16)

j=1

N 0o =t _ ,—(j+1/2)t

e e
= 2Nlog2 dt —
o +z( e )

0o eft _ ef(j—|—N—|—1)t
- / dt + 7)
0

1—et

N poo —(j+N+1)t _ —(G+1/2)t
= 2Nlog2+ Z/ ‘ 1 i dt.
j=170 — ¢

Now we interchange the order of the summation and integration so that we

can perform the sum explicitly and then integrate by parts.

0o ,—(N+2)t 1 — e~ Nt — —3t/2 1 — e Nt
o = 2Nlog2+/ c A-e™)—eP—e)
0

(1 —et)?
—e— (N1t 4 o—(@NH1)t 4 o—t/2 _ o=(N+1/2)t) o—t o0
= 2Nlog2+ ( ¢ ¢ )
1—et 0
00 ((N + 1)67(N—|—1)t _ (2N+ 1)67(2N—|—1)t) eftdt
/0 1—et
o0 (_%6—1:/2 + (N + 1/2)6—(N+1/2)t) e—tdt
0 1—et
oo ,—(N+2)t 00 o—(2N+2)t
= 2Nlog2— (N +1 dt+ (2N +1 —dt
og2=(N+1) [T Far N+ [ S
1 [® e3t/2 0 ,—(N+3/2)t
= ——dt— (N +1/2 ———dt. 4.2.17
+2/0 1—et ( +/)/0 1—et ( )
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Using (4.2.15) in reverse,

e = 2Nlog2+ (N + DU(N +2) — (2N + (2N +2) ~ 14(3/2)
+(N +1/2)y(N + 3/2)

= 2Nlog2+ (N +1) <log(N+2) — % +O(N~ ))

—(2N +1) (log(QN +2) + % +O(N ))

1 3
—5(—7 —2log2+2)+ (N +1/2) (logN+ log (1 + ﬁ)
1
N—2
g3 O ))

1
= 3 log N + % +O(N7h). (4.2.18)

+

For the second cumulant we need to use the asymptotic formula for higher

polygamma functions, valid as z — oo with |arg z| <,

() () o (_1)P—1 (”—1) (2k +n —1)!
™ (z) ~ (=1) [ — Zn+1+ZB2k |- (4219

There is also an integral formula for the higher polygamma functions which

we met in (2.2.14) and which will prove useful:

¢(n)(z) — (_l)nfl /Ooo tre * dt. (4.2.20)

1—et

This leads us to

e = Y (VG +1/2) — DA+ N +5))

=1
N .
00 te—(i+1/2)t 00 to—(1+N+j)t
> (/ L dt- / eidt> (4.2.21)
= 0 1—e" 0 1—e

Again we interchange the order of the summation and integration, perform

<.

the sum and integrate by parts. The result, expressed in terms of polygamma

functions, is
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co = —(3/2) — %@b‘l’(fﬂ/?) + (N +3/2) + (N +1/2)pD (N + 3/2)
+p(N 4 2) + (N + D)y (N +2) — (2N + 2)
—(2N + 1) V(2N + 2)

= logN+1+v+log2— SC(Q) +O(N7H). (4.2.22)

The higher cumulants follow in a similar manner

N 00 yn—1,—(1/2+j)t 00 yn—1,—(1+N+j)t
" e " e

oo yn—1 —(3/2)t 1 — =Nt
— (1) ‘ S
0 1 - eit ]. - eit

[e'9) tnflefoN 1 — eth
—(=1)" dt 4.2.23
A =2 (4.2.23)

and so
() - 16_(3/2)
lim ¢, = (-1)" dt
Noo ( )/0 (1—e?)(1—e?)
_n—1=(3/2)t |00 00 yn—2,—(1/2)t
= (- |— -1 ———dt
(=1) [ 1—et 0+(n )/0 1—et
1 [ tn—le—(1/2)td
— [
2 /0 1—et ]
1
= —(n—1Y(1/2) - pr(1/2) (4.2.24)

= (=10 Dt = 16— 1) - 52" = )60

We now turn our attention back to the moments of Z itself. We would like
to know the coefficient of the leading-order term for integer moments, as it is
the corresponding quantity for the L-functions that Conrey and Farmer have
conjectured the form of in (4.1.1).

Starting with the first moment,
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Wt LA+ N+5)0(1/24+147)

2 H r'1/2+ )2+ N +j)

oN P(N+2)P(N+3)---F(2N+1)
ra/2+1)ra/2+2)---1(1/2+ N)
r'1/2+2)ra/2+3)---r(1/2+1+ N)

'3+ N)I'(44+ N)---T'(2+2N)

oWl (N+2)T(1/2+ 1+ N)
L2+ 2N)I(1/2+1)

oon (N + DN +1/2)!
(1/2)1(2N + 1)!

x (N +1/2)(N —1/2)(N - 3/2)---F -3
(2N +1)(2N)(2N —1)--- (N + 3)(N + 2)

o (2N+1)(2N—1)(2N—3) -7-5-3
(2N +1)(2N)(2N —1)---(N + 3)(N + 2)

(Z(U,0))vspan) =

.3
2

N+1)N 1)--7-5-3
2N 2N—2)--(N+4)(N+2)

N(N—2)(N—4)--7-53
2N 2N(2N 2)—-(N+3) N odd

{ gN/2___(N+1)(N—1)--75-3 N even
N +

N even

N(N 1)-(N/2+2)(N/2+1)
N(N—2)(N—4)--7-5-3 N odd

) (N/2+5/2)(N/2+3/2)

(N+1)/
NYN/2+1/2)!
N+1 (N/2 1(/2§|2N/é )I/ZN' N odd

(4.2.25)

The second moment can be related back to the first in the following way:

(14+ N+ H)I(1/2+2+j)
Z(U,0)2 = 24N|| .
(2,00 huspam I'(1/2+ /)T (3+ N + )

4NF(N+2)F(N—|—3) (1/2+ N+ 1DI'(1/2+ N +2)
L(2N +2)I(2N + 3)I(1/2 + 1)I(1/2 + 2)
24N(N+ DYN +2)I(N +1/2)I(N +3/2)!
(2N +1)!(2N +2)!(1/2)!(3/2)!
_ (N +2)(NV +3/2) ((z\r+1).(z\r+1/2)!)2

322N 12 \ (/22N + 1)
o, N2+ IN+3
= ((Z(U,0))uspen) “3N13
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N2+IN+3
Z(U,0)? = (N+1)?—2
(Z(U,0)")uspem) (N+1) 3N +3
1

= —(N+1)(N*+ ;N+ 3)

~ gN?’. (4.2.26)

The third moment follows in a similar manner:

H6N QA+ N+HI'(1/2+3+7)
H r'(1/2+5)T4+N+j7)
6NP(2+N)P(3+N)F(4+N)
I'(3/2)T'(5/2)I'(7/2)
ra/2+N+1r (1/2+N+2)F(1/2+N+3)
F(2N+3) (2N +4)

(Z(U,0) )uspany

I'(2N +2)
_ 26N((N+1) (N +1/2)1\° (N +2)(N +2)(N +3)
(1/2)1(2N +1)! (3/2)(3/2)(5/2)
(N +3/2)(N+3/2)(N +5/2)
(2N +2)(2N +2)(2N + 3)

(N +2)(N+2)(N+3)(N+3/2)(N+5/2)
3:-3:-5(N+1)(N+1)

1
~ BNG. (4.2.27)

= (N+1)*

The higher moments follow in exactly the same way, and the general

leading-order term appears to be

n

-1

(Z(U, 00 spam) ~ (H@j - 1)!!) N, (4.2.28)
j=1

and this can be proven by induction.

This is a useful result for the integer moments, but the asymptotic ex-
pressions for the cumulants, (4.2.18), (4.2.22) and (4.2.24), can be inserted

into (4.2.10) to allow us to write the leading-order coefficient of the moment

Mgy(N, s) as
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— : Ms (Na S)
fopls) = Jim N

1 1
= lim exp ((—logN-l— —7-1—0(]\71)) s+ (logN+1+7v
N—o0 2 2

82

+log2 — gg(z) + O(Nl)) :

+

M8

((=D)"(n = 12" = 1)¢(n — 1)

S
w

G DI = 1))+ 0(1)) 5 ) e
= exp %s + (1 +v+log2— 24(2)> 82—2

((=D"@" " =1)¢(n—1)

+
M8

n=3
1 s"

e - 6 2. (4.2:20)

n

This coefficient can be expressed as a combination of gamma functions and
the Barnes G-function [Bar00, Vig79] in much the same way as we dealt with
the circular ensembles in Chapter 2. We remember from that chapter the

recurrence relation

G(1) = 1, (4.2.30)
G(z+1) = T(z2) G(»),

and furthermore, for |z| < 1 we have the expansion

2
log G(1+ z) = (log(27) — 1)% -1+ ’y)% + ;(—1)”_1C(n — 1)%
(4.2.31)
Combining this with
logl'(1 4 2) = —yz + Z ¢(n) (_s)n, (4.2.32)
n=2
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which holds for |z| < 1, we see that, for |s| < 1/2,

1 1 1
logG(1+s) — 3 log G(1 + 2s) — 3 logI'(1 + 2s) + 5 log['(1 + s)

= 3o () = @+ X (e = ¢ -
—%(—1)"(2" _ 1)<(n)> % (4.2.33)

A comparison with (4.2.29) shows that

232/2 y G(l + 8) F(l =+ S)
VG(1+25)T(1 +25)

fsp(s) = (4.2.34)

for |s| < 1/2, and hence by analytic continuation for all s.

As a check we compare the result (4.2.34), when s is an integer, with

(4.2.28). Using (4.2.30) we see that

G(n) =[] T0), (4.2.35)

and so for integer n,

on?/2 G(14+n)/T{1+n)

VG (1 +2n)0(1 + 2n)
2/9 (H;lzl P(j)) ['(1+n)

\/H§Z1 T'(j) T(1+2n)
o (I D)) V!

[ (G —1)!
on?/2 (T}, G — 1Y) Val
/22013202 4203 (9, — 1)? 2n

fop(n) =

= on
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(I G -1)Y) VIv2---vn=T1yn
V2V oy 232zt (2n — 2)2(2n — 1)

fop(n) = 2"’/

o2 17712n=2... (n — 2)%2(n — 1)
B 2n/2Qn—13n—14n-25n-2... (2p — 2)(2n — 1)
— 2n2/2 1

2n/29X5-1 I [T (25 — 1)

= (ﬁ(Qj—l)!!>_ . (4.2.36)

j=1

We see that this agrees precisely with (4.2.28).
Following the ideas developed in [KS00b], these integer coefficients have
also been calculated independently by Brézin and Hikami [BH99].

Having the generating function, Mg,(NV,s), it is a short step to find the
value distributions of both log Z(U,0) and Z(U,0) itself. The distribution of
log Z(U,0)/log N is

(0(x —log Z(U,0)/log N))uspn)

— <i/00 eiy(mlogZ(U,O)/logN)dy>
271 ) —oo USp(2N)

1 [ _ .
_ ﬂ 7 e—zszSp(N, zy/ logN)dy (4237)
_ i * efiy;cecliy/ log N+c2(iy/ log N)?/2+cs(iy/ 108N)3/3!+'"dy (4.2.38)
2 J_o
| e 1 ;
=— [ e™exp|(zlogN+0(1))iy/logN
2 J_ 2
Y v’
—(log N + 0(1)) s — i(0O(1)) s-r—s + -+ | dy.
Thus
Jim (6(z — log Z(U,0)/ log N))usp(zw)
1 R
_ = —iyz+iy/2 g 4.2.39
2T _ooe Y ( )
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and so the distribution of values of log Z (U, 0)/log N tends to a delta function
centred at x = 1/2.
If we instead retain the y? term in the exponent in (4.2.38), we have the

central limit theorem

2
lim <5 (:1:—{— “a logZ(U’O))> = Eexp <_°’”_), (4.2.40)
N—voo Ve Ve USp(2N) 2m 2

where ¢; and co are related to N by (4.2.18) and (4.2.22), respectively. For

finite N, the exact distribution is of course given by (4.2.37), where Mg,(N, s)
is defined by (4.2.9).

