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Abstract

This paper discusses a few main topics in Number Theory, such as the Möbius function
and its generalization, leading up to the derivation of neat power series for the prime
counting function, π(x), and the prime-power counting function, J(x). Among its main
findings, we can cite the extremely useful inversion formula for Dirichlet series (given
Fa(s), we can tell what its associated arithmetic function, a(n), is), which enabled the
creation of formulae for π(x) and J(x) in the first place, and the realization that sums of
divisors and the Möbius function are particular cases of a more general concept. From
this result one concludes that it’s unnecessary to resort to the zeros of the analytic
continuation of the zeta function to obtain π(x) or J(x).
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1 Introduction

Many people have devoted time trying to create formulae to generate prime numbers or to
count primes numbers, something that at times has bordered on obsession.

These formulae don’t seem to have a lot of potential to be used as new tools for analyses,
so frequently they are mere curiosities or attempts to prove oneself capable of achieving a goal
or winning an intellectual challenge. That is even more true if the formula is very complicated,
which seems to be the case of most that were discovered to date.

But oblivious to the bleak landscape, I was still very curious and eager to find my own,
and in the process, I think I may have created a new tool to look at Dirichlet series.

In this paper we create the very first power series for the prime counting function, π(x), and
for the prime-power counting function, J(x), aside from the Riemann prime counting function
(which assumes the Riemann Hypothesis, which is still unproven). Their relative simplicity
stems from a property of Dirichlet series, by which some convoluted functions can be expressed
as the product of an elementary function and a non-elementary function given by a relatively
simple power series.

Though power series are arguably not the most tractable of solutions, at times they may
provide insights that may lead to the discovery of better or more useful formulae.

After I discovered the results that are discussed here, I did some research in the literature
and was very surprised about coincidences between things I found and approaches that had
been tried by others before me. Namely, concepts such as the Möbius function, µ(n), the Von
Mangoldt lambda function, Λ(n), and so on and so forth. Maybe these are recurring concepts
on the study of the patterns of prime numbers.
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2 Indicator function k divides n, 1k|n

In paper [2] we introduced the indicator function k divides n, noted 1k|n and defined as 1
if k divides n and 0 otherwise. This function plays a key role throughout this paper. It can
be represented by means of elementary functions:

1k|n =
1

k

k∑
j=1

cos
2πnj

k
=

cos 2πn− 1

2k
+

1

2k
sin 2πn cot

πn

k

However, that closed-form is not very practical to work with. For example, if k divides n
we have an undefined product of the type 0 · ∞ (the sine is 0 and the cotangent is ∞).

Hence, it’s more practical to derive a power series for 1k|n, which can be accomplished
by expanding the cosine on the left-hand side with Taylor series and employing Faulhaber’s
formula, as explained in [2], which gives us the below:

1

2k
sin 2πn cot

πn

k
=
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2jk
−2j

(2j)!(2i+ 1− 2j)!
(1)

2.1 Analog of the 1k|n Function

The analog of the indicator function 1k|n is the below sum:

1

k

k∑
j=1

sin
2πnj

k
=

sin 2πn

2k
+

1

k
cot

πn

k
sin2 πn

As previously, we can obtain a power series for it by expanding the sine with Taylor series
and making use of Faulhaber’s formula:

1

2k
cot

πn

k
(1− cos 2πn) =

∞∑
i=0

(−1)i(2πn)2i+1

i∑
j=0

B2jk
−2j

(2j)!(2i+ 2− 2j)!

2.2 Transforming the power series of 1k|n

If we remove the first term from the sum in (1), we get the below:

1k|n =
cos 2πn− 1

2k
+

sin 2πn

2πn
−
∞∑
i=0

(−1)i(2πn)2i+2

i∑
j=0

B2j+2k
−2j−2

(2j + 2)!(2i+ 1− 2j)!

If we keep extracting terms in this fashion, after extracting m terms we would obtain the
following equation:

1k|n =
cos 2πn− 1

2k
+

sin 2πn

2πn

m−1∑
i=0

(−1)i(2πn)2iB2i

(2i)!k2i
+
∞∑
i=0

(−1)i+m(2πn)2i+2m

i∑
j=0

B2j+2mk
−2j−2m

(2j + 2m)!(2i+ 1− 2j)!
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Since the first 2 terms are clearly 0 for integer n we can discard them. This means that
1k|n has an infinite number of alternative power series:

1k|n =
∞∑
i=0

(−1)i+m(2πn)2i+2m

i∑
j=0

B2j+2mk
−2j−2m

(2j + 2m)!(2i+ 1− 2j)!
(2)

3 Sum of powers of divisors of n

Let’s define the function σ2
m(n) as the sum of the m-th powers of the integer divisors of

n (the superscript 2 was chosen for convenience and will make sense when we reach section
(4.6)). In mathematical notation, for any complex m:

σ2
m(n) =

∑
k|n

km

By using the power series we derived for 1k|n, such as (1) or (2), we can obtain a power
series for σ2

m(n). For reasons that should be apparent soon, form (1) is preferred.

