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Abstract:

Some questions concerning the ideal Bose—Einstein gas are reviewed and examined further. The bulk behavior including the
condensation phenomenon is characterized by the thermodynamical properties, occupations of the states and their fluctuations,
and the properties of the density matrices, including the diagonal and off-diagonal long range orders. Particular attention is focused
on the difference between the canonical and grand canonical ensembles and a case is made that the latter does not represent any
physical system in the condensed region. The properties in a finite region are also examined to study the approach to the bulk
limit and secondly to derive the surface properties such as the surface tension (due to the boundary). This is mainly done for the
special case of a rectangular parallelopiped (box) for various boundary conditions. The question of the asymptotic behavior of the
fluctuations in the occupation of the ground state in the condensed region in the canonical ensemble is examined for these systems.
Finally, the local properties near the wall of a half infinite system are calculated and discussed. The surface properties also follow
this way and agree with the strictly thermodynamic result. Although it is not intended to be a complete review, it is largely self-
contained, with the first section containing the basic formulas and a discussion of some general concepts which will be needed.
Especially discussed in detail are the extra considerations that are needed in thermodynamics and statistical mechanics to include
the surface properties, and the quantum hierarchy of the density matrices and local conservation laws. In the concluding remarks
several problems are mentioned which need further analysis and clarification.

0. Introduction
0.1. Historical remarks

We begin with a brief sketch of the history of the ideal Bose—Einstein gas, in which we explain
what it is and why it has been (and still is) of interest.

The origins of the ideal Bose gas go back to 1924, when it was shown by Bose [1] that the
Planck blackbody radiation law can be derived from the statistical mechanics of light quanta
(photons), if the number of states in an energy interval are counted in a way that acknowledges
the identity of the particles differently from the prescription of Boltzmann. Einstein [2—4] saw
that this was “based upon the hypothesis of a far-reaching formal analogy between [light] radia-
tion and [particulate] gas” * and believed that analogy to be ‘‘a complete one”, so that the count-
ing method of Bose should apply to a system of non-interacting particles as well as to photons.
The method of counting has since been known as the Bose—Einstein (BE) statistics and the system
of non-interacting particles obeying them is known as the ideal Bose—Einstein gas, or ideal Bose
gas, which we abbreviate IBG.

Einstein calculated the thermodynamic properties of the IBG, and found that they approach
those of the classical ideal gas in the high temperature, low density limit. He also found that the
specific heat tends to zero in the low temperature limit, satisfying the principle of Nernst (unlike
the classical ideal gas). Most remarkably, he found that the equations do not allow for densities
greater than a critical (number) density

2Trh2)3/2

kT 0.1)

pe=5) (
which depends only upon the temperature, 7, and the mass of a single particle, besides the con-
stants of Planck, #, and Boltzmann, k. He asserted that when the density is made greater than Pe»

* This quotation is from the second paper of Einstein [3], which has been discussed (and partly translated into English) by
Klein [5]. Many aspects of the history of the IBG, especially as related to the contributions of Paul Ehrenfest, are given in
another article of Klein’s [10].
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Fig. 0.1. The pressure plotted as a function of the volume per particle scaled by p.(T) (to be defined in section 2) and pc(T).

all additional particles (per unit volume) go into the ground state where they do not contribute
to the thermodynamical properties of the system — the so-called Bose condensation. Thus the iso-
therm of the equation of state (the pressure, p, versus the reciprocal of the density, 1/p, at con-
stant 7) is flat for p > p_, as the plot in fig. 0.1 shows. In this region the system acts just like a
saturated gas and condensed phase in equilibrium, where that condensed phase has no volume.
Einstein believed that these effects might be important at very low temperatures for those sub-
stances that remain gaseous — most notably helium.

It should be added that in 1926 Fermi [6,7] suggested that the quantum mechanical theory of
an ideal gas could be derived using a different method of counting — later known as the Fermi—
Dirac (FD) statistics — by generalizing the exclusion principle that Pauli devised for the states of
atomic electrons to a system of particles. The so-called ideal Fermi gas that results also behaves
like the classical gas in the high temperature, low density limit, and also satisfies Nernst’s principle,
as does the IBG, but has no phase transition.

With the introduction of wave mechanics, it was shown in 1926 by Heisenberg [8] and Dirac
[9] that the two kinds of statistics correspond to the completely symmetric (for BE) and com-
pletely anti-symmetric (for FD) wavefunctions, and in fact no other symmetry (with respect to
the interchange of the particles) is possible for identical particles because of the probabilistic inter-
pretation of the wavefunctions.

The wavefunctions for the ideal gases show quite clearly that there are spatial correlations in
the system. Indeed, the BE statistics themselves imply that the particles are not statistically inde-
pendent, as was recognized by Ehrenfest and Einstein [10]. Thus the gases contain a detailed
structure, due to the statistics only, which is totally absent in the classical ideal gas.