It is not difficult to determine as well the distribution of the values of

Z(U,0) itself; we will call this Pg,(N,z). As

Ms,(N, 8):/ 2° Psy(N, z)dx, (4.2.41)
0

we have, in exact analogy with (3.4.13),

1 ©
Ps,(N,z) = Dy x" " Mgy(N, is)ds (4.2.42)
—00
_ 1 * e—islogz+c1is—0252/2—i6353/3!+---ds‘
2z J_ o

Although Ps,(N,z) does not have a limiting distribution as N — oo, we

suggest the approximation

1 0o 2
Psy(N,z) =~ Dy exp [—z’s logz + ici1s — %] ds (4.2.43)
1 (logx — ¢;)?
= -_ 4.2.44
x/27Cy exp ( 2¢9 ’ ( )

and plot it, for two values of IV, in Figure 4.1 along with the exact distribution
(4.2.42). Tt should be noted that the approximation (4.2.44) is valid when

x is fixed and N — oo. In this limit the terms in the exponent containing
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cumulants higher than the second become negligible, and also the stationary
point of (4.2.43), s = (ic; —ilogz)/cy ~i/2 —ilogx/log N, tends to i/2 and
so stays well away from the nearest pole of the integrand of (4.2.42) at i3/2.
We can in fact be more explicit and say that (4.2.44) is expected to be a good
approximation when logx >> —log N and N is large, which follows from an

identical argument to that pertaining to (3.4.15).

a) b)

\ —_— exact —_— exact

asynptotic 0.15 -—- asynptotic

Figure 4.1: Distribution of the values of Z(U,0) for matrices in USp(2N),
a)N = 6, b) N = 42. The solid curve is the exact distribution (4.2.42) and
the dashed curve is the large N approximation (4.2.44).

It may be seen from Figure 4.1 that Ps,(/NV,0) = 0. Although the approx-
imation (4.2.44) also tends to zero as x — 0, it does not predict the correct
rate of approach. This may instead be obtained by examining the poles of the

integrand of

1 _ (1+ N +)(1/2 +is + )
Ps,(N,z) = —— 1sQ2ilNs ds. (4.2.45
sp(V: 2) 27m:/ HP1/2—|—] IF(1+is+N+j) 5 )

These poles are those of the factors I'(1/2 + is + j) so they occur at the
points s = i(2k + 1)/2 and are of order k, for k =1,2,..., N, then of order N
for all higher k.

First we consider the residue of the simple pole at s = %2 We can write
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L(1/2+is+2) _Z,F(is +5/2)
1/24+is+1 s—3i/2

so the residue of I'(1/2+is+1) at s = 2i is —i. As a result, and because none

P(1/2+is+1) =

(4.2.46)

of the other factors have a singularity at s = %i, the residue of the integrand

_§..
ats—221s

N

L1+ N+j)

x3/29—3N L'(j ) 4.2.47

H NP e sy M 1Y (4.2.47)
7j=2

Due to the factor 7, in the limit z — 0 the lowest pole (that at s = 21)
gives the dominant contribution. This is because at s = i(2k + 1)/2 there is
a kth order pole of H;V:1 ['(1/2 + is + j) and the other factors are analytic.
However, the expansion of z7% around s = i(2k + 1)/2 produces a factor of
(¥+1)/2 " Thus the residue from the pole at s = i(2k + 1)/2 will be of order
+@*+D/2 in ¢ and as & — 0, the significant contribution will be from k = 1.

From the residue at this lowest pole we thus find that as + — 0

N

1/20-38 1 L1+ N +45)0()
Pop(N,2) ~ 21772 T (N) ]1:[1 VR IO Sy M

It is demonstrated in Appendix D that the contour of integration of (4.2.45)
can be closed around the poles with negligible effect.
Alternatively, we can examine the value distribution of Z(U, O)ﬁ Chang-

ing variables in (4.2.42), results in

1 (e}

_1 —i .
(000 = 20 gy = 5= [ M, (N, i/ log N)dy,  (42.49)
and so
lim (6(z — Z(U. O)loglN)> - L h e~ WloeT e/ gy,
N-oo 9 USp(?N) 271_:1:
1
= —d(logz —1/2). (4.2.50)
x
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4.2.2 [L-functions with symplectic symmetry

In Section 4.1 we gave a brief description of the mean values at s = 1/2 for
families of L-functions and the relation of these to the symmetry type displayed
by the low-lying zeros. Here we consider the case of symplectic symmetry in
more depth.

If we again use Conrey and Farmer’s notation, as in (4.1.1), then in the
symplectic case they have V(z) = z and find that B(k) = 3k(k + 1) [CF99].
They also list several families which are conjectured to have low-lying zeros
with symplectic symmetry, the simplest of which consists of the Dirichlet L-
functions, L(s,x4), where x4 is a quadratic Dirichlet character. These were
discussed in Section 4.1. The conjectured form for the moments was given
in (4.1.5), and for this case the first few values of gj for integer £ have been
found using number-theoretic techniques to be [Jut81, Sou99, CF99| g = 1,
g2 = 2, g3 = 2* and, by conjecture, g, = 3 -2%. It seems very likely, as was
the case for the Riemann zeta function in Chapter 3, that g, should be related
to the random matrix moment values calculated in Section 4.2.1 because gi
is believed to be purely symmetry-determined. Thus we make a conjecture
similar to (3.4.7) in the chapter on the Riemann zeta function.

Making the identification

N =log(Q%), (4.2.51)

and recalling that as N — oo Mg, (N, k) ~ fgp(k)N%k(k“), we conjecture that

for symplectic families of L-functions

9k _
T(l+1k(k+1) fsp(k). (4.2.52)

Following the arguments of Chapter 3 for the case of the Riemann zeta
function, the relation between N and @ should arise from equating the mean

densities of zeros. For the L-functions we need the density near s = 1/2
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4.2. Symplectic symmetry

because we are dealing with the L-functions just at this point. The counting
function for the zeros, that is the number of zeros in the critical strip up to
certain height 7', can be calculated by integrating the argument of a function
£(s) which has the same non-trivial zeros as the related L-function and also
obeys a simple functional equation, around a rectangle containing the zeros
which are being counted. The density of L-function zeros near the critical
point can then be determined by differentiating the staircase function at some
finite height 7T". In the case of L-functions with quadratic Dirichlet characters
Xa, (4.1.5), the mean density at a fixed height up the critical line increases like
5 log|d| as |d| — oco. Since the mean density of eigenvalues of a matrix in
USp(2N) is N/m, we equate N = (1/2) log D, and obtain exactly the proposed
relation (4.2.51), since A = 1/2 in this case.

It is then striking that the first few values of fs, at the integers, fs,(1) =1,
fsp(2) = %, fsp(3) = 5= and fg,(4) = 5=, agree precisely, via (4.2.52), with

the values that Conrey and Farmer report for the symplectic L-functions.

Thus the mean values of L-functions appear to be partially predicted by
RMT in much the same way as for the Riemann zeta function. The only
difference is that in the case of ((s) the average was along the critical line
rather than over a family of functions. This is not a significant difference,
however, and Conrey and Farmer in fact suggest that we think of the Riemann
zeta function as a unitary family (with zeros showing the statistics of the
eigenvalues of matrices from U(N)) in its own right, where we are averaging

over special values of the family {((1/2+it)} as ¢ ranges over the real numbers.

The validity of the conjecture (4.2.52) would imply many results on the
value distribution of the central values of symplectic L-functions. The distri-
bution for the logarithm of symplectic families of L-functions, for example,
is expected to behave for asymptotically large Q in the same way as that of
the characteristic polynomial Z, always remembering that N must be related
to the L-function parameter via the density of zeros. This is because the

conjecture (4.2.52) can also be written as
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_ 1 1, _ Mgy(N, k)
QIEEO (log QA)%k(k+1)Q* Z Lf(i) = a(k) X (1\}2%0 N%k(k—i—l) ’
ferF
o(f) <Q

(4.2.53)

so the value distribution of log L;(3)/loglog Q* defined by averages with
c(f) < Q, would be, for large Q and making the identification (4.2.51),

1 [ _.
Vep(z) = P e "a(iy/log N)Mg,(N,iy/log N)dy, (4.2.54)
leading to
1 [ _—
: - —izy—+iy/2
ngréoVSp(a:) or | a(0)e dy. (4.2.55)

Since a(0) = 1, we see that this would imply that the distribution of log L;(3)/
loglog Q4 is asymptotic to 6 (z—1/2), in just the same way as for log Z(U, 0)/log N.

Following the same line of argument, we suggest that

J log L (%
lim (6 |z + Cl~ _ 8 f~(2)
Q—o0 vV C2 V C2 F
— lim i /OO a ( Zy ) e—iym—iycl/\/aeiyq/\/6—y2/2+03(iy)s/(c§/23!)+---dy
V2

_ \/%7 exp (—sz) , (4.2.56)

where (-)r denotes an average over a family F of L-functions, as in (4.1.1),

and ¢ and é are given by (4.2.18) and (4.2.22), respectively, again with the
identification (4.2.51).

If we now turn to the distribution of values of L;(3) itself, Wg,(z), we can

1
2

close the contour of
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1 <
Wsp(z) = —/ z “a(is)Msy(N,is)ds (4.2.57)
21z J_o
around the poles and obtain, as z — 0, the dominant contribution from the

pole at s = (31)/2:

lz_v[F T(1+ N+ 5)T() (4.2.58)

Wep(z) ~ 2'/?a(—3/2) (1/2+ )TN +j—1/2)

9—3N - 1
) 1
This is of particular note in the light of recent interest in the non-vanishing
of the central values of L-functions, see for example [Sou99, 1597, ILS99] and
references therein. Clearly (4.2.58) implies that as long as a(—3/2) is finite for
a particular family of symplectic L-functions, the probability that the central

value of those L-functions lies in the range (0, z) decreases like 23/ as z — 0.

4.3 Orthogonal symmetry

4.3.1 Random matrices in SO(2N)

To perform the same calculations for the orthogonal matrices, we must choose
the group of matrices carefully. The behaviour of the eigenvalues of the orthog-
onal matrices depend on which of four categories we are dealing with. While
the symplectic matrices always had determinant 1, an orthogonal matrix can
have 1 or -1 as a determinant. If the dimension of the matrix is even and
the determinant is 1, then the eigenvalues come in complex conjugate pairs
excluding 1 and -1. If, however, the determinant is -1 when the dimension is
still even, -1 must be an eigenvalue. As all the others must come in conjugate
pairs, there must be an eigenvalue at 1 to pair with -1. If the dimension of the
matrix is odd, though, 1 is the extra (unpaired) eigenvalue if the determinant
is positive, and it is -1 for matrices with negative determinant.

The calculations below pertain to 2N x 2N orthogonal matrices with posi-

tive determinant, that is, to the group SO(2N). The joint probability density
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function for the eigenvalues of this group is very similar to that of the group
of symplectic matrices, so the calculations below follow much the same lines
as in Section 4.2.1.

The joint probability density function for the eigenvalues dictated by Haar
measure on SO(2N) is [Wey46],

No I (%(cos 6, — cos ei))z, (4.3.1)

1<i<j<N

where

N -1 22N274N—|—1

Fr1+7)TG-1/2)2  aVN! (43.2)

For matrices in S O( ) the characteristic polynomial takes the same form

as for USp(2N),

N
=[[ (=€) (1 -t 0), (4.3.3)

n=1

so the s moment is

(Z(U,0)%)s0(2n)
1 2
= NO/ / df, ---diy H (E(cos f; — cos OZ))
1<i<j<N
x2Ns H(l —cosb,)’
n=1
= Np 22N—N2+N5/ / db, - - - dfy H (cos f; — cos 6;)?
0 0

1<i<j<N

N
X H(l —cosb,)°
n=1
) 1 1
:NOQQN—NHVS/ / doy - -dzy H

-1 1 1<i<j<N

x [ —a2)72(1 - z,)". (4.3.4)
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We use the Selberg integral (4.2.8) again, this time withy =1, a = s+1/2
and g =1/2.

