**Ilan Vardi**

**IHES, Bures-sur-Yvette**

**December 14, 1998**

**Summary by Cyril Banderier and Ilan
Vardi**

``Le plus court chemin entre deux vérités dans le domaine réel passe par le domaine complexe.'' ``The shortest path between two truths in the real domain passes through the complex domain.''

J. Hadamard.

The above quote captures the depth analysis can bring when one is confronted by number theoretic questions. The oldest and most fundamental of such questions is the study of prime numbers. The first question to be answered is: Are there an infinite number of primes? This can be answered by a number of simple proofs:

- Euclid: Assume there are a finite number of primes , then is not divisible
by any of the
*p*_{i}'s, so any of its prime divisors yields a new prime number (Euclid only considered the case*n*=3). - Pólya: The Fermat numbers
*F*_{n}=2^{2}^{n}+1 are pairwise relatively prime, so the set of their prime divisors must be infinite. - Erdos: Fix
*x*and consider the primes .Since every integer is the product of a perfect square and a squarefree number, one can write every integer as ,where and . There 2^{n}choices for the*e*_{i}and choices for*Q*, so it follows that - Euler: One has the formal identity
(1) which in fact holds for . As , the left hand side of (1) tends to since the harmonic series diverges, so there must be an infinite number of factors on the right.

This proof can be modified by noting that , where . If there were only a finite number of primes, then (1) would imply that is rational, proved false by Legendre in 1797, see also [6]. Several other proofs are given in [7].

A stronger version of this is due to Mertens: The finite version of (1) gives

(2) and so there are an infinite number of primes.

Which of these is the ``best'' proof? One argument would say
that it is the one which allows the best generalisation. For
example, Euclid's proof easily shows that there are an infinite
number of primes of the form 4*k*+3 (consider ), but seems to fall flat
when trying to prove that the same holds for primes of the form 4*k*+1
(one has to consider ). In general, one wants to demonstrate Dirichlet's
assertion (that he proved in 1837, in [3])
``there are an infinite number of primes of the form *ak*+*b*,
where *a* and *b* are relatively prime.'' It turns out
that the proof of this deep fact uses a generalisation of Euler's
method, i.e., equation (2):

Let be a multiplicative
character modulo *q*, that it is to say a complex valued
function satisfying and (this implies that if , then it is a root of unity and so has
norm one). An example is the Legendre (or Jacobi if *q* is
not a prime) symbol

In fact, there are exactly
multiplicative characters modulo *q*, all given by where is a primitive root and
is such that .The importance of
characters is seen by the following *orthogonality relation*:

(3) |

which allows one to pick out an arithmetic progression. For
his proof, Dirichlet introduced what are nowadays called
Dirichlet *L*-functions, defined by

Taking logarithm leads to , thus one has

and a simple application of relation (3) gives

Then, by splitting the sum in real and complex characters, one gets

(4) |

is called the principal character and
equals 1 whenever and 0 otherwise. The first sum (over ) is , as .This infinite term should
imply that there are an infinite number of primes in the
arithmetic progression. The only problem is that one of the other
terms could cancel this one by being zero at *s* = 1
(partial summation shows that is
finite). One therefore has to show that .

This is definitely true for complex characters since otherwise, would imply that and since these terms are different, this would imply that , which is false as taking logs gives

and so the value at *s*=1 must be positive, hence the
last sum in relation (4)
is bounded.

The real problem is then to bound the middle sum in relation (4), that is to say to show that . Dirichlet proved this result by a very ingenious method: He evaluated this number in closed form! This is now known as Dirichlet's class number formula:

where *h* is the class number of and its fundamental unit and *w*
the number of roots of unity in this field (see the canonical
reference [2]).
Since each of these quantities counts something, so they are
positive, the result now follows:

Simpler proofs using only complex analysis are also possible. The idea is to use Landau's theorem that a Dirichlet series with positive terms has a pole at its abscissa of convergence and apply it to which has just been shown to have positive coefficients.

The distribution of primes is quite irregular, so it is easier
to study their statistical behaviour. In this direction, let be the number of primes . Gauss conjectured that This assertion simply
says: ``the probability that *n* is prime is about .'' This result was finally proved by
Hadamard and de la Vallée Poussin in 1896. Both of them used
fundamental ideas of Riemann who was the first to introduce
complex analysis in the study of the distribution of prime
numbers.

Using Perron's formula, namely

and using residues, Riemann essentially found what is perhaps the most important formula in analytic number theory (the von Mangoldt explicit formula):

(5) |

where sum on the right is over the zeroes of the Riemann function. These zeroes can be split up
into two types: The first are the *trivial* zeroes at , and the zeroes with (the right hand side
of (5)
reflects this dichotomy). This formula has many interesting
properties and reflects the following principles of analytic
number theory:

- 1.
- Primes should always be counted with weight ;
- 2.
- Primes and prime powers should be counted together;
- 3.
- There are much less prime powers than primes;
- 4.
- The zeroes of the function are the ``fundamental frequencies'' of the primes, and in this sense are dual to the primes.