Of course it was found that there are particles representing each of the two statistics, and that
the appropriate choice is determined by the particle’s spin. Particles with half integral spin, such as
electrons, are fermions (which obey FD statistics), while particles with integral spin, such as
photons and most atoms and molecules, are bosons (BE statistics). We shall restrict ourselves to
the BE gas, and not pursue the FD line of development further.

Einstein’s argument for the condensation of the IBG was criticised by Uhlenbeck [11] on the
ground that the exact equations, before any continuum approximation is made, allow for all pos-
sible densities, and furthermore imply that there can be no singularity in the equation of state.



R.M. Ziff et al., The ideal Bose—Einstein gas, revisited 173

This was not cleared up until ten years later (see Kahn and Uhlenbeck [12]) when it was realized
that the discussion of the condensation requires that the bulk limit be taken in which the number
and volume are made infinite, with the density N/V fixed. (We shall explain this further in
section 2. This is usually called the thermodynamic limit, but as we shall explain that name is
misleading.)

The relationship of the Bose—Einstein condensation to the general problem of condensation
was a new source of interest in the IBG. During the 1930’s the classical and quantum statistical
mechanical theories of interacting gases were developed, in a parallel form, by Mayer [13], Kahn
and Uhlenbeck [12], and others *, in terms of the so-called cluster expansions of the various
thermodynamic functions. However, for any non-trivial potential only the first few coefficients
can be calculated, so in practice the formulas only represent the corrections to the ideal gas law
for a dilute gas, and cannot be used to explain the condensation phenomenon. There is however
a formal similarity between the fugacity expansions of the IBG and the cluster expansions, and
since the IBG is a system in which the condensation can more or less be understood, the Bose
condensation was used as a model for the discussion of a general phase transition by the above-
mentioned authors.

Interest in the IBG was greatly stimulated when London [14—17] used it as a model to explain
the superfluid transition in liquid helium (Isotope 4 — thus bosons). After helium was liquefied in
1908 by Kamerlingh Onnes (at 4.2°K), it slowly became clear that at about 2.17°K (= T,) another
phase transition occurs — between two liquids. First, singularities in the thermodynamic proper-
ties were noticed by Onnes, Keesom and others in the years 1911—-1932, and then in 1936—-1938
the extraordinary dynamical properties were discovered by Keesom, Kapitza, Allen and their co-
workers **. London believed that this was essentially a manifestation of the Bose—Einstein con-
densation, even though for a liquid such as helium the intermolecular forces are quite strong and
in no sense can it be considered to be an ideal gas. First of all, he noted that the predicted transi-
tion temperature 7 for an ideal gas of the same density and molecular weight as helium (given by
eq. (0.1)) was 3.1°K — of the same order at 7,. Also, the specific heats of the two systems were
somewhat similar. But mainly, he suggested that the concept of condensation into a single particle
state could explain the apparently dissipationless flow of liquid helium which occurs under cer-
tain circumstances. Tisza [20, 21] followed this hypothesis to propose the ‘““‘two-fluid” pheno-
menological theory of superfluid helium, later made more complete by Landau. In this model,
the superfluid carries no entropy, just like the condensate of the IBG, and in fact it has been
found that the functional dependence of the superfluid fraction in helium upon 7/T), is very close
to that of the condensate fraction of the IBG upon 7/T..

0.2. Further developments

We have seen that the motivations for the early work on the IBG were, first, to furnish a quan-
tum mechanical theory of an ideal gas and to study its consequences; second, to study the Bose
condensation as a model for a general phase transition; and third, to understand the superfluidity
in liquid helium. Recent work has focused on the understanding of the theory of quantum statis-
tical mechanics, in which the IBG plays a fundamental role, but most of the interest has stemmed

* For a more complete list of references, see the review article of de Boer [18].
** For a much more detailed description of liquid helium, with a history of the experimental discoveries, see London [17], also
Putterman [19].
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from the London hypothesis about the relation with helium. The desire has been to understand
both the thermodynamic and dynamical properties, and it has been hoped that the IBG serves as
a sort of paradigm for the interacting boson gas.

The relation of the Bose condensation to a general phase transition has not been pursued, since
it is now believed that the mechanism of these two transitions is different, at least in terms of the
analytic properties of the fugacity expansions at the point of condensation *.

To prove the relationship of Bose condensation to the superfluidity of helium, the meaning of
Bose condensation for an interacting system must first be clarified. This was done by Penrose and
Onsager [23, 241, who showed that in a general system the phenomenon of Bose condensation is
evidenced by the occurrance of off diagonal long range order (ODLRO) in the first density matrix,
p,(r'r"), by which it is meant that p,(r'r") does not vanish when r' is infinitely far from r", but
goes to a constant value which is called the ODLRO. Then Yang [25] developed the idea further
to include the ODLRO of all of the reduced density matrices. He proposed that the superfluid
density is equal to the sth root of the value of the ODLRO of the s-reduced density matrix
py(r'S, r"*), in the limit s — . The truth of this conjecture has not yet been determined.