(Z(U,0)*)soeny = No 92N—-N2+Ns _gN2-N+sN+N/2+N/2—N

N-1

1 D2+ )0(s+1/2+ )T(1/2 + 7)
! F2)C(s+1+N+j5-1)

_ nazvs Tr DL+ )D(s +j — 1/2)0(j — 1/2)
= No2V™]] TG+ Ntj—1)

j=1
N

_ 92Ns F(N—|—j—1)F(s+j—1/2)
= 2 Jlj[ll“(j—l/Q)F(s—i-j—i-N—l)

Mo (N, s). (4.3.5)

We now start looking at the cumulants of Mp. As for the symplectic case,

we write

Mo(N, 8) = 6q15+qz52/2+QS53/3!+‘I454/4!+"' (436)

so the cumulants are derivatives of log Mo(N,s) evaluated at s = 0. The

logarithm of M is

N
log Mo(N,s) = 2Nslog2+ Y (logT'(N +j—1)+logl(s+j—1/2)
j=1

—logT'(j —1/2) —logl'(s+j+ N —1)).  (4.3.7)

The first derivative is

d
ElogMO(N, s)

N
d
= 2N10g2+2£ (logT'(s+j—1/2) —logl'(s+j+ N —1))
j=1
N

=2Nlog2+ > (Y(s+5—1/2) —¢(s+j+ N —1)), (4.3.8)

=1
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and so the cumulants are

d
o = - log Mo (N, 8)|5

=0

= 2Nlog2+» (¥(j—1/2) —¢(j+ N —1)) (4.3.9)

Jj=1

for the first, and for higher cumulants

dr
G = d—logMo(N )] o
N
_ Z =D —1/2) =D+ N = 1)). (4.3.10)
j=1

To discover the leading-order behaviour of these cumulants, we repeat very
nearly what we did in the Section 4.2.1. Starting with ¢; and making use again

of (4.2.15) and (4.2.14),

G120

N o —t
e
G = 2N10g2+§ (/ T ot dt — vy
j=1 M0

00 ot _ ef(j+N—1)t
— dt
;)
00 —(j+N-1)t _ o—(j—1/2)t

= 2N10g2+2/ T dt

e—Nt(l _ e—Nt) _ e—t/2(1 _ 6—Nt)
= 2Nlog?2 dt
% +/o (-

0 o=Nt _ o=2Nt _ o—t/2 | o—~(N+1/2)t
= 2N log?2 dt.
o +/o 12

Now we integrate by parts,
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—Nt

G = 2N10g2—(N—1)/ 16
o 1-

1—et

—dt+ (2N — 1)/0

(&

1—et

1 oo —t/2 oo ,—(N+1/2)t
——/ ¢ dt—(N—1/2)/ C
2 0 0

= 2Nlog2+ (N — 1)ih(N) — (2N — 1)9p(2N) + %¢(1/2)

+(N —1/2)y(1/2+ N)

= 2Nlog2+ (N —1) <logN— L +O(N_2))

2N

AN

(2N —1) <log2—|—10gN— L om- )) —%

—2Nt

1—et

—log2+ (N —1/2) (log(N +1/2) - 1+ 2N * O(N_2))
. _% logN =2 +0 (%) . (4.3.11)

Now moving on to the second derivative, this time calling upon (4.2.20)

and (4.2.19),

@ = >, (@WO6-1/2) =W+ N-1))

=1

N .
00 to—(i—1/2)t 00 o= (j+N-1)t
: z(/ [
— \Jo 0 1—e
—t/2 o~ Nt % 4o—Nt(] _ o—Nt
= / )dt—/ Gl )dt-
0

1—6

<.

<.

Again integration by parts helps us to
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0o e—t/2 1 0o te—t/Z 00 6—(N+1/2)t
- dt+- [ g g
“ /0 1— et +2/0 1— et /0 1— et

00 4o—(N+1/2)t o —Nt
+(N—1/2)/ ei_tdt—/ C _at
0 I-e 0

N %0 4o Nt ; % 2Nt ;
-1 14 —at
+ )/0 1—et +/0 1—et

o] t —2Nt
—(2N — 1)/ © gt
0

1—et
= —p(1/2)+ g90(1/2) + BN +1/2)+ (N = 1/29O(N +1/2)
FY(N) + (V= DgO(N) ~ $(2N) — (2N ~ 1 (2N)

3 1
= logN+1+vy+1log2+ 5((2) +0 (N) ) (4.3.12)

The higher cumulants converge to a constant as /N increases, and following

our usual routine we obtain,

¢ = Y (B"VG-1/2) =" ([ + N - 1))

Jj=1

N . .
oo yn—1 —(j—1/2)t oo yn—1 —(J+N-1)t
= > (e [ e [
0 1—et 0 1—et

=1

o0 yn—1 —t/2 1 — e Nt o0 yn—1 —Nt 1 _ Nt
_ (—1)"/ c C _dt - (—1)"/ ‘ ° _at
0 0

<.

l—et 1—¢e" 1l—et 1—et

S0,

oo tn_le_t/2

e

I 00 _gn—let/2(_e—t)
- o [ S

— o ey [Tt

= —(n - 1A (-1/2)+ W D(-1/2).

L

(4.3.13)

ST

We move now from the cumulants back to the moments of Z(U,0). As in

the symplectic case, we can examine the first few integer moments individually.
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4.3. Orthogonal symmetry

(Z(U, 0)>50(2N)

N TNV +5 - DTG +1/2)
=? H I —1/2)0( + N)
B 2NP(N)F(N +1)---T2N —-1)I'(3/2)---T'(N — 1/2)T'(N + 1/2)
N ra/2)ra3/2)---(N -1/2)I(N +1)---T(2N — 1)T'(2N)
v (NT(N +1/2)
N I'(1/2)L(2N)
_ o (V= DUN —1/2)!
N (=1/2)!(2N —1)!
_oav NV = 1/2)(N —3/2)---(5/2)(3/2)(1/2)
(2N —1)(2N —2)--- (N +2)(N + 1)N

N (2N —1)(2N —3)---5-3-1

(2N —-1)2N -2)---(N+2)(N+1)N

gN_(N-1)(N-3)--531
(2N—2)(2N—4)--(N+2)N

(N—2)(N—4)--5:3-1
2N(2N—2)(2N—4)---(N+3)(N+1) N odd

[\)

N even

Il
N | e

N (N=1)! 1
2N/ (N/2_1)12N/2=1 (N—1)(N—2)-(N/2+1)(N/2) N even
oN/2+1/2 (N—2)! 1 N odd
(N/2=3/2)2N/7=372 (N 1)(N 2)-(N/2+3/2)(N/2+1/2)
_ (4.3.14)

Therefore the second moment becomes

(2(U,00%)s00m = 2] gvjlj/;)Fl

v DIVD(N + DTN + 1/9T(N +3/2)
[(1/2)T(3/2)0(2N)T(2N + 1)
i (N = DININ — 1/2)}(N +1/2)
(—1/2)I(1/2)I2N — 1)1(2N)!
v (N =DI(N —1/2)1\> N(N +1/2)
- (2 (—1/2)IeN — D)1 ) (1/2)2N)
: (4.3.15)

(3/2 + j)
1+j+N)

—|

~— | ™~

~ 4N

and the third comes out as
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(Z(U,0)*) 500w
v Ty TV + 5 — DI(5/2 + §)
=2 (

j—1/20(2+j+ N)

_ 26NP(N)F(N + 1)I(N +2)['(N + 1/2)I(N + 3/2)I'(N + 5/2)
B T'(1/2)T(3/2)(5/2)T(2N)T(2N + 1)L (2N + 2)
ov (N = DINYN +1)I(N = 1/2)!(N +1/2)/(N + 3/2)!
- (—=1/2)!(1/2)!(3/2)!(2N — 1)!(2N)!(2N +1)!
B (22N(N — 1IN — 1/2)!)3 N2(N + 1)(N +1/2)(N +1/2)(N + 3/2)
B (—=1/2)!1(2N —1)! (1/2)(1/2)(3/2)(2N)(2N)(2N + 1)

3
~ SN?. (4.3.16)

The general leading-order behaviour seems to be (where the product in the

brackets is just 1 for n = 1)

n—1

-1
<mmmmm~ﬂﬁmrm0 N3, (4.3.17)

=1

and this is easily proved by induction. This result was also obtained indepen-

dently in [BH99].

This yields the coefficient of the leading-order term for integer moments,
but we can do as in the symplectic case and express this coefficient in terms

of the Barnes G-function and gamma functions.

Using our knowledge of the cumulants, this leading-order coefficient is
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_ . MO(N: 8)
fols) = lim ~ampm

1 1
= lim exp [(—ElogN ——y+ O(Nl)) s

N—oo 2

3 2
+ <logN+1 +v+log2 + 5@“(2) +O(N_1)> %

+) (== 1) (-1/2)

W1/ 4 o)) |

3 s?
5+ 1+7+10g2+§C(2) B

+y (=)@ = 1)¢(n - 1)

e - ) 2. (4:3.18)

n

Examining the product form of Mg (N, s) we see that the coefficient is
expected to have poles of order k at s = —(2k —1)/2, for k =1,2,3.... Using
(4.2.31) and (4.2.32), we see that a combination with the correct poles is (for
|s| < 1/2)

1 1 1
logG(1+s) — 5 logG(1 + 2s) + 5 log['(1 + 2s) — 5 logT'(1 + s)

=3+ (1 5@) § X (e e

n

+1(_1)n(2n — 1)C(n)> f’ (4.3.19)

2 n

and comparing with (4.3.18) we thus find that

G(1+ s)/T(1+ 2s)

s) = 28°/2 %
fols) =2 VGA+ 25T +5)

(4.3.20)

for |s| < 1/2, and hence by analytic continuation in the rest of the complex

plane.
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This leading-order coefficient reduces for integer moments, again using

(4.2.30), to

(I () VI +20)
V(I TG (L +n)

e (16— 1Y) VEn)!

/22023203 ... (2n — 2)2(2n — 1)n!
o2 (H;?;l(j — 1)) v2raly/(2n — 1)
2n=lqn=2...(2n — 2),/32=352-5 ... (2n — 1)n!

(IT=. G = DY) vor

22}2“@—1271—2 ... (n _ 1)\/32n—452n—6 ... (2n _ 3)2
o2 1n=127=2. .. (n — 2)%(n — 1)27/2
on(n—1)/23n—25n-3 . .. (zn _ 3)1n—12n—2 .. (n _ 1)

= on (ﬁ@j - 1)!!) _ : (4.3.21)

j=1

fo(n) = 277

_ 2712/2

which agrees with (4.3.17), as it should.
Once more, we can examine the value distribution of Z(U,0) and its loga-

rithm. The value distribution of log Z (U, 0)/log N is

(6(z —log Z(U, 0)/10gN)>SO(2N)
1 [ _.
e " Mo(N,iy/log N)dy (4.3.22)

:g .

1 [ 1
= 2—/ exp {—iyw + (—5 log N + O(l)) iy/log N
™ —0oQ

2 3
Y : Y
—(log N +0(1))—2—— —4(0(1))=rZ— 4 ...
(o8 N + O(1) 5.5 = 00 gy |
yielding the limiting distribution
1 o0 . .
: . _ —iyzr—iy/2
Jim (5(z —log Z(U, 0)/log N))socn) o dy
= 5(z+1/2). (4.3.23)
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This is a delta distribution as in the symplectic case, but this time centred at
x=-1/2.
Keeping the y? term in the exponent in the integral above leads to the

central limit theorem:

2
lim <5 <x+ N —IOgZ(U’O)>> =/ exp (—‘”—) (4.3.24)
N—o0 /42 v/ q2 SO@2N) 2w 2

The value distribution of Z(U, O)ﬁ is similarly straightforward to com-

pute. We see that, just as in (4.2.49),

1 1 * .
(6(z = Z(U,0)%" ))s02n) = 5— z W Mo(N,iy/logN)dy,  (4.3.25)
2z J_

and so

1 1 o0 ) )
lim (8(z — Z(U,0)%¥ ))son) = e~ W8T —iy/2 gy,

N—oo % — 00
1
= Eé(logaj + 1/2). (4.3.26)

We also examine the distribution simply of Z(U,0), Po(N, z). As

1 o

Po(N,z) = proll %Mo (N, iy)dy, (4.3.27)
we can make the approximation
1 o 2
Po(N,z) ~ — exp |—iylogx + iqry — 2y dy
21x J_ o 2
1 —(logx—ql)Q)

= ex _— s 4328
T\/27 Qo P ( 2¢o ( )

valid as N — oo when z is fixed (and, like (4.2.44), expected to be a good
approximation when logz >> —log N and N is large). The result (4.3.28)
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PLX]
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Figure 4.2: Distribution of the values of Z(U,0) for matrices in the group
SO(2N), with a) N =6 and b) N = 42. The solid curve is the exact distribu-
tion (4.3.27) and the dashed curve is the large N approximation in (4.3.28).

is plotted in Figure 4.2 for N = 6 and N = 42 along with the numerically
calculated exact distribution, from (4.3.27).