Following Chebyshev, one defines and ,where when *n*=*p*^{m},
and zero otherwise. A fairly straightforward partial summation
shows that the prime number theorem is equivalent to (note that trivially, ), and that more generally,

One can then see from the explicit formula (5)
that the prime number theorem would follow if one can bound , since each error term
would then be of order < *x*. The prime number theorem
would then be equivalent to showing that for . In fact, this is an equivalence (as was
later shown by Wiener) and Hadamard and de la Vallée Poussin
were able to prove that
using some ingenious trigonometric identities. We will give a
proof due to Mertens, in 1898. Set , then when (we restrict to ). But, by the Euler
identity, one has and so

Mertens' trick consists in noticing that , thus , hence .

But, as , one has and for a some constant *A*. So one
should have , this contradicts the fact that is bounded. In conclusion, the function has no zero with , the PNT is proved. An elementary (i.e.
without complex analysis) proof of the PNT was subsequently found
by Erdos and Selberg in 1949 (see [4]
and [9]).

All numerical evidence shows that and it was long believed that this would be true for
all *x*. Similarly, Chebyshev noted that the number of
primes of the form 4*k*+3 seemed to be more abundant than
the primes of the form 4*k*+1, more precisely, let then .

In fact, Littlewood proved in 1914 that changes sign infinitely
often and the same is true for . In 1957 Leech showed that is first true for *x*= 26861, and
that the similar inequality is first true for *x*=608981813029
was shown by Bays and Hudson in 1978. No example of is known. Skewes first gave an upper bound which was
later reduced by Sherman-Lehman and then te Riele [10]
who gave an upper bound of 10^{370}.

This behaviour can easily be explained using explicit formulas. In the case of , the point is the following: The explicit formula (5) expresses as a sum of powers . Assuming the Riemann Hypothesis, one can write this as

One can now see the reason for the bias: The function does not count primes but prime powers so what one really wants is the behaviour of which is given by

so that

The function

is a very slowly oscillating trigonometric series which should
be zero on average, so the extra term biases to be smaller than *x* on average. A
simple description is that counts the number of prime powers , so the number of primes should be
slightly less since the number of prime squares is of the same
order as the error term.

There is a similar explanation for the bias in arithmetic progressions. There is an explicit formula

where the *Generalised Riemann Hypothesis* has been
assumed (there is no *x* term since is no longer a pole if ). As before one has

but one really wants to look at

where *c*_{q, a} is the number of
solutions of . In particular, the same argument shows that there
will always be fewer primes in the progression *qn* + *a*
when *a* is a residue than when *a* is a nonresidue.
Simply put, the ``balanced'' count is the set of prime powers so there are fewer primes when *a* is quadratic
residue since the number of prime squares congruent to *a*
is of the same order as the error term in the analytic formulas.

In 1994, Rubinstein and Sarnak (see [8])
were able to make Chebyshev's bias precise. Assuming GRH (if this
is false, then there is no bias) and also the Grand Simplicity
Hypothesis (GSH: All the ordinates of zeroes of *L*-function
are linearly independent over ), then

**1**- Daboussi (Hédi). - Sur le théorème des nombres
premiers.
*Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique*, vol. 298, n10348, 1984, pp. 161-164. **2**- Davenport (Harold). -
*Multiplicative Number Theory*. - Springer-Verlag, New York, 1980, second edition, xiii+177p. Revised by Hugh L. Montgomery. **3**- Dirichlet (L.). - Beweis des Satzes, das jede unbegrenzte
arithmetische Progression...
*Abh. König. Preuss. Akad.*, vol. 34, 1837, pp. 45-81. **4**- Erdos (P.). - On a New Method in Elementary Number Theory
which leads to an Elementary Proof of the Prime Number
Theorem.
*Proceedings of the National Academy of Sciences. U.S.A.*, vol. 35, 1949, pp. 374-384. **5**- Friedlander (John) and Iwaniec (Henryk). - Using a
Parity-Sensitive Sieve to Count Prime Values of a
Polynomial.
*Proceedings of the National Academy of Sciences. U.S.A.*, vol. 94, n10354, 1997, pp. 1054-1058. **6**- Niven (Ivan). - A Simple Proof that is Irrational.
*Bulletin of the American Mathematical Society.*, vol. 53, 1947, p. 509. **7**- Ribenboim (Paulo). -
*The New Book of Prime Number Records*. - Springer-Verlag, New York, 1996, xxiv+541p. **8**- Rubinstein (Michael) and Sarnak (Peter). - Chebyshev's
Bias.
*Experimental Mathematics*, vol. 3, n10363, 1994 , pp. 173-197. **9**- Selberg (Atle). - An Elementary Proof of the Prime-Number
Theorem.
*Annals of Mathematics (2)*, vol. 50, 1949, pp. 305-313. **10**- te Riele (Herman J. J.). - On the Sign of the Difference .
*Mathematics of Computation*, vol. 48, n1037177, 1987, pp. 323-328. **11**- Tenenbaum (Gérald) and Mendès France (Michel). -
*Les nombres premiers*. - Presses Universitaires de France, Paris, 1997, 128p.