3.1 The divisors count function

Let’s start by deriving a power series for the number of divisors of an integer n, σ2
0(n), also

known as d(n). If we take equation (1) and sum k over the positive integers, we get σ2
0(n):

σ2
0(n) =

∞∑
k=1

1k|n =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2jζ(2j)

(2j)!(2i+ 1− 2j)!

Now, by recalling the closed-form of the zeta function at the even integers:

ζ(2j) = −(−1)j(2π)2jB2j

2(2j)!
⇒ B2j

(2j)!
= −2(−1)j(2π)−2jζ(2j),

we can replace B2j/(2j)! in equation (3) and express σ2
0(n) in a more mnemonic form:

σ2
0(n) = −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)2

(2i+ 1− 2j)!
(3)

A similar rationale that also stems from equation (1) can be applied to obtain σ2
m(n) for

any complex m (here we leave the equation in its original form):

σ2
m(n) =

∞∑
k=1

1k|n · km =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

2j−m 6=1

B2jζ(2j −m)

(2j)!(2i+ 1− 2j)!
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Note we need to be careful to avoid the zeta function pole, hence 2j −m 6= 1.

And if we multiply σ2
m(n) by n−m we obtain σ2

−m(n). It’s not so obvious to see why this
works (if k is a divisor of n, k/n is the reciprocal of another divisor of n):

σ2
−m(n) =

∞∑
k=1

1k|n ·
(
k

n

)m
=
∞∑
i=0

(−1)i(2π)2in2i−m
i∑

j=0
2j−m6=1

B2jζ(2j −m)

(2j)!(2i+ 1− 2j)!

Another way to obtain σ2
2m(n), though this time only for integer m, can be achieved using

(2):

σ2
2m(n) =

∞∑
k=1

1k|n · k2m =
∞∑
k=1

∞∑
i=0

(−1)i+m(2πn)2i+2m

i∑
j=0

B2j+2mk
−2j

(2j + 2m)!(2i+ 1− 2j)!
⇒

σ2
2m(n) =

∞∑
i=0

(−1)i+m(2πn)2i+2m

i∑
j=0

B2j+2mζ(2j)

(2j + 2m)!(2i+ 1− 2j)!

And the above holds for positive or negative integer m, except that Bernoulli numbers are
not defined for negative subscripts. But since the reciprocal of negative integer factorials is 0,
that doesn’t matter.

As we can see, the function 1k|n has a lot of interesting properties, and will be certainly
useful on our goal of studying the prime numbers.

4 Introducing Möbius µ(n)

The formula we created for σ2
0(n) in section (3) begs a question: what would happen if we

replaced ζ(2j)2 with ζ(2j)3? In other words, what does σ3
0(n) give us?

σ3
0(n) = −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)3

(2i+ 1− 2j)!

To answer this question, we need to rewrite the initial sum that leads to the above formula:

∞∑
k1=1

∞∑
k2=1

1k1·k2|n =
∞∑
k1=1

∞∑
k2=1

(
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j(k1 · k2)−2j

(2j)!(2i+ 1− 2j)!

)

Looking at this formula we are led to conclude σ3
0(n) is the number of permutations of

elements from the set of divisors of n, taken 2 at a time, that are also divisors of n when
multiplied together. It’s also equal to

∑
k|n σ

2
0(k), as we see in section (4.6).

5



And how about σ1
0(n) and σ0

0(n)? The former is a constant equal to 1 for all integer n, and
the latter equals

∑
k|n µ(k), where µ(k) is the Möbius function, which we define in the next

section. As a preliminary, σ0
0(n) is 1 if n = 1 and 0 if n is an integer greater than 1, which we

prove in section (4.4).

And finally, what is σ−1
0 (n)? That is the Möbius function itself, µ(n):

µ(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)−1

(2i+ 1− 2j)!
, (4)

which we prove in section (4.5), after we define square-free numbers.

4.1 Square-free numbers

A square-free number is a number that can’t be divided by any squared prime. In other
words, if n is square-free, p1p2 · · · pk is its unique prime decomposition. That said, we can
define a function µ(n) such that:

µ(n) =


1, if n=1

(−1)k, if n is square-free with k prime factors

0, if n is not square-free

This function is the Möbius function from the previous section, which was named after the
German mathematician who introduced it.

Back to equation (4), one of its advantages is the fact that it provides an analytic contin-
uation of µ(n) onto C.1 It can be rewritten in a different form:

µ(n) = −sin 2πn

πn

∞∑
j=0

n2j

ζ(2j)

The above form has the very same power series expansion as (4), but a finite
radius of convergence (|n| < 1), so (4) is by definition its analytic continuation.
However, this new form is more tractable and useful for performing manipulations in some
cases.

1Onto is being used loosely here.
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Below the graph of µ(n) was plotted in the (0, 9) interval for some insight into its shape
and local minima and maxima (it crosses the x-axis at the square-full and half-integers):

Note we made the intercept 0 so the value at 0 doesn’t differ from the other integers. It’s
not easy to apply the Weierstrass factorization theorem here since there are unknown zeros at
every level (e.g., −1, 0 or 1), perhaps even non-real ones.