Unlike the symplectic case (and unlike the approximation (4.3.28)), Po(N, z)
diverges as x — 0. This can be seen by considering the poles of the integrand,
which occur at i/2,3i/2,5i/2,.... Once again it is the lowest pole, the simple

one at i/2, that dominates the integral as z — 0. In this case we find that

—1/26— al N+]_1)P(])
Po(N, ) ~ z~1/297N H”_l/2 TGN 3/ (4.3.29)

in that limit.

4.3.2 L-functions with orthogonal symmetry

We now turn our attention to families of L-functions with a symmetry gov-
erned by an ensemble of orthogonal matrices. L-functions of this type fall into
two categories, even and odd, which are related to the ensembles SO(2N) and
SO(2N + 1) respectively. Of the L-functions comprising an orthogonal fam-

ily, approximately one half will have even symmetry, and the other half odd
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4.3. Orthogonal symmetry

symmetry, these latter vanishing at s = 1/2.

Examples of such families are given in [CF99]. Referring to (4.1.1), in the
orthogonal case V(z) = z and B(k) = 1k(k — 1). As in the symplectic case,
the first few of the coefficients g5 with integer coefficients have been calculated.
The known values are g; = 1, go = 2, g3 = 2% and it is conjectured that g4 = 27
[CF99].

With N taking the place of log(Q4), we conjecture this time that

1
1
2

3 Lf(%)k —alk) % folk)/2.  (4.3.30)
ferF
c(f)<Q

1.

The right hand side is divided by two because the random matrix average
was just over SO(2N), whereas the sum over central values of the L-functions
contains an equal number of functions contributing zero to the average; namely
the L-functions with odd symmetry about s = 1/2. Once again, we expect the
relation (4.2.51) to follow from equating the density of zeros of the L-functions
and the density of eigenphases of the matrices.

Having posed the conjecture (4.3.30), we check it against the known values
of g. It is clear that the first four coefficients fo(1) = 2, fo(2) =4, fo(3) =3
and fo(4) = 32 satisfy conjecture (4.3.30); that is gx/I'(1 + 3k(k — 1)) =
fo(k)/2, for k =1,2,3,4.

As for the symplectic case, we can examine what (4.3.30) implies about the
value distributions of L-functions and their logarithms. Since the L-functions
with odd symmetry are zero at s = 1/2, we now restrict ourselves to averages
over the orthogonal L-functions with even symmetry. These are expected to
satisfy (4.3.30) without the factor 1/2 on the right hand side.

The value distribution of log Ly (%) /loglog Q4 for L-functions with even
symmetry (defined by averaging as in (4.3.30)) is expected to be given, for
large Q, and with the identification (4.2.51), by
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1

VO (.’13) = %

/ e “*a(is/log N)Mo(N,is/log N)ds, (4.3.31)

and following the argument laid out for the symplectic case, this converges to
d(z+1/2) as N — oo.

We can once again state a conjectural central limit theorem, this time
for averages over a family F of L-functions with ¢(f) < Q governed by the
symmetry SO(2N):

lim <5( Q@ 10gLf(%))>
s\ tvEe Ve ),

: 1 > iy —iyz—iyq1 /@2 piyar /B2 —y? [2+as(iy)3 /(a3 >3+
= lim — al—)e e 2 2Ty
NG

- \/%7 exp (J”;) , (4.3.32)

where ¢; and ¢ are related to (4.3.11) and (4.3.12), respectively, via (4.2.51).

For the value distribution of L;(3) itself, which the conjecture suggests for

large Q is

Wo(z) = —— / " pisa(is) Mo (N, is)ds, (4.3.33)

we expect that near x = 0,

N

Wol(z) ~ o~ 2a(~1/2)2" H G 52“ jﬁ)ﬁ(i )3 oy (4339

]:1
the contribution to the integral (4.3.33) from the simple pole at s = i/2. For L-
functions with even symmetry from an orthogonal family for which a(—1/2) #
0, this analysis therefore suggests that the likelihood that the central value
vanishes is integrably singular, and that the probability of a value in the range

(0,z) vanishes as z'/2 when z — 0.
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Encore: Dynamical Zeta

Functions

Until this point we have concentrated on number theoretical functions, the
Riemann zeta function and L-functions, as examples of functions which have
zeros displaying random matrix statistics. As was described in Chapter 1,
however, such statistics also occur in physics; the eigenvalues of quantum sys-
tems with a chaotic classical counterpart are expected to show either COE,
CSE or CUE statistics in the semiclassical limit. An example of a function
with appropriate zeros is therefore the spectral determinant (1.1.14) of such a

system, as this function has a zero at each eigenvalue.

Through the analogy (1.4.7) between prime numbers and the role of clas-
sical periodic orbits in semiclassical expressions, a glance at the form of the
moments conjectured for the Riemann zeta function (3.4.8) suggests that in
the semiclassical limit similar mean values of the spectral determinant might
take the form of a product over periodic orbits multiplied by the appropriate

random matrix moment from Chapter 2.
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5.1 Value distributions of Z(F)

The spectral determinant defined in the Introduction (1.1.14) can be written

using the notation

A(E) ~ B(E) exp(—irN'(E))Z(E), (5.1.1)

where

B - exp(imS,/h)
m=1 m\/\ det(M;» — 1)

(5.1.2)

Z(E)= H exp

is called a dynamical zeta function.

It is this function Z(E) in which we will be interested. There is always
ambiguity as to how comparison should be made with the random matrix
function Z (U, 6). Clearly multiplication by a function without zeros would not
change the zero distribution of Z, but it would change the moments and value
distribution. To avert this problem, we note that the real and imaginary part
of the logarithm of Z(U, @) both have zero mean; that is, the first moment of
Relog Z and Imlog Z are both zero. We see that Z shares just this property
as log Z(F) has the form

log 2(E) = — Z Z exp (imsS, /)

. (5.1.3)
b 1 m\/| det(Mm — 1))

Since M is slowly varying compared to the exponential in the numerator
(semiclassically S,(E) >> k), upon an average over E the real and imaginary
parts of log Z will oscillate to zero. Thus Z is the function upon which we will
concentrate, rather than A(E).

First of all our aim is to compare the value distribution of the real and
imaginary parts of log Z with the random matrix distributions. The system

which we choose for this task is the kicked top (see for example [HKS87]). This
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5.1. Value distributions of Z(F)

is a three-dimensional angular momentum, the square of which is conserved,
J? = j(j + 1). This fixes the dimension of the Hilbert space as N = 25 + 1,
where j is a positive integer or half-integer. A simple kicked top might be a
spin precessing around the y axis while being kicked periodically. We consider

the N x N unitary time evolution operator

Tz _J2 _,
U = e "arilzemiovly, (5.1.4)

which allows the spin to rotate by an angle «, around the y axis before being
kicked round the z axis through an angle proportional to J, with a kicking
strength 7,. Subsequent applications of U, then, give us a stroboscopic view
of the evolution of a quantum state, at points in time separated by the kick
period. The behaviour of this system is chaotic in the classical limit (5 — oc0)
when 7, is not too small (see [HKS87] for details).

The evolution operator which we will actually perform calculations with is

U — e—iﬁJg—iaszefiayjye—iﬁf_—ng—iasz

, (5.1.5)

but it follows the same principle as (5.1.4). This top has no time-reversal
symmetry if the torsion parameters 7 and the rotation angles « are of order
one and non-zero, but if we were to set 7, = a, = 0, we would obtain a time-
reversal symmetric top; the eigenvalues of U would then be expected to obey
COE statistics. As it is, we will use the eigenvalues of (5.1.5) to construct a
spectral determinant, the value distribution of which we will compare with the
CUE results of Chapter 2.

The reason that the kicked top is so appropriate for our task is that the 7
and o parameters can be varied to obtain a whole family of tops with CUE
eigenvalue statistics. In order to create smooth value distributions for matrices
of dimension N X N where N is of a reasonable size for computation, we take

the average of the value distributions of the spectral determinants of many such
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tops. This is in analogy with Odlyzko’s numerical computations which lead
to Figures 3.1 and 3.2. He averaged the Riemann zeta function over a range
on the critical line which covered at least 10° zeros. This can be considered
as equivalent to averaging over thousands of sets of N = logT zeros to obtain
a smooth value distribution for the zeta function at height 7" up the critical
line. Thus we set a, = 1, oy = 1, and let 10 < 7, < 15, 4 < 7, < 7 and
1.1 < a, < 1.3. These parameters were varied enough between the various
kicked tops being averaged over that the sets of eigenvalues produced appeared
to be independent from each other.

We note here that with reference to (2.7.10) it is possible that with large
enough matrix size the value distribution of the logarithm of the spectral de-
terminant of one single kicked top might show good agreement with random
matrix theory. However, it is probable in the case of the value distribution of
the modulus of the spectral determinant that some averaging over more than
one system would be necessary even for large matrix size, as (2.7.10) indicates
a strong likelihood that the value distribution for one kicked top, for example,
will not lie close to the ensemble average.

Computing the distribution of values of

N
Relog H(l — /00 (5.1.6)
n=1

as 0 varies from 0 to 27, where the e are the eigenvalues of the matrix
(5.1.5), for 800 sets of parameter values results in an average distribution
which is shown in Figure 5.1. It is compared with the value distribution of
Relog Z, (2.3.3). Both curves have been normalized to have mean zero and
unit variance.

If the same process is performed for the imaginary part of the spectral
determinant, we obtain Figure 5.2.

Both Figure 5.1 and 5.2 display the same excellent agreement with the

random matrix distribution of the real and imaginary parts of the logarithm
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5.1. Value distributions of Z(F)

Figure 5.1: The distribution (orange) of the real part of the log of the spectral
determinant for 800 values of the torsion parameters and rotation angles for
kicked tops of dimension N = 21 (j = 10) compared with the equivalent CUE
distribution also with N = 21 (green) and a Gaussian (black).
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Figure 5.2: The distribution (orange) of the imaginary part of the log of the
spectral determinant for 800 values of the torsion parameters and rotation
angles for kicked tops of dimension N = 21 (j = 10) compared with the
equivalent CUE distribution also with N = 21 (green) and a Gaussian (black).
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of Z(U,8).

We can also consider the average value distribution of

N
[]11=€t (5.1.7)
n=1

where again the 6,, are the eigenphases of the time evolution matrix of the
kicked top (5.1.5) for a given set of parameters. The result is compared with
the value distribution of | Z| averaged over the CUE ensemble (3.4.13) in Figure
5.3. The first part of the figure shows the good general agreement between
the kicked top data and the CUE calculation over a large range of values, but
if we compare the distributions near zero, as in the second part of the figure,
we see a clear disagreement which is reminiscent of Figure 3.5 where the value
distribution of |{(1/2 + it)| near zero contained a non-universal contribution
from the product over primes (3.4.3) evaluated at the pole of My (is). This
discrepancy of the value distributions at zero for the Riemann zeta function is

predicted in (3.4.19).

1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2
2 4 6 8 10 12 14 0.5 1 1.5 2 2.5 3 3.5

Figure 5.3: The distribution of the modulus of the spectral determinant for 800
values of the torsion parameters and rotation angles for kicked tops (orange)
of dimension N = 21 (j = 10), compared to the CUE distribution, also for
N =21 (green).
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This suggests that there is a non-universal contribution to the value dis-
tribution near zero of the modulus of the spectral determinant for the kicked
tops. It should be noted that in an average over the value distributions of
many diverse maps it is likely that a deviation from random matrix theory
such as that seen in Figure 5.3 would disappear as all the non-universal con-
tributions would average to zero, but the tops used here are not representative

of all possible maps; their classical behaviour is too similar.

5.2 Moments of |Z(F)|

To investigate this non-universal contribution encountered in the previous sec-
tion we will return to the dynamical zeta function (5.1.2) and restrict our-
selves to flows with two degrees of freedom and two-dimensional maps. Thus
the monodromy matrix M, has dimension two and for hyperbolic systems the
two eigenvalues are exp(+A,7},), where )\, is the instability exponent of the

primitive orbit p. Following [BK90]| we see that

1 1
\/| det(Mm —1)| exp(3mA,T,)[1 — exp(—mA, Tp)]

1 o
= exp(—im)\pr) Z exp(—mkA,T,), (5.2.1)
k=0

allowing us to write the dynamical zeta function as

Z(E) = Hexp (_ g i exp(—m(k + 3)A\pT}) exp(imSp/h)>
- 1111 (1 —op(=(k+ %)Apr) eXP(iSp/h)> : (5.2.2)

Turning now to the 2Ath moment of |Z|, we examine
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= (TTTI0 — exp(~(k + ATy exp(is, /P
x[1 — exp(—(k + ))\ T,) exp(—iS,/h)]*)

HH (Z )\)\ +71L)5_ 11))m' exp(—m(k + ))\ T, +imS /h))

X(Zg((i:)i—ll))nve p(=n(k + ))\T msp/h)>>. (5.2.3)

n=0

We now assume the periodic orbit actions are uncorrelated, and thus the
system has no symmetries, so that we can bring the average inside the orbit

product. Expanding the product over £ and the sum over m we obtain

(Z(E)*Z*(E)*) (5.2.4)
= H((l — )\exp(—%)\pr +1iSy/h) + - )

1
X (1 - /\exp(—i/\pr —1Sp/h) + - - )
X (1 - )\exp(—g/\pr +iS,/h) + - - )

X (1 - )\exp(—g)\pr —1S,/h) +)
- o-).

From this expression we see that the divergent terms (those containing a
factor exp(—FA\,T,) with 3 < 1, as we shall verify below) arise from the k = 0
factor in the £ product. These terms simplify because any exponential with a
non-zero complex argument will disappear upon performing the average. The
convergent, terms are more complicated, but as far as the divergent terms are

concerned, upon applying the average over E these reduce to
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(ZEVZ(E) ~ [[ (1 + N exp(=AT,) +-+) (5.2.5)

P
where all the later terms will converge under the product over periodic orbits
.

The divergence of the expression (5.2.3) means it is not very useful for
calculating moments of the spectral determinant. So, to tame the divergence,

we will make a comparison with the second moment, given by

(Z(E)Z"(E))

= ([ITT (1 - expl=+ T explism))

p k=0

X (1 —exp(—(k + )/\ T)exp(—iSp/h)>>

~ ]+ exp(=AT,) + ). (5.2.6)

Once again the divergent term arises from the k£ = 0 factor. The more com-
plicated higher terms represented by the --- above are all convergent.

A comparison of (5.2.5) and (5.2.6) indicates that

Hx = (5.2.7)
(T, TTe2o | e FAEREDE exp(—mi(k + $)AT, + im S, /1))
(T, I |1 — exp(—(k + D)AT,) exp(iS,/h) ")

is a convergent quantity. This leads us to conjecture that the moments of the

spectral determinant have the form

(Z(E)2*(BE)Y) _ " My (5,22
(2(E)Z2+(E)™ (M (8, 2))2

where the product over the periodic orbits u, supplies the system-specific

(5.2.8)

information, whereas the universal component comes directly from the random
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matrix moments My (8,2A), (2.8.2), with the value of 3 chosen for the matrix
ensemble having the same symmetries as the system under consideration.

For the purposes of computation, if the instability exponents A, are large,
the product over £ in (5.2.7) will be dominated by the k& = 0 factor. In such a
case a diagonal approximation can be made, simplifying things considerably,

and pu) is expected to be well approximated by

g

. (oo () exn(oma )

(1 + exp(=ApT,)) P : (5.2.9)

Ha =
p

where we generalize to systems with symmetries, so g is the average multiplicity
of the periodic orbit actions. For example, a system without time-reversal
symmetry is likely to have very few orbits with the same action, making g = 1.
On the other hand, for a system with time-reversal symmetry most orbits, the
exceptions being those which are self-retracing, come paired with a time-reverse
orbit which has the same period and action, and so g = 2.

Now we will consider just the second moment of |Z| and check whether
its rate of divergence is in keeping with the result expected from the random

matrix results from Section 2.8

My(B,2)) oc N3Y (5.2.10)

for large N, remembering that = 1,2 and 4 for the COE, CUE and CSE
respectively.
Making the approximation, valid for large A,, that the k¥ = 0 factor in

(5.2.6) dominates, we have

(2(E)2*(E)) ~ [ [(1 + exp(=),T;))° (5.2.11)

p

As we have said, this product diverges, so we must truncate it at a suitable

point. We remember from Section 1.3 that an orbit of length T, contributes
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Chapter 5. Encore: Dynamical Zeta Functions

to correlations in the eigenvalue positions on a scale of about h/T,. If we
want to limit our product over periodic orbits to those which affect eigenvalue
correlations on a scale longer than the mean spacing, 1/d, then we need to

truncate the product at T, < hd. Thus, in analogy with (3.4.34), we write

(ZE)2(E) ~ ] @+en(=NT))

Tp<hd

= exp (7 Y log(1+exp(-\T3)) |- (5.2.12)
Tp<hd

The sum rule of Hannay and Ozorio de Almeida (1.3.3) implies that the
number of periodic orbits in a chaotic system with period less than or equal to
T is of order exp(h,T)/(h,T) for large T. Here h; is the topological entropy,
which is equal to the average A, for strongly chaotic systems. For large A\, we
continue from (5.2.12) by approximating log(1+exp(—A,7})) with exp(—A,7}),
then we turn the sum into an integral using the density of orbits of length about

T, exp(h:T)/T:

(Z(E)Z"(E))

Q
@
v
o

Q
¢
it
=
N /lQI\
S~
IN
>
m
<.bl
>
|
S| %
S
QL
N
N~

o (hd)?. (5.2.13)

As in the Riemann zeta function case, there is ambiguity about the lower
limit of the integral, but equating d with the density of random matrix eigen-
values N/(27), gives us a second moment of order N? for a system with time-
reversal symmetry - agreeing perfectly with the COE result - and a second
moment of order N for the CUE, again exactly what we expect. The same
calculation can be made for the higher moments, yielding a result equivalent

to (5.2.10).

160



Chapter 6

Finale

In answer to the question posed at the beginning of Chapter 1, the results
of the intervening pages suggest that in an appropriately chosen limit, which
corresponds to large matrix size in the random matrix case, the correctly nor-
malized value distribution of the logarithm of a function with random matrix
distributed zeros depends only on those zero statistics; the features specific to
the individual function are pushed to the extremes of the value distribution in
this limit. On the other hand, the moments |Z|° and (Z/Z*)® of the charac-
teristic polynomial Z(U, @) of an N x N matrix U belonging to an ensemble
of random matrices do not on their own predict the equivalent mean values of
a particular function displaying the zero statistics of that ensemble. Instead
the mean values of Z, once again in the limit of large N, must be multiplied
by a contribution specific to the function being studied. Thus the moments
of a function with random matrix zeros divide, in this limit, into two sepa-
rate factors, one universal and the other specific to the given function. The
conclusions of each of the cases studied are detailed below.

For the Riemann zeta function, comparison with random matrix calcula-
tions led to a conjecture that the Riemann moments %fOT |C(1/2 + it)[*Adt
take the form, in the limit of large 7', of a product over the prime numbers
(a contribution specific to the Riemann zeta function) multiplied by a factor
2

which is equivalent to the ensemble mean value of |Z|** as N becomes large.
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Chapter 6. Finale

This conjecture is supported by the known Riemann moments. It also implies
that, for large T', the distribution of values of ((1/2 + ¢T) and its logarithm
will agree over the major part of the range of values with the corresponding
value distributions of Z, as the contributions from the prime numbers will be
pushed to the extremes of the distribution as 7" — oo.

Recent results of Katz and Sarnak [KS99b, KS99a] suggest that the low-
lying zeros of families of L-functions display the statistics of various ensem-
bles of random matrices, so we compared mean values over these families of
L-functions, evaluated at the central point s = 1/2, with those of Z(U,0)
averaged over the appropriate ensembles. Conrey and Farmer [CF99] have
conjectured that L-function mean values factor into a product over primes
which is specific to the family of L-functions multiplied by a component which
they expected to be determined by the random matrix distribution of the ze-
ros. We find that the asymptotic results for the integer moments of Z(U,0)
agree precisely with the few known values of this factor expected by Conrey
and Farmer to be determined by random matrix theory.

Finally, in the case of spectral determinants of classically chaotic systems
we find, as expected, that the value distribution of the spectral determinant
and its logarithm show very close agreement with random matrix theory as the
system-specific characteristics are pushed to the extremes of the distribution
in the semiclassical limit. We also conjecture, in a similar manner to the case
of the Riemann zeta function, that in the semiclassical limit mean values of
the modulus of the spectral determinant divide into a component containing
specific information about the periodic orbits of the system, and a contribution

which amounts to the leading order (in N) random matrix moments of |Z|.
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Appendix A

The second log moment

The method embarked upon here becomes unfeasibly cumbersome for even the
third moment, but it involves a technique which is often very useful for these
types of calculations. Therefore it is worth stating here, even though a more
tidy method was subsequently developed to deal with this particular problem,
see Section 2.2. We start with the expansion of the logarithm of Z(U, 6),

log Z(U, 6) Z Z e Op=0)m (A1)

p=1 m= 1
If we consider the real part of this expression, and take the second moment

of that, then

((log |Z(U,0)]) CUE—/ /de1 d0N )det( k)0

(Z Z g C0sl(8p — O)ma] cos{(6, —9)m2]> (A.2)

p,g=1m1,ma=1

Here the joint probability density function for the CUE eigenphases is ex-
pressed in a different form from (1.2.13). This determinantal form is allowed
because the function being averaged over the ensemble is symmetric amongst
all the eigenphases (as elucidated very clearly in [Haa90]). Interchanging the

order of the integration and the summation over the m’s,
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((1og|2(U,0)))ovn =

o0

1 1

mi1,ma=1

1 e~

0> 1

CI(JI) 01(12)61(1;—1)% C’,(,l) 01(12)61‘(;;—2)9,,

pi(N=1)0 ci(N=2)0n
( 1 e—i01
ez’@z 1

01(71) ci(p—1)0p 01(91) ei(P—2)0p

0152) eila—1)0g CéQ)ei(q—Z)Gq

\ cHN—1)0y c(N—=2)0n

2w
mime (27T)N A ‘

2m
/ o ---dfy x (A.3)
0

e—i(N-1)01 \

o—i(N=2)0

01(11) C;[()Q)ei(p—N)ep

e—i(N=1)01 \
o—i(N—2)f

C}gl)ei(pr)ap

0152) ¢i(a—N)bg

L]

In the above formula, we are using the notation C%) = cos[(0; — 0)m;], where

x = p,q and ¢ = 1,2. The elements containing the cosine functions are in

the p'* row in the first matrix, and in the p"* and the ¢** rows in the second

matrix.

The next step is to multiply the j** column of each matrix by €% and the

k™ row of each matrix by e

—ikf

. As all of these factors multiply to one, this

does not affect the determinant. As the variable 6, appears only in the k»

row of the matrix, the integration can be brought inside the determinant, and

o

((og|2])*)ove = )

my,ma=1

1
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Appendix A. The second log moment

Z det 27

= [ o ¢P 0604y, [27 O 0P =200 dg,

( o 0 A

0 2

2 C(l)ei(pfl)wré’)dgp f2“ (j](]l)ei(p%)(@p%) do,

+Zdet fo P 0

f()?” 09(12) eia-D=0)qp, f027’ 0(52) ea=20=0)gp,

\ (; (} )

After performing the integrals over the cosine functions (which imposes

constraints on the indices being summed over), the first matrix can be diago-

nalized. We are left with

(081 Z))ern =3 grat >0 S (A.5)

mim
m=1 p=1 mi,me=1 ptq L2

1 0 0 0 0 0 \
0 1 0 0 0 0
x det M . 5(m§*1) 0 5(*71;1+1) (5(*";14-2)
o(m2—g+1) ... ... dme-1) 0 5(—ma+1)
2 D) B —
0 0 0 0
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Appendix A. The second log moment

In the above matrix, at most two of the elements in the p* row and two in the
¢"" row will be non-zero in any one term of the multiple sum over the m’s and p and
q. If such a non-zero element does not occur in both the (p, q)"* and in the (g, p)*
elements, then one or both of the p” and ¢ rows can be turned into a row of zeros

by adding appropriate multiples of the identity matrix rows to it. This imposes the
condition that m; = mge = |p — ¢|. Therefore, (A.5) reduces to

(10 0 0 -\
01 .- 0 --- 0
(ogl2ovs =3 30 3 Lt 00 0
m=1 P#£q )
00 5 0
(A.6)

If we interchange the p'* and ¢'* rows, then we acquire a negative sign, and the

matrix becomes diagonal.