To see an example on why the two forms are the same, we mentioned previously that
σ1

1(n) = 1 for all integer n (in section (4.6) we generalize this class of functions). In this case
it’s possible to produce a closed-form using the generating function of ζ(2j) that we’ve created
in [2]:

σ1
1(n) = −sin 2πn

πn

∞∑
j=0

n2jζ(2j) = −sin 2πn

πn

(
−πn cot πn

2

)
= (cosπn)2

The analog of σ2
m(n) is µ(n)/nm, which for complex m is obtained by a simple modification

of equation (4):

µ(n)

nm
= −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

ζ(2j+m) 6=0

(−1)j(2π)−2jζ(2j +m)−1

(2i+ 1− 2j)!
,

This result is a direct consequence of the inversion formula for Dirichlet series, discussed
in section (5). As before, we need to avoid the zeros of the zeta function if they occur.

4.2 The Euler product

The German mathematician Euler discovered an interesting relationship between the zeta
function and the primes known as Euler product, which inverted reveals a relationship between
the reciprocal of the zeta and the square-free numbers:

1

ζ(s)
=
∞∏
j=1

(
1− 1

psj

)
=

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
· · ·
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Let’s denote the set o square-free numbers by S and let n be a member of S.

The inverted Euler product generates all the square-free numbers in S, but each one
comes multiplied by (−1)k, where k is the number of primes in the prime decomposition
of n (n = p1p2 · · · pk).

That said, it becomes evident that we can write ζ(s)−1 as a function of µ(n):

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
(5)

4.3 Dirichlet series

The right-hand side of equation (5) is one particular example of Dirichlet series. A Dirichlet
series is any infinite sum of the type:

Fa(s) =
∞∑
n=1

a(n)

ns

where a(n) is an arithmetic function and Fa(s) is its generating function.

Given two Dirichlet series, Fa(s) and Fb(s), their product is a third Dirichlet series, Fc(s),
whose associated function, c(n), is called a Dirichlet convolution of a and b, denoted by c = a∗b.

Of particular interest to us, the product of a Dirichlet series Fa(s) and the reciprocal of
the zeta function, ζ(s)−1, is the convolution of a(n) with µ(n), which is given by the so-called
Möbius inversion formula:

c(n) =
∑
k|n

a(k)µ
(n
k

)
We shall use this result in subsequent proofs.

4.4 The unit function

Let’s prove the below assertion, that we referred to in section (4):

∑
k|n

µ(k) =

{
1, if n = 1

0, if n > 1

The proof for the above is pretty simple. If the prime decomposition of n has k primes,
then its number of square-free divisors is 2k, half of which have an odd number of prime factors
and half of which have an even number of prime factors. Since the former have a negative sign
and the latter a positive, they cancel out. The exception is n = 1, which has no prime factor. �
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In terms of the function 1k|n from equation (1), this result implies:

∞∑
k=1

1k|n · µ(k) =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j

(2j)!(2i+ 1− 2j)!

∞∑
k=1

µ(k)

k2j
⇒

µ0(n) =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!
=

{
1, if n = 1

0, if n > 1

What this means is that, per the Möbius inversion formula, the convolution of the function
we just called µ0(n) with µ(n) is µ(n) itself:

µ(n) =
∑
k|n

µ0(k)µ
(n
k

)

Actually, the convolution of µ0(n) with any function is the function itself, and hence µ0(n)
is known as the unit function.

4.5 Cube-free numbers

A cube-free number is a number that can’t be divided by any cubed prime. In other words,
if n is cube-free, its unique prime decomposition is n = pe11 p

e2
2 · · · p

ek
k , where the ei are non-zero

integer exponents less than or equal to 2. In this context, a prime factor pi is said to be single
if ei = 1, it’s said to be double if ei = 2, and so on. That said, we can introduce a modified
Möbius function of order 2, µ2(n), with the following properties:

µ2(n) =


1, if n=1

(−2)k, if n is cube-free with k single prime factors

0, if n is not cube-free

This definition is different from the one proposed by Tom M. Apostol in 1970,3 but prob-
ably equal to Popovici’s function.4

Now, let’s take the Euler product from the previous section, and see what it looks like
squared:

1

ζ(s)2
=
∞∏
j=1

(
1− 1

psj

)2

=

(
1− 1

2s

)2(
1− 1

3s

)2(
1− 1

5s

)2

· · · ⇒

1

ζ(s)2
=

(
1− 2 · 1

2s
+

1

22s

)(
1− 2 · 1

3s
+

1

32s

)(
1− 2 · 1

5s
+

1

52s

)
· · ·

Looking at the expansion of ζ(s)−2 above, it’s not very hard to conclude the following
equivalence:

1

ζ(s)2
=
∞∑
n=1

µ2(n)

ns
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Now, the convolution of µ(n) with itself should give us µ2(n), after all the latter is generated
by ζ(s)−2:

µ2(n) =
∑
k|n

µ(k)µ
(n
k

)
And the above result allows us to state the following theorem:

Theorem 1 µ(n) =
∑
k|n

µ2(k)

Proof 1 This result stems from the Möbius inversion formula applied to the convolution
of µ(n) with itself.