Nr? 2(N—n) (11
2 _ _ —
(og 2))cs = = 3 0 (33)
_ Nr2 1 N-n
— 19 9 2
12 2n:1 n
N— oo
1 1 N 1
- 525 72w (A7)
n=1 n=N

We are interested in the large N asymptotics of this expression, so to deal with the

first sum we substitute the first few terms of

o0

1
2 E—'y—l—logn—l———z;

A.
(n+1)- n—i—k—l) (A8)

where Ay, = %f z(1—z)(2—z)(3—z) - - - (k—1—1z)dz, and apply the Euler-Maclaurin

formula to the second sum. The result is
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1 1
2 - — —

although more terms could be retained if necessary.
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Appendix B

Determining the relation
between the fluctuating part of
the staircase function and the

spectral determinant function

We are going to make use of the following theorem [Mar65]:

1 d 1 fl(z) ,
3 L£Lnf(z)dz—2—m, Lf(z)dz_N_P’ (B.1)

where L is a closed, rectifiable Jordan curve, N is the number of zeros of f(z)
(counted a number of times equal to the order) enclosed in L and P is the number
of enclosed poles counted in the same manner.

The function to be considered will be

e

N
2(s) = [[0 ==, (B.2)
p=1

where the product is over N CUE eigenphases, (this is just the spectral determinant,
Z(U,0) = H;,V:1(1 — €% —9)) extended to the whole complex plane) and we note that

it has the property
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Appendix B. Determining the relation between the fluctuating part of the
staircase function and the spectral determinant function

N e~ i0p
z(s) = JJa- pe )
p=1
— <__1) e*iziv=10p ﬂ(l_eiaps*)
S*
p=1
= (_—1) e X0 2 (1/5%) (B.3)
S
This means that
Z(s) = (=1/s)Ne'Xn Z*(1/5"). (B.4)

Figure B.1: A sketch illustrating the eigenvalues (red crosses) of a CUE matrix,
along with the path of integration (in blue).

In the statement (B.1) of the theorem above, let f(z) be replaced by Z(s). L
is the blue curve in Figure B.1; it runs counter-clockwise from s, all the way round
to s, again (ie. curve 1 - curve 2). Z(s) has no poles, and its zeros are on the unit
circle at 60y, 6, ..., Oy. Therefore, the right-hand side of (B.1) is just N(6), the
number of zeros less than §. This is just the staircase function for the 6,’s. We will
assume that ; # 0 and 6; # 6 for any j.

So, applying the theorem, we have
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staircase function and the spectral determinant function

N@O) = 2% iLn(Z( ))ds
- o ( / @ (2 (s))ds - /2 %Ln(Z(s))ds) (B.5)

= 5 (/ Z-Ln(Z(s))ds —/Q%Ln ((—1/5)Nei2p9pz*(1/s*)) ds).

We now change the variables in the second integral so that ¢ = 1/s*. If we write

t = Re'®, then (1/t*) = (1/R)e'?, so curve 2 is transformed into curve 1.

N@O) = — (/ iLn(Z(s))ds — iLn ((—t*)NeiEP QPZ*(t)) dt)

S1

- ([Ln(Z(S))]if, — [Ln ((—t*)Nein opz*(t))] )

So

= 3 .<[Ln(Z(8))]§3, — N [Ln(-1);; — N [La(")];

[

= % (2iIm[Ln(Z(31))] — 2¢Im[Lin(Z(so))] — N[Ln(t*)]3}). (B.6)

e

—[Ln (2°(2 ))]so>

Since s, = 1 and s = €',

N(@) = 2im,(zﬂm[Ln(Z(ei"))]+NLn(ei0)—2¢1m[Ln(Z(1))])
= mLa(Z(?)] + 50 — ~TmlLa(Z(1)] (B.7)

As stated in [BKP98], and easily confirmed by integrating N (0) — N0/(2x) over
the integral 0 < 6 < 27, the fluctuating part (ie. with mean zero) of the staircase

function is given by

N(§) = N(§) — ]2\;9 + 1Im[Ln(H(1 — €if?))]. (B.8)

p

Therefore, from (B.7) and (B.8), the fluctuating part of the staircase is given by

N (6) = %Im[Ln(Z(U, ), (B.9)
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staircase function and the spectral determinant function

where Z(U, 0) is given by

N

2,0) =[] (1 - e(wr”)) . (B.10)

p=1
Thus in studying the imaginary part of the logarithm of Z(U,#), we are also

investigating the much studied spectral staircase function.
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Appendix C

A heuristic study of Riemann

log moments

C.1 The second moment of Relog(

Before starting we note that in the following we will be making use of
the Euler product formula for the Riemann zeta function on the critical line
where it fails to converge. The results of this misdemeanour, however, are

eye-opening, and we will therefore proceed.

To begin, then,

1\
Relog((1/2+it) = RelogH (1 - W) (C.1)

1
= —ReZlog (1 — W)
— RGZ zoo: \}_eztm logp

=zi

p m=1

cos(tmlogp).

1
my/p™
So, the second moment looks like
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{(Relog g(1/2 + it))2)

= Z Z Z Z o cos(tm log p) cos(tnlogq))

qmlnl

_Zzzzmn T (cos(t[mlogp + nlogq])

qg m=1n=1

+ cos(t[mlogp — nlogql)). (C.2)

The first of the cosine terms can be neglected because p and g cannot be
chosen so as to make mlogp + nloggq vanish, implying that this term will
always be oscillatory and will therefore average to zero.

There are now several ways to proceed. One of these is to utilize the
similarity between the above expression and the form factor for the Riemann
zeros, scaled so that there is a mean spacing of unity between the zeros. We
saw in Chapter 1 that this is the Fourier transform of the two-point correlation
function ((d(t + %) — 1)(d(t — %) — 1)/82>t, where d ~ 2-log 5-. So we have

[Kea93], as t — oo,

Kr(T)

Il
4
—
A

(C.3)

i S22 v (5 () )

where p and ¢ are summing over prime numbers and T = 7log(t/(27)).

From this we see that

* Kp(T)
log(t/27) /0 war

=S5 e (eteor ()

q m=1n=1

((Re log ¢(1/2 +it))?). (CA4)
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This last line is a good approximation because the average in the angled

brackets will only be non-zero when p™ = ¢".

Now we apply the Berry Ansatz for the form factor, equivalent to (1.3.2),

which is:
Kgr(T) = 1 T > log(t/2m) (C.5)

o0 O, 2 : *

g5 Yop Dot EES(T — mlogp) if T < T~
That is, the form factor of the Riemann zeros follows that of GUE dis-
tributed zeros for T greater than some T* < log(t/2m), whereas below that

value the individual delta spikes are significant. Thus we have

log(t/2m) /0 h K’;,(QT) dT

—ZZ logp / J(T—Jrglogp)dT

p m=l1

log(t/2m) dT 00 dT
+ / 1 log(t/2r / o
. T (t/2m) log(t/27) L°

o

+ loglog(t/2m) —logT*+1.  (C.6)

P
logp™ < T*

A trick we will use again later on to deal with the sum above is to write

-
p<Pm= 1 p<Pm= 1 p<Pm=1 m
— 1 1
= —logH(l—l/p prt (C.7)
p p<P m=1
In Titchmarsh [Tit86] we find that for large P,
log H(l —1/p) ! ~ log(e” log P) = « + loglog P, (C.8)

p<P
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where 7y is Euler’s constant, so

—11

(C.9)

ZZmzm

p<Pm=1 p<Pm=1
Thus, in (C.6) (converting the condition log p™ < T* into p < eI because

the m = 1 terms contribute most to the sum)

((Relog((1/2 + 2'15))2)~
= %log(t/%r)/o K;(ZT) dT (C.10)
= %loglog(t/27r) “(vy+1)+ ZZ ( ) pim

p m=1

With the identification N = logT’, this supports the result of calculating the
second moment of log |Z]| (3.6.1) via the prime-modified generating function,
see Section 3.6.

Method number two for calculating the second moment is the method which

we will continue to use for the higher moments. We begin again with

—elog(p™q®
{(Relog ((1/2 +it))? qu:;;mn Ve <C0s(tlog< )>
(C.11)
where we have replaced ¢ with ¢+ i€ and so have shifted ourselves just slightly
off the critical line, thereby missing the zeros as we perform the average. In
the end we will take the limit e — 0.

We expect that there will be a contribution to the log moments which is
specific to the Riemann zeta function (containing sums over primes) as well as
the universal, random matrix contribution. As was mentioned in Chapter 1,
it is expected that the low primes will contribute to the non-universal part, so
we split the sum at primes around ¢/27 so that the primes below the cut-off
will contribute to correlations between zeros on a scale larger than the mean

spacing of zeros. Therefore we write
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((Re log§(1/2 + it))Q)

i Z Z szn N {cos(tlog(p™/q™))) (C.12)

p<t/27r q<t/2n m=1 n=1

L XY sy ! e
1 = e og(p™q )<COS(t log(pm/qn))>
2 ther pq == mn\/pmq"

- Z Z 1 > ——c 50 (cos(tlog(p/q))).

p<t/2m m=1 m2 2 other D, q VPq

Above we have made the assumption that the contribution from the low
primes is mostly diagonal and the n and m sum can be dropped from the
high prime sums because squared primes are less dense than primes, so the
likelihood of finding a pair of squared primes close together in a certain range
is less likely than finding a close pair of primes. The relevance of this is that
unless p™ = ¢", cos(tlog(p™/q™)) will average to zero.

Continuing from (C.12), the method we apply to the second sum is that
described in [BK95] and we will see that it introduces a step function which
effectively selects only large primes. This is why it is being applied to the sum

containing high primes. To the sum over lower primes, we apply (C.9).

{(Relog ¢(1/2 +it))?)

1
=3 loglog(t/(2m)) 7 - = (C.13)

pml

+ D) erretrr cos(tlog<<p+h>/p)> (1,1,h),

p>t/(27r) h#0
where we are using the notation of [BK95] in that P(m,n, k) is the probability
that ¢ = (mp — k)/n is a prime if p is one, and k£ has no common factors
with m, p or n: (k,m) = (k,n) = (k,p) = 1. We expect contributions to the
average in (C.12) only from h << p because larger h terms will be washed out
in the average. Therefore, we can write log((p + h)/p) ~ h/p. This leads us,
following Bogomolny and Keating [BK95], to
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((Relog ((1/2 + it))?)

1 1 1
~3 loglog(t/(2m)) + 3773

1 1 —2¢lo ;
+§Re Z —Ze &P exp(ith/p)P(1,1, h)

p>t/(2r) £ h#£0

1
~ 5 loglog(t/(2m)) fy — =

+%Re Z

p>t/(2n)

; p log(t/p)@(log(p/t))e*% log p

1 1 1
~ 3 loglog(t/(27)) + E’y ~ 3

1 00 logt — 1
+ZRe / e_2€1°gp0g720gp®(10g(p/t))dp
2 Jyen plOg p

~ = log log(t/(2m)) + =

p m= 1
1 o logt d
+—Re/ e’Qea%da— —Re/ —a,
2 logt o 2 logt &

where © is the unit step function.

Noting that the integral of 1/« disappears in the limit as ¢ — oo,

((Re 10g§(1/2 + it))Q)
~ = log log(t/(2m)) + =
P m= 1
1 72€alogt
+§ —€ |log(t/27r) o 0(6):|

1 Iy m—1
~ 510glog(t/(27r))+§7— EZZW

1
~ iloglog(t/(%r)) 'y +1)—-

P m= 1
Again, this is the desired answer.
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C.2 The third moment of Relog (

We now study the third moment of the real part of the log of the Riemann

zeta function.

((Relog((1/2 + it))3>

DHHNISISY e

p1 p2 p3 mi=lme=1mg= 1 MiMmaMm3/P1 " P2 p

X (Re(e”’m1 logp1 )Re(eitm2 logp1 )Re(e”ms 1og”s)). (C.16)

However, instead of making t real, let ¢ = t 4 i€, where € is a small positive
quantity, so that we are running just beside the zeros along the critical line

instead of through them. At the end we will take the limit e — 0.

m2

((Relogg(1/2+it))3>
—elog(py 1 py 2p53)

_ZZZZ Z Z m1m2m3W

p1 p2  p3 mi=lma=1mz=1

x (cos(tm, log pl) cos(tm2 log ps) cos(tms logps))

e—€log(py"! vy ?p3"?)
——ZZZZZZ e
p1 p2 p3 mi=lma=1mg= 1 MMMz \/Py Py " P3

((cos(tlog(p}™ pz )]+COS[t10g( /Py )])COS(tmslogp3)>
elog p1 pgnS)

_ZZZZZZ m

1 pa  p3 mi=1ma=1ma=1 10171027113
X(COS[t]Og(pl p2 p3 )]+COS[t10g(p1 p22/p )]

+ cos|t log(p™ m3/p’”2)] +COS[t10g( 1 (057 ps™))])

—elog(py" p5 2p53)

_Zzzzzzmmﬂnm

p1 p2 p3 mi=lma=1mz=1

x {cos[tlog(py" / (p5*p5"))])- (C.17)

The last line of (C.17) is due to the symmetry amongst the prime sums,
and to the fact that the first of the four cosines will average to zero as its

argument will never be close to zero.
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Following Bogomolny and Keating [BK95], we retain only the m; = my =

mg = 1 terms as those corresponding to higher m’s are generally smaller due

to the factors 1/4/p™.

Thus

—elog(p1p2ps)
{(Relog((1/2 +1t))? ZZZ (cos[tlog p1/(paps)])-

i pa P p1p2p3

(C.18)

The biggest contribution from the average will occur when p; & pops. Let
p1 = paps+k, where k << pops. In the notation of [BK95], (k,ps) = (k,p3) =1
and we want the probability as k varies that p; is a prime. Again from [BK95],
this is P(pe,1,k) = P(ps, 1, k).

So, now we have (making the approximation p; & pops in the slowly varying

factors)
{(Re log C(1/2 +it))*)
—elog(p1p2ps) ;
SIYYN ke Y e () Pl
\/P2P3P2P3 Pap3
P2 P3 k#0

(k,p2) = (k,p3) =1

We perform this sum, in the manner of Bogomolny and Keating, by first eval-
uating the sum over all non-zero &, then subtracting off those terms for which
k is a multiple of ps or ps. Using Bogomolny and Keating’s approximations,

this results in,
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((Re log c(1/z+ Z't))‘°’Q>6 -
XS o) (% () © (6 (7))
~log ( t ) © (log (fj)) (D)o (e (2)))  (ca9

3 / / e~ 2¢log(p2ps) ((1 | | )
- ogt — logpy — logp

4 p2p3 log p2p3) log py log p3 8 P2 &Ps
xO(log py + logps — logt) — (logt — log p3)O(log ps — logt)

—(logt — log p2)©(log p, — logt))dpadps
72€(a2+a3)
—Re/ / ((logt — as — a3)O(az + az — logt)

042 + ag Qio0l3
—(logt — a3)O(as — logt) — (logt — a2)O (e — logt))daydas.

Now, because this is symmetric between the two «’s, we integrate over just
half of the positive quadrant, g < aw, and then divide the integral up to look

at each of the step functions separately.

((Relog ((1/2 + it))?)
e—2¢(az+as)
/ / —————((logt — as — a3)O (a2 + a3 — logt)

012 + a3 Q03
—(logt — a3)O(az — logt) — (logt — a2)O(ay — logt))dasdas

/logt / logt — Qo — C¥3)€—26(042—|—043)d J
Q300
(logt)/2 Jlog t—as (2 + ag)agas

/ /0‘2 (logt — ag — a3)e 2€(a2+a3)da do
3dai
logt (g + a3)aprs

/ / logt — ) e 202 tas) dond
— asdo
2 logt (cg + 043)042a3 i

3 logt — quz) e 2e(@2tas)
N / / dOéng[Q
logt logt 052 + 043)042a3

_ _EE (C.20)

In the above, the singularities in the various integrals cancel each other out,
and we have neglected integrals of order e. (C.20) is now exactly the constant,

leading-order term —2((2)['(3) in the moment ((log |Z|)*)cvp-
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Appendix C. A heuristic study of Riemann log moments

In the above calculation, however, we have lost the contributions from the
small primes. These lower primes, in analogy with the short periodic orbits of
a classically chaotic system, constitute the basis for non-universal terms, and
for the small primes it is not so clear that only the m; = my = m3 = 1 terms
of (C.17) are significant. However, we still want terms where p7" p5"? /p5*® = 1,
so we’ll consider the case when p; = ps = p3 and my + my = m3. Then we

have

_ZZZ )\/W

—1 m3m2 m3 — Mg

oo mz—1

1 —my/ms3
:_Z Z Z mgm3 1—m£/m3) m3

P m3=2ma=

oo m3—1

mz/mg
"1 Z Z Z mamsz(m3 — ma)p™s

p m3=2ma=1

oo m3g—1 oo mz—1
= Y e I Y e
p mg=2mp=1 2 3P p ms=2ma=1 3(ms 2)p™

oo m3z—1 oo m3z—1

1) 3D DD HIELEEEE) o) o R

p m3=2map=1 p m3=2mag=1

oo mz—1

SE) DD D Pl 3N S m) 49 (C21)
maom p 2 m3ps

p m3=2ma=1 p m3=2

This is exactly the non-universal contribution seen in (3.6.1) which resulted
from applying the conjecture (3.4.8) on the moments of |((1/2 + it)| to the

question of calculating the log moments in Section 3.6.

C.3 The fourth moment of Relog(

We treat the fourth moment in much the same way, although we will restrict
ourselves to hunting out the non-universal sums over primes. It is absolutely
expected that the Bogomolny-Keating technique would reproduce the random
matrix result ((3.6.1) without the quantities in curly brackets), but the effort

necessary to do so would be immense.
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We begin, as usual, by expanding the moment to a sum of cosine functions:

{(Relog((1/2 +it))*
o0 o o o 1
- ; %: %: %: rg::l n;l rg::l rg::l mymamama/py" Py Py

x (Re exp(itm; log p1)Re exp(itmy log ps)

x Re exp(itmg log p3)Re exp(itmy log py))

YD 1

my, M2
P1,P2,P3,P4 M1,M2,m3,ma4=1

m3, M4
m1m2m3m4\/p1 P2 "P3 Py

x (cos(tmy log p1) cos(tms log pa) cos(tms log ps) cos(tmg logpy))

1 had 1
1 Z Z M1 Tz, My

a4
P1,P2,p3,pa 1 yma,ma,ma=1 111 TT021131T04 \/pl P2 "P3 P4

x((cos[t log(pi"' py**)] + cos[tlog(pt™ /p5™)])

X (cos[t log(p3*py**)] + cos[t log(ps* /py**)]))

1 > 1

8 Phlg,m,m M1,m2%,m4=1 mymamsmy \/prlnlp;mpgngpim
x (cos[t log(p}" py” p3**py™)] + cost log(py* vy / (p3°py™))]
+ cos(tlog(py"' py " p3° /py**)] + cos[t log(py" py* Py /p5*°)]
+ cos(tlog(py" p3°py /ps?)] + cos[tlog(py™ /(P P53 pi™))]

+ cos(tlog(py" p3*° /(P34 ))] + cos[t log(p" pi™* / (95 P5™*))])

(C.22)

iy oy 1

I e S (V1L LY YRV R A P
x (3 costlog(py* p5"™ / (P5*py™))] + 4 cos[t log(pi™ py"* p5™ /py**)])
where the last line holds due to the symmetry of the sums and the fact that
the first cosine in the second to last line averages to zero.
We can see immediately that there will be a significant contribution to the
above average when either pi"'p3*® = p5"*p)™, in the case of the first cosine, or

Pt py?ps® = py'* from the second cosine.
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As the p’s are primes, the only way to obtain the second of these situations

is to have p; = ps = p3 = ps and m; + my + m3 = my. So we look at

o
1 ZP17P27P37P4 Zm17m2am37m4:1 1

2 pi=pa=ps=ps My +my+mg=my Mimamzmay/py Py Py Py

1 o] mas—1 n—1 1 1
= 52 Z (Z Z my(n —my)(ma —n)m4) i (C.23)

p ma=3 n=2 mi=1

In the above rearrangement, n = my+msy. We now perform partial fraction
decomposition twice in a row, then apply the fact that once m4 and n are fixed,
a sum over my is equivalent to a sum over n — my if my is summed from 1 to

n — 1.

1
+
(my —n)(mg — ml)) mip™

1 0o mg—1 n—1 1 mg—2 mg—1 1
R (SR I E )

n=2 mi=1 mi=1n=mi+1

2 m4—2ma—j5—1 9 1
+ .
k(my —n+k) z_: Z j(my —my) mapma
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ma—1 n—1 ma—2 mg—1
1 1
- + -
min min
n=2 mi=1 1 n=1 mi=n+1 1

3 - 1
= 3 (Z D ((@(m) = (1) + ¢ (m) = (1)) m2pm> -(C.24)
The second contribution from (C.22) is a little more complicated because,
as for the second moment, the sums do not converge. We are considering the

sum

oo

> > . , (C.25)

M1 Mo M3, Ma
P1,P2,P3,p4 ™M1,M2,m3,m4=1 m1m2m3m4\/p1 p2 p3 p4

T2:

ol W

where the restrictions are that

either p; = p3 Po=ps My =13 my =my (a)
or P1 = P4 P2 =Pp3 M1 =My mg = M3 (b)
or pi=py = p3=ps mi+me = mzg+my (c)

Cases (a) and (b) are equivalent due to the symmetry of the sums, so we
will include the contribution of (a) twice, but we must be careful not to over-
count the p; = ps = p3 = p4 contributions. This caution also applies to case
(c), which replicates the p; = po = p3 = p4 contributions yet again. We will
get around this problem by including none of these contributions in the sums

arising from cases (a) and (b), as they are all covered by (c). Therefore we
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have the following, where it can be seen that, as in the case of the second

moment, the sums are sometimes divergent.

[© SN o]

T2 = = ;%:n;l W;l m%m2pm1pm2 n zp:”;l n;l m m pmlpmg

oo n—1 n-1

3 1
+8ZZZ Z m1(n —mq)(n — mg)msp™

p n=2mi=1mz=1

o0

DI IPIEC s

mm
p1 p2 mi=2ma=1 1M2P1 P2

Sy yy y mlom)

m
p1 p2 mi=1ma=1 mymaPy Py

+zzzzmﬁ%

mm
p1 p2 mi=1lma=1 1 2p P

HYYY Y

p1 p2 mi=1lma=1

=1
(5 ) (S
3 co n—1 n-1 1
+SZZ | 1(m1m3 nn—m1)>

p mi=1lm3=

mq mzp P

X
AN 7N S

c§»—\‘°

3

_+_

S

3

| | —

R

&

~

“%I»—*

p m=2 m
3 =1 > 1-
2 Z_ mlpm) (Z Z_ mefo)
p1 mi=1 p2 ma=1
3 =1 3 1 =1
A=) 2 (Eae) ()
3 oo n—1 n-1 1 1 1
+§ZZ <m1m3 + mi(n —m3)  mg(n —my)

1 1
N ) , (C.26)
We have seen sums like those over 1/(mp™) before. If we imagine truncating
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them at p < t/(27), then we have seen in Section C.1, on the second moment,

that > > 1/(mp™) =~ loglog(t/(27)) + ~. Thus

p n=2 \mi=1mgz=1
2
- 3 (—loglog <§> Tt Egmz::z (W - R) p_m)
2
3 © 1 3 o , 1
45 (mz_:l m2pm) * E;HZ;W(”) —v(1)" 5 (C27)

The total contribution to the fourth moment from the terms 77 and 75 is

therefore

1 t 1 1 00 1 1 1 2
nts = o gontn (52) + 375 25 (5 ) )
3 00 1 2
44 (mzzl mgp’”) (C.28)
+SZ; (W) = (L))" + % (¥ ®(m) - w(”(l))) n21pn.