It can also be proved with combinatorics, but we analyze just two possible scenarios. Due
to the multiplicative nature of µ(n) (that is, µ(xy) = µ(x)µ(y), when x and y are co-prime),
we can partition n in blocks of co-prime factors where all primes are single, double, and so on,
and analyze each one separately. If n has a block of prime factors that are not single, then it’s
not square-free and hence

∑
k|n µ2(k) = 0, which we show.

For the first scenario, let’s assume that n is square-free with k prime factors, n = p1p2 · · · pk.
Under this scenario we have 2k possible divisors. Let’s also assume that q = p1p2 · · · pi is a
combination of i out of these k primes. There are Ck,i such divisors and they are such that
µ2(q) = (−2)i if i > 0. When we plug them into the sum (plus 1, to account for divisor 1) we
get:

k∑
i=0

Ck,i(−2)i = (1 + (−2))k = (−1)k = µ(n)

For the second scenario, let’s assume that n has k double prime factors, n = p2
1p

2
2 · · · p2

k.
Under this scenario we have 3k possible divisors. Let’s also assume that q = p1p2 · · · pi, i > 0,
is a combination of i out of these k primes. There are

∑k−i
j=0Ck,i,j such divisors and they are

such that µ2(q) = (−2)i if i > 0, and 1 otherwise. Let’s see why the sum would be 0:

k∑
i=0

k−i∑
j=0

Ck,i,j(−2)i = ((−2) + 1 + 1)k = 0, where Ck,i,j =
k!

i!j!(k − i− j)!
�

Now that theorem 1 has been proved, we can use it to demonstrate the validity of equation
(4). The demonstration is totally analogous to the previous one:

∞∑
k=1

1k|n · µ2(k) =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j

(2j)!(2i+ 1− 2j)!

∞∑
k=1

µ2(k)

k2j
⇒

µ(n) =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2jζ(2j)−2

(2j)!(2i+ 1− 2j)!
=
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)−1

(2i+ 1− 2j)!
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4.6 Duality between µq(n) and σq0(n)

From the previous expositions, we can define a generalized Möbius function of order q,
µq(n), which coincides with Popovici’s definition:4 µq(n) = µ ∗ · · · ∗ µ is the q-fold Dirichlet
convolution of the Möbius function with itself. And again, because ζ(s)−1 is the generating
function of µ(n), its convolution with µq(n) justifies the below recurrence:

µq+1(n) =
∑
k|n

µq(k)µ
(n
k

)
⇒ µq(n) =

∑
k|n

µq+1(k) (where µ1(n) = µ(n))

Therefore, it follows from this and previous results that:

µq(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)−q

(2i+ 1− 2j)!

The above expression for µq(n) is insightful, if we think about negative values of q. For
example:

σ3
0(n) =

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(2j)3

(2i+ 1− 2j)!
=
∑
k|n

σ2
0(k)

(Again, notice that σ2
0(k) is the number of divisors of k, also referred to as d(k).)

So, we conclude that there is a duality between µq(n) and σq0(n), they are equivalent and
can be used interchangeably, more precisely, µq(n) = σ−q0 (n).

To make this finding more intuitive, let’s say that for positive q the following identities
hold:

1

ζ(s)q
=
∞∑
n=1

µq(n)

ns
, and ζ(s)q =

∞∑
n=1

σq0(n)

ns

The second equation is obvious for case q = 0 (since µ0(n) = σ0
0(n) = 0 for all integer n

except 1) and q = 1 (since σ1
0(n) = 1 for all integer n).

5 Inversion formula for Dirichlet series

We now enunciate a little theorem that relates a Dirichlet series to its coefficients.

Theorem 2 Suppose that Fa(s) is a Dirichlet series and a(n) is its associated arithmetic
function. Then a(n) is given by:

a(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jFa(2j)

(2i+ 1− 2j)!

11



Proof 2 Although not obvious, this is a very powerful result. The above power series
converges for all n and is the analytic continuation of:

−sin 2πn

πn

∞∑
j=0

n2jFa(2j), (6)

since they have the same Taylor series expansion and (6) only converges for |n| < 1. In some
cases it’s possible to find a closed-form for a(n), like we did in section (4.1), though it can be
challenging.

As for the proof, the a(n) formula is obviously true for ζ(s)q for any integer q, which we
have already proved in the previous sections.

For the general case, the proof is sort of trivial:

−2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jFa(2j)

(2i+ 1− 2j)!
⇒

−2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!

∞∑
k=1

a(k)

k2j
⇒

∞∑
k=1

a(k)

(
−2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jk−2j

(2i+ 1− 2j)!

)

The theorem then follows from the following equation:

−2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2πk)−2j

(2i+ 1− 2j)!
=

{
1, if n = k

0, otherwise
(7)

And the above equation is justified for being the convolution of µ0(n) and the associated
function of the series k−s, b(n), since from the convolution formula:

c(n) = (µ0 ∗ b)(n) =
∑
d|n

µ0(d)b
(n
d

)
= b(n) =

{
1, if n = k

0, otherwise

Now, using this result along with the same reasoning employed in the proof from section
(4.4), we derive equation (7). �

It’s pretty remarkable that Dirichlet series have coefficients given by Taylor series. One of
the advantages of this formula is that if you know Fa(s) at the even integers, you know the
coefficients of its series expansion. And if you know the generating function of Fa(s) at the
even integers, you know the closed-form of a(n). Another advantage is that it extends a(n)

12



to the complex numbers. Notice it works even using Fa(0), which is normally a singularity
(unless analytically reassigned), but if we skip summing j over 0 it works too.

From the proof we conclude that we’d get the same result if we used the partial series
instead of the infinite series (e.g., H2j(n) instead of ζ(2j)).

Unfortunately, this inversion formula doesn’t apply to the analytic continuation of the
Riemann zeta function, it would be really interesting if it did.

6 Applications

Even though the possibilities are endless, let’s see a few examples.

6.1 Square root of the zeta

The function a(n) seems to have a predilection for rational outputs when Fa(s) is some
variation of the zeta function:√
ζ(s) = 1+

1

2 · 2s
+

1

2 · 3s
+

3

8 · 4s
+

1

2 · 5s
+

1

4 · 6s
+

1

2 · 7s
+

5

16 · 8s
+

3

8 · 9s
+

1

4 · 10s
+

1

2 · 11s
+· · ·

It’s not hard to guess the patterns of a(n): numbers with the same type of prime decom-
position have the same coefficients.

6.2 Zeta raised to i

To foray into complex realm, the following coefficients were calculated using the inversion
formula:

ζ(s)i = 1 +
i

2s
+

i

3s
+
−1 + i

2 · 4s
+

i

5s
+
−1

6s
+

i

7s
+
−3 + i

6 · 8s
+
−1 + i

2 · 9s
+
−1

10s
+

i

11s
+ · · ·

6.3 The n-th prime number

If we define the prime zeta function as:

P (s) =
∞∑
n=1

pn
ns

,

then the n-th prime is given by:

pn = −2
∞∑
i=2

(−1)i(2πn)2i

i∑
j=2

(−1)j(2π)−2jP (2j)

(2i+ 1− 2j)!

That’s despite our not knowing what the closed-form of P (s) at the even integers is. We
need to skip P (0) and P (2) to avoid singularities, since P (s) only converges for <(s) > 2.
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6.4 Modulus of µ(n)

Based on the closed-form of the Dirichlet series whose associated function is |µ(n)|, which
appears in section (6.7), we can deduce that:

|µ(n)| = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!

ζ(2j)

ζ(4j)

6.5 Liouville function

If λ(n) = (−1)Ω(n) is the Liouville function, where Ω(n) is the number of prime factors
(with multiplicity) of n, then:

λ(n) = −2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!

ζ(4j)

ζ(2j)
, since

∞∑
n=1

λ(n)

ns
=
ζ(2s)

ζ(s)

6.6 Mertens function

We can extend the Mertens function to the complex domain, based on equation (4):

M(x) =
x∑

n=1

µ(n) = −2
∞∑
i=0

(−1)i(2π)2iH−2i(x)
i∑

j=0

(−1)j(2π)−2jζ(2j)−1

(2i+ 1− 2j)!
,

where H−2i(x) is the sum of the 2i-th powers of the first x positive integers. An asymptotic
power series for M(x) is possible using findings from section (7.1).

6.7 Square-free divisors of n

Looking back at the topic of integer divisors of n, now that square-free numbers and the
Euler product have been introduced, we can obtain the sum of powers of square-free divisors
of n using the following result from the literature:

∞∑
n=1

|µ(n)|
ns

=
ζ(s)

ζ(2s)

Therefore, through the same rationale as before, we conclude that for any complex m:

∞∑
k=1

1k|n·|µ(k)|·km =
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j

(2j)!(2i+ 1− 2j)!

ζ(2j −m)

ζ(4j − 2m)
, with

{
2j −m 6= 1

ζ(4j − 2m) 6= 0

In particular, the number of distinct prime factors of n is:

log2

(
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

B2j

(2j)!(2i+ 1− 2j)!

ζ(2j)

ζ(4j)

)
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6.8 Square root of an integer

Using theorem 2, we can derive power series expansions for functions that are not analytic
at zero (and therefore don’t admit a Taylor series at 0), which hold only at the positive integers.

For example, if n is a positive integer then:

√
n = −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!
ζ

(
−1

2
+ 2j

)
, since ζ

(
−1

2
+ s

)
=
∞∑
n=1

√
n

ns

In fact, the inversion formula posits that for any positive integer n and complex s:

1

ns
= −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!
ζ (s+ 2j) , with s+ 2j 6= 1.