C.4 The second moment of Imlog(

In an identical manner to the section on the second moment of the real

part of the log, we deal with the imaginary second log moment.
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{((Tmlog ¢ (1/2 +it))?)

_ Z Z Z Z m(sin[tm log p] sin[tn log ¢])

qg m=1n=1

- % 222> W<008[t log(p™/p™)] — cos[t log(p™q™)])

q m=1n=1

= XYY e eosltlog” )
= ((Relog C(1/2 + it))?). (C.29)

Therefore all the discussion for the second moment of the real part of the

log holds equally well here.

C.5 The third moment of Imlog

We treat the third moment similarly:

{((Imlog ¢(1/2 +it))?)
1

o0 o0 o0
:ZZZZ Z Z mlmng\/W

p1 p2 p3 mi=lma=1mz=1

X (sin[tmy log p1] sin[tmy log po] sin[tms log ps])

1 . 1

2 Pl%;??) m1,77§n3=1 mimains pqmpgnngns

X ((cos[t log(pY™ /p3*)] — cos[t log(pY" p3"*)]) sin[tms log ps])
1

1 o0
4 Z Z LNUPYUZRV p;mpgmngns

P1,p2,P3 M1,m2,m3=1

x (sin[t log(py"*p3™ /pi"*)] + sin[t log(pi" p5** /p5”)]

— sin([tlog(ps™/(p7"" py))] — sin[t log(pT" p5"p5")])
s 1

3
=7 Sin tlo m1 ,. M2 ms
4 Z Z m1m2m3w< [t log(p1* P53 /P5"°)])

Pp1,p2,p3 M1 ;m27m3:1
~ 0. (C.30)

This is exactly the result supported by numerical evidence and the random

matrix calculations.
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C.6 The fourth moment of Imlog(

Now the fourth moment:

((Imlog¢(1/2+ it))4)
o o0 o0 o0
=X 202020222 S—
p1 p2 p3 pa mi=lmo=1m3=1mg=1 m1m2m3m4\/p1 D2 D3 Py
X (sin[t log p7™ | sin[t log p5*?] sin[t log p5*®| sin[t log py™*])
1 > 1
4 pla%ﬁﬁu m17m2,7n23,m4=1 M2y \/p;nlp;nngnspzm

x ((cos(tlog(py™ /py'®)] — cos[t log(pi* py")])
(cos[tlog(ps™® /py™)] — cos[t log(p5py™)]))

S IPIDS :

M1, s 13 M4
D1,P2,P3,P4 M1,M2,Mm3,m4=1 m1m2m3m4\/p1 P2 P3Py

x (cos[t log(pT" py"* /(P53 p5"))] + cos[t log(p" p5" / (5 pi*))]

— cos(tlog(py™ /(pyp3*ps™))] — cos[t log(p" p5**py** /p5”)]
— cos|t log(py" py*py"* /p5"*)] — cos[t log(pT" py"° p5™ /py*)]

+ cos[tlog(py"' py” /(P53 py™*))] + cos[t log(pi" p" ps**py**)])

= > > ! (C.31)

T s 3 T4
P1,P2,P3,P4 M1,m32,m3,m4=1 m1m2m3m4\/p1 Dy P3Py

3 m mn ™m. m. 1 m M mn M.
§ cosle om0 — § cosf g2 /G557 )

We know all about the evaluation of the sums over these cosine averages
from the fourth moment of the real part of the log, so we know that the

contribution from the terms where the log factor in the argument of the cosines

1s zero is
t 1 1 < /1 1\ 1 ?

- = ~logl — N+ )= .32
T,-7, 3( °g°g<2w>+27+2§p:m§:;<m2 m)pm> (©32)
2
3 <1 3 ad 1

_° _° (1) ()
T | 3D ) - wO)
p m=1 p n=2
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This is expected to give the prime sum contributions to ((Imlog((1/2 +
it))*), and indeed it agrees precisely with the prime sums in (3.6.3).
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Appendix D

Closing the contour of

integration around the poles of

MSp(Nv S) and MO(N, S)

D.1 USp(2N)

If we define a contour of integration as composed of three lines in the
complex plane, Sy, S and S5, where S; runs from (—n, 0) to (—n,in), Sp from

(—n,in) to (n,in) and Ss from (n,in) to (n,0), then we want to show that

lim e~ V18T Mo (N, iy)dy = 0 (D.1)

n—oo Sm (n)

for m =1,2,3 and « < 1. Here Mg,(N, s) is the moment of the characteristic

polynomial of matrices in USp(2N),

(1+N+)I(1/24+ s+ 7)
Mg,(N, s) = 22Ns : D.2
sV, 5) HFI/Q-{-] IF'(l+s+N+j) (D-2)

Let us define, for positive integers j,
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Mgy(N,s) and Mo(N, s)

[(1/2+ 4y + 7)
(1+iy+N+j)

fGy) = (D.3)

which has poles at half integers greater than j on the positive imaginary axis,
and zeros at integers on the imaginary axis greater than or equal to 1+ N + ;.

We now have

N
Ms,(N, iy) = const2”™¥ T £ (5, ). (D.4)

=1

If we start with S5 then we can make use of Stirling’s formula,

[(z+ ) ~ V2me 225H71/2, (D.5)

which holds as |z| — oo and |arg z| < 7. We consider y = n + it on Ss, so

fGm+in) = |

+in—t+N+j)‘
‘ L'(1/2+z+7j)
IF'(1+z+ N +j)

, (D.6)

where we have substituted z = in—t. As ¢ runs from n to 0, arg z € [7/2, 37 /4]

and so we can apply (D.5). For large n the result is

fG,n+it)] ~ w‘

_ e—(N+1/2) log 2

_ ef(N+1/2) log(in—t)

_ 6—1/2(N+1/2)10g(n2—|—t2)

. (D.7)

Since N > 0, as n — oo, |f(j,n + it)| — 0 uniformly for n + it on Sj.
As
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Ms,(N, s) and Mo(N, s)

|22Niy| — |22Ni(n—|—it) |

|2—2Nt|

< 1, (D.8)

|Ms,(N,iy)| — 0 uniformly as n — oo on S3. Thus we can choose any € > 0
and find an n* such that for every n > n* |Mg,(N,iy)| < € for all y € S3(n).

Therefore we have, for logx < 0,

0
‘ / e—iy IngMsp(N, Zy)dy‘ < 6‘ / e—in logzelog ztl- dt‘
S3 n

n
< € / o8t qt
0

€ tlogw

@ ‘ 0
€

= @(enlogz — 1) (Dg)

Thus, since € is arbitrarily small, the integral tends to zero on S5 as n — oo.

Next we work on S;. Here we want to examine

: . I(1/2—in—1t+3j)
o = [ \
£, —n +it)] Fl—m—t-l—N—i—j)
I'(1/2+z+j) ‘
D.10
I'l1+z+ N+j) (D-10
This time z = —in —t, so as t runs from 0 to n, arg z € [—7/2, —37 /4] and
we can use (D.5) to obtain
|f(], —n+ Zt)‘ ~ |€—(N+1/2)10gz|

|e—1/2(N—|—1/2) 10g(n2—|—t2)|' (D.ll)

So |f(j,—n + it)] — 0 uniformly for —n + it on S; as n — oo. Also
122N%| < 1 on Sy, so |Ms,(N,iy)] — 0 uniformly as n — oo on S; and the

argument follows just as for S5 that (D.1) holds for m = 1.
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Mgy(N,s) and Mo(N, s)

The above was based on a similar calculation performed by Hughes (PhD
thesis, Bristol University) for the function My (s).

For S, the method is just slightly different since we cannot use Stirling’s
approximation along this line.

Instead we use [GR65]

I
im Lta)

—alogz __
e =1. D.12

On Sy we have y =t +in, t € [-n,n], so

| I'(1/2+ iy +j) |
I'(1+dy+ N +j)

| L(1/2+4 it —n+j) |
F(l+it—n+N+j)
| ['(2) ‘
L(z+1/2+N)"

£,y

(D.13)

where z = 1/2 + it — n + j. Therefore we have

lim ‘ L(2)
n—oo 'I'(z+1/2+ N)

) 1
| = i | e
= lim ‘e*(1/2+N)10g(1/2+it7n+j)|
n—odo

= lim ‘e—(1/2+N)10g[(1/2—n+j)2+t2]/2‘
n—0oQ

= 0. (D.14)

Thus |Msg,(N,y)| — 0 uniformly as n — oo on S, as here we again have
|22N%| < 1. We can therefore find for each € > 0 an n* such that for every

n > n*, |[Mg,(N,iy)| < € for all y on S,. So,

e—z(t—l—m) log z

dt

‘/ e_iylogzMgp(N,iy)dy‘ < €
Sa

el log x dt

(VAN
)

= ¢(2n)e"o8. (D.15)
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Since logz < 0, (D.1) is true for m = 2.

D.2 SO(2N)

The method here is identical to that in the previous section. First we

remember that

s Ty DIV +5 = DD(s + 5 — 1/2)
Mo(N, s) =2 gr(j—1/2)r(s+j+N—1)’ (D-16)
and so we define
fy) = St 1/2) (D.17)

Fy+j+N-1)
which has poles at the half integers on the imaginary axis at values greater
than or equal to i(j — 1/2) and zeros at all integers on the positive imaginary
axis above, and including, i(j + N — 1).

We have, therefore, that

N
Mo (N, iy) = const2?M [ £ (4, v), (D.18)

=1

and we want to show that

lim e~ W8T N o (N, iy)dy = 0 (D.19)

"% J S (n)
for m = 1,2,3, where once again S; runs from (—n,0) to (—n,in), Sy from
(—n,in) to (n,in) and S3 from (n,in) to (n,0) and logz < 0.
Starting with S3, and using (D.5), we let y = n + it so that t € [0, n|, and

Dlin—t+5-1/2) |

(in—t+j+N—-1) (D-20)

fGvl = |5
We now set z = in — t and notice that arg z € [r/2, 37 /4] so that
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Mgy(N,s) and Mo(N, s)

. . I'(z+j5—-1/2)
|f(]7y)| - |F(Z+j+N—1)‘
efzzz—kjfl

~J

=
— |elogz(—N—|—1/2)‘
_ |6(—N+1/2) 1og(n2+t2)/2‘_ (D.21)

Thus, since |[22V%| < 1, |[Mp(N,iy)| — 0 uniformly on S as n — oo, and

so we can write for some arbitrarily small €, as long as n is sufficiently large,

0
‘/ e‘iwao(N,iy)dy‘ < € / el logxty gy
S3(n) n

n
€ / elog xt dt
0

= (enlsT_1 D.22
(e = 1), (D.22)

IN

e is arbitrarily small and logz < 0, so (D.19) holds for S3 as n — oo.
Precisely the same technique works to prove (D.19) for S, and Ss is tackled
in the same manner as for the symplectic case in the previous section. Using

(D.12) and z =it —n + j — 1/2, where t € [—n,n],

[fG,t+in)| = |

fim |G g L
n—00 F(Z + N — 1/2) n—00 e(Nfl/Q) log 2
—(N—1/2) log(it—n+j—1/2) |

= lim |e
n—oQ

i [ (VY oste g 172702
n—00

= 0. (D.23)

As usual |[Mo(N,iy)| — 0 uniformly as n — oo on Sy, so for any € > 0

|Mo(N,iy)| < € on Sy(n) for large enough n. Thus we write
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Ms,(N, s) and Mo(N, s)

el log x dt

—n

IA
™

‘/ efiylogwMo(N’,l;y)dy‘ < 6/ efi(t—l—in)logw dt
Sa —-n

= e(2n)e"ee, (D.24)

which tends to zero as n — oo since logz < 0. Thus (D.19) is proven.
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