Hence, it allows us to create a power series for the sum of the square root of the first n
positive integers:

n∑
k=1

√
k = −2

∞∑
i=0

(−1)i(2π)2iH−2i(n)
i∑

j=0

(−1)j(2π)−2j

(2i+ 1− 2j)!
ζ

(
−1

2
+ 2j

)

The downside here is that we don’t know the closed-forms for the zeta function at the
half-integers.

6.9 Logarithm of an integer

Like before, if n and k are positive integers, then:

(log n)k = −2(−1)k
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ(k)(2j)

(2i+ 1− 2j)!
, since ζ(k)(s) = (−1)k

∞∑
n=1

(log n)k

ns

6.10 Von Mangoldt function

The Von Mangoldt function is defined as:

Λ(n) =

{
log p, if n = pk for some prime p and integer k ≥ 1

0, otherwise

We can obtain Λ(n) by:

Λ(n) = 2
∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2jζ ′(2j)

(2i+ 1− 2j)!ζ(2j)
, since

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
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From Λ(n) we can derive another arithmetic function:

Λ(n)

log n
=

{
1/k, if n = pk for some prime p and integer k ≥ 1

0, otherwise

Hence, we are able to write log ζ(s) as a Dirichlet series as follows:

1

ζ(s)
=
∞∏
k=1

(
1− 1

psk

)
⇒ log ζ(s) = −

∞∑
k=1

log

(
1− 1

psk

)
=
∞∑
k=1

∞∑
i=1

1

i (pik)
s =

∞∑
n=2

Λ(n)

log n

1

ns

Therefore, by the inversion formula:

Λ(n)

log n
= −2

∞∑
i=0

(−1)i(2πn)2i

i∑
j=0

(−1)j(2π)−2j log ζ(2j)

(2i+ 1− 2j)!
,

and this function makes the creation of a formula for J(x) trivial. Plus, when it’s combined
with µ(n), we are able to create an exact formula for the prime counting function, π(x). Let’s
rewrite it in its simpler form:

Λ(n)

log n
= −sin 2πn

πn

∞∑
j=0

n2j log ζ(2j)

Plotted in the (0, 13) interval, we can see that the graph of this function doesn’t cross the
line y = 1 only at the primes (note we made the intercept 0 to avoid complex):

The maxima of this function are not at the primes, which is why y = 1 has non-integer
roots. It’s fair to assume that these roots always occur next to the primes, therefore log ζ(2)
(derived from y = 1) should be roughly P (2), where P is the usual prime-zeta function.
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7 The prime counting function

We don’t even have to know the zeros of the analytic continuation of the zeta function to
be able to derive a formula for π(x).

A number is prime if it’s square-free and a prime-power. So, now that we have power series
for both µ(n) and Λ(n)/ log n, we can easily create a function that is 1 whenever n is prime,
and 0 otherwise, which is given simply by:

1n∈P = −µ(n)
Λ(n)

log n
=

(
−sin 2πn

πn

)2 ∞∑
j=0

n2j

ζ(2j)

∞∑
j=0

n2j log ζ(2j)

Perhaps this is not the only or even the best way to derive 1n∈P, but it’s the most obvious.
If we expand the above function using Taylor series, we arrive at the below equation (note
that since the result is a real number, we can skip summing over log ζ(0)):

1n∈P = − 1

2π2

(
∞∑
h=1

n2h−2

h∑
j=1

log ζ(2j)

ζ(2h− 2j)
−
∞∑
h=1

n2h−2

h∑
i=1

h−i∑
j=0

log ζ(2i)

ζ(2j)

(−1)h−i−j(4π)2h−2i−2j

(2h− 2i− 2j)!

)

Fortunately, the above power series can be simplified into a better looking equation (which
is also more efficient for numeric computation):

1n∈P = −8
∞∑
h=1

n2h

h∑
i=1

log ζ(2i)
h∑
v=i

(−1)h−v(4π)2h−2v

ζ(2v − 2i)(2h+ 2− 2v)!

And finally, the prime counting function, π(x), is the sum of 1n∈P over n:

π(x) = −8
∞∑
h=1

H−2h(x)
h∑
i=1

log ζ(2i)
h∑
v=i

(−1)h−v(4π)2h−2v

ζ(2v − 2i)(2h+ 2− 2v)!
,

where H−2h(x) is the sum of the 2h-th powers of the first x positive integers, for which the
Faulhaber formula provides an analytic continuation.

Even though it’s difficult to compute this power series for large x, the zeros of the zeta
function are even harder to compute.

It’s interesting to note that in a way this function resembles the Riemann prime counting
function under the Riemann Hypothesis (both are the difference of two sums):

π(x) = R(x)−
∑
ρ

R(xρ)
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7.1 Asymptotic prime counting functions

If we look at the formula we just built, it might be possible to simplify it when x is large
using the dominant term of the Faulhaber formula, which is x2h+1/(2h+ 1). However, due to
the infinite number of terms of the power series, it’s understandable why it should account for
only 1/2 of the total, which is captured in the following conjecture:

π(x) ∼ −16
∞∑
h=1

x2h+1

2h+ 1

h∑
i=1

log ζ(2i)
h∑
v=i

(−1)h−v(4π)2h−2v

ζ(2v − 2i)(2h+ 2− 2v)!
, if x is sufficiently large.

It seems many of the a(n), if not all, have this property. For example, for large x, the
prime-power counting function, J(x), seems to obey the approximation:

x∑
n=2

Λ(n)

log n
∼ −4x

∞∑
i=1

(−1)i(2πx)2i

2i+ 1

i∑
j=1

(−1)j(2π)−2j log ζ(2j)

(2i+ 1− 2j)!
,

for which we’ve produced the below comparison chart (bigger jumps at the primes):

x Actual Approx. % diff % grow x Actual Approx. % diff % grow
1 0.0000 0.0000 0.0% 0.0% 26 11.0833 11.0578 -0.2% 2.3%
2 1.0000 0.5576 -44.2% 0.0% 27 11.4167 11.2402 -1.5% 1.6%
3 2.0000 1.4943 -25.3% 168.0% 28 11.4167 11.4301 0.1% 1.7%
4 2.5000 2.2332 -10.7% 49.4% 29 12.4167 11.9066 -4.1% 4.2%
5 3.5000 2.9611 -15.4% 32.6% 30 12.4167 12.3930 -0.2% 4.1%
6 3.5000 3.4732 -0.8% 17.3% 31 13.4167 12.8806 -4.0% 3.9%
7 4.5000 3.9798 -11.6% 14.6% 32 13.6167 13.4379 -1.3% 4.3%
8 4.8333 4.6188 -4.4% 16.1% 33 13.6167 13.5638 -0.4% 0.9%
9 5.3333 5.0425 -5.5% 9.2% 34 13.6167 13.5886 -0.2% 0.2%

10 5.3333 5.3226 -0.2% 5.6% 35 13.6167 13.6098 -0.1% 0.2%
11 6.3333 5.8104 -8.3% 9.2% 36 13.6167 13.6438 0.2% 0.2%
12 6.3333 6.3027 -0.5% 8.5% 37 14.6167 14.1053 -3.5% 3.4%
13 7.3333 6.7925 -7.4% 7.8% 38 14.6167 14.5680 -0.3% 3.3%
14 7.3333 7.2682 -0.9% 7.0% 39 14.6167 14.6074 -0.1% 0.3%
15 7.3333 7.3197 -0.2% 0.7% 40 14.6167 14.6483 0.2% 0.3%
16 7.5833 7.4776 -1.4% 2.2% 41 15.6167 15.1171 -3.2% 3.2%
17 8.5833 8.0624 -6.1% 7.8% 42 15.6167 15.6001 -0.1% 3.2%
18 8.5833 8.5537 -0.3% 6.1% 43 16.6167 16.0830 -3.2% 3.1%
19 9.5833 9.0409 -5.7% 5.7% 44 16.6167 16.5521 -0.4% 2.9%
20 9.5833 9.5129 -0.7% 5.2% 45 16.6167 16.5935 -0.1% 0.3%
21 9.5833 9.5568 -0.3% 0.5% 46 16.6167 16.6340 0.1% 0.2%
22 9.5833 9.5997 0.2% 0.4% 47 17.6167 17.0997 -2.9% 2.8%
23 10.5833 10.0679 -4.9% 4.9% 48 17.6167 17.5713 -0.3% 2.8%
24 10.5833 10.5427 -0.4% 4.7% 49 18.1167 17.8287 -1.6% 1.5%
25 11.0833 10.8046 -2.5% 2.5% 50 18.1167 18.0719 -0.2% 1.4%
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The approximation gets better with the addition of a “correction factor”, common in many
such formulae (e.g., the generalized harmonic progressions):

x∑
n=2

Λ(n)

log n
∼ Λ(x)

2 log x
− 4x

∞∑
i=1

(−1)i(2πx)2i

2i+ 1

i∑
j=1

(−1)j(2π)−2j log ζ(2j)

(2i+ 1− 2j)!
,

though the improvement is mostly for smaller values of x:

x Actual Approx. % diff % grow x Actual Approx. % diff % grow
0 0.0000 0.0000 0.0% 0.0% 26 11.0833 11.0578 0.0% 0.0%
2 1.0000 1.0575 5.8% 0.0% 27 11.4167 11.4068 -0.1% 0.0%
3 2.0000 1.9943 -0.3% 88.6% 28 11.4167 11.4301 0.1% 0.2%
4 2.5000 2.4832 -0.7% 24.5% 29 12.4167 12.4066 -0.1% 8.5%
5 3.5000 3.4611 -1.1% 39.4% 30 12.4167 12.3930 -0.2% -0.1%
6 3.5000 3.4732 -0.8% 0.3% 31 13.4167 13.3806 -0.3% 8.0%
7 4.5000 4.4798 -0.4% 29.0% 32 13.6167 13.5379 -0.6% 1.2%
8 4.8333 4.7854 -1.0% 6.8% 33 13.6167 13.5638 -0.4% 0.2%
9 5.3333 5.2925 -0.8% 10.6% 34 13.6167 13.5886 -0.2% 0.2%

10 5.3333 5.3226 -0.2% 0.6% 35 13.6167 13.6098 -0.1% 0.2%
11 6.3333 6.3104 -0.4% 18.6% 36 13.6167 13.6438 0.2% 0.2%
12 6.3333 6.3027 -0.5% -0.1% 37 14.6167 14.6053 -0.1% 7.0%
13 7.3333 7.2925 -0.6% 15.7% 38 14.6167 14.5680 -0.3% -0.3%
14 7.3333 7.2682 -0.9% -0.3% 39 14.6167 14.6074 -0.1% 0.3%
15 7.3333 7.3197 -0.2% 0.7% 40 14.6167 14.6483 0.2% 0.3%
16 7.5833 7.6026 0.3% 3.9% 41 15.6167 15.6171 0.0% 6.6%
17 8.5833 8.5624 -0.2% 12.6% 42 15.6167 15.6001 -0.1% -0.1%
18 8.5833 8.5537 -0.3% -0.1% 43 16.6167 16.5830 -0.2% 6.3%
19 9.5833 9.5409 -0.4% 11.5% 44 16.6167 16.5521 -0.4% -0.2%
20 9.5833 9.5129 -0.7% -0.3% 45 16.6167 16.5935 -0.1% 0.3%
21 9.5833 9.5568 -0.3% 0.5% 46 16.6167 16.6340 0.1% 0.2%
22 9.5833 9.5997 0.2% 0.4% 47 17.6167 17.5997 -0.1% 5.8%
23 10.5833 10.5679 -0.1% 10.1% 48 17.6167 17.5713 -0.3% -0.2%
24 10.5833 10.5427 -0.4% -0.2% 49 18.1167 18.0787 -0.2% 2.9%
25 11.0833 11.0546 -0.3% 4.9% 50 18.1167 18.0719 -0.2% 0.0%
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Finally, let’s have a look at the finite sum of d(n), and see if it’s a just a coincidence. The
asymptotic series is:

x∑
n=1

d(n) ∼ d(x)

2
− 4x

∞∑
i=1

(−1)i(2πx)2i

2i+ 1

i∑
j=1

(−1)j(2π)−2jζ(2j)2

(2i+ 1− 2j)!
,

and a comparison chart is produced below. The conclusion is that this is probably not a
coincidence, though the proof might not be simple.

x Actual Appr. % diff x Actual Appr. % diff x Actual Appr. % diff
1 1 1.16 -16.5% 26 91 91.26 0.3% 51 211 211.22 0.1%
2 3 3.21 6.9% 27 95 95.31 0.3% 52 217 217.19 0.1%
3 5 5.23 4.6% 28 101 101.21 0.2% 53 219 219.35 0.2%
4 8 8.22 2.7% 29 103 103.31 0.3% 54 227 227.36 0.2%
5 10 10.25 2.5% 30 111 111.24 0.2% 55 231 231.26 0.1%
6 14 14.23 1.6% 31 113 113.17 0.2% 56 239 239.19 0.1%
7 16 16.23 1.4% 32 119 119.28 0.2% 57 243 243.06 0.0%
8 20 20.26 1.3% 33 123 123.19 0.2% 58 247 247.20 0.1%
9 23 23.23 1.0% 34 127 127.28 0.2% 59 249 249.54 0.2%

10 27 27.21 0.8% 35 131 131.42 0.3% 60 261 261.26 0.1%
11 29 29.30 1.0% 36 140 140.16 0.1% 61 263 262.99 0.0%
12 35 35.23 0.7% 37 142 142.04 0.0% 62 267 267.36 0.1%
13 37 37.18 0.5% 38 146 146.31 0.2% 63 273 273.39 0.1%
14 41 41.30 0.7% 39 150 150.41 0.3% 64 280 280.21 0.1%
15 45 45.27 0.6% 40 158 158.22 0.1% 65 284 284.23 0.1%
16 50 50.18 0.4% 41 160 160.23 0.1% 66 292 292.13 0.0%
17 52 52.26 0.5% 42 168 168.22 0.1% 67 294 294.16 0.1%
18 58 58.25 0.4% 43 170 170.19 0.1% 68 300 300.33 0.1%
19 60 60.26 0.4% 44 176 176.35 0.2% 69 304 304.36 0.1%
20 66 66.30 0.4% 45 182 182.17 0.1% 70 312 312.26 0.1%
21 70 70.16 0.2% 46 186 186.14 0.1% 71 314 314.38 0.1%
22 74 74.19 0.3% 47 188 188.46 0.2% 72 326 326.19 0.1%
23 76 76.39 0.5% 48 198 198.31 0.2% 73 328 327.94 0.0%
24 84 84.28 0.3% 49 201 201.10 0.1% 74 332 332.33 0.1%
25 87 87.11 0.1% 50 207 207.23 0.1% 75 338 338.34 0.1%
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