We shall not attempt to give a thorough review of the more recent literature, but shall mention
a few papers with some brief remarks in the text when relevant.

0.3. Motivation and summary of this article

The goal of this study is to give a survey of the properties of the IBG. We shall not make any
comparisons with the properties of helium, which are known to be quite different. We do believe,
however, that the mechanism of the Bose condensation is the root of the superfluidity in liquid
helium, but that the resolution of this question requires more complete solution of the interacting
gas than has been done so far. The complete study of the IBG represents a first step in that direc-
tion.

We will be especially interested in the thermodynamical properties, the density matrices and
distribution (correlation) functions, the average occupations of the single particle states and the
fluctuations about those averages. We will also discuss the surface properties and the local hydro-
dynamical properties.

Many of the properties have also been derived by other authors. The desire here is to give a sys-
tematic self-contained derivation, based on a single formalism, that ties the known results (and
many methods) together, and fills in some gaps. In the course of this discourse, some basic ques-
tions come up, such as the question of the significance of different ensembles, which we also
discuss.

In section 2 we consider the properties of the gas in the infinite volume limit, namely the bulk
properties. We present a systematic derivation of all of the properties within the canonical en-
semble. Although it may be redundant to go through all of the steps for both the density matrices
and the thermodynamical properties (since the thermodynamical properties are well known and
furthermore can be derived from the density matrices), we calculate all of the properties in a
parallel manner to make the procedure more lucid.

Our emphasis in the second section is on the density matrices, which represent the complete
description of the system. To make the calculation in the canonical ensemble we follow a proce-

* See Uhlenbeck and Ford [22] p. 58.
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dure given previously by one of us (M.K.) which has not been published until now *. Consequent-
ly all of the details of this method are presented here. We discuss the resulting density matrices
and distribution functions, especially with regard to their behavior in the condensed region and
the insights they give into the nature of the Bose condensation. We also verify that some general
relations are satisfied, such as the general fluctuation-compressibility formula.

In the course of the calculation some generating functions are introduced which are essentially
equivalent to the grand canonical quantities. An examination of these quantities shows that some
of them (notably the fluctuations in the ground state) differ in the canonical and grand canonical
ensembles, and this leads us to question the validity and significance of the grand canonical en-
semble.

In the third section we concentrate on the thermodynamical properties of an IBG in a finite
system. The motivation is to include the asymptotic corrections to prove first of all the condensa-
tion in a “royal” way in which the leading correction terms are given. This exhibits therefore the
approach to the bulk limit. A second reason is to study the leading correction terms themselves,
which are the surface properties of the system (such as the surface density and the surface tension).
For these purposes we first give a complete analysis of the grand partition function of the IBG for
a gas confined in a rectangular parallelopiped box. This was partly inspired by the work of
Greenspoon and Pathria {29--31] and is related to some other analyses, as will be noted in the
text. The derivation given here includes all numbers of dimensions and the three boundary condi-
tions, Dirichlet (¥ - 0), Neumann (3 ¥/an -~ 0), and periodic (¥(r; = 0) = ¥(r, = L;) and
) \I//ar,.)rl,zO =(2 \If/ar,.),iz L; for each fundamental direction i), and we believe is straightforward
and free of arbitrary assumptions. Then we show how these results can be used to discuss the
canonical partition function (of the finite system) as well, both in the condensed and non-
condensed regions.

In the fourth section we study in detail for the finite system the fluctuation of the occupation
of the ground state, mainly for the purpose of seeing whether and how the different behavior of
the canonical and grand canonical ensemble already shows up for the finite system. Our results
for the fluctuations in the canonical ensemble are in agreement with Hauge [32].

In the fifth section we return to the density matrices, but now to discuss their properties near
a surface. To do this we calculate them for a half infinite system near the boundary. This allows
the discussion of the local density and pressure variations near a wall, the relation to the pressure
tensor and the hydrostatic equilibrium. We verify the so-called Bakker formula relating the surface
tension with the variation of the parallel and normal pressure, and we also verify the thermody-
namic relation between the surface tensions and the surface density. Most of the results in this
section we believe are new.

In the concluding remarks several problems will be mentioned which need further analysis and
clarification.

We begin in the first section with a review of the mathematical and physical formalism that is
followed. We develop the formal relation of the thermodynamical ensembles and the density
matrices, and exhibit the simplifications when the expressions are specialized to the IBG. Certain
topics that are not well known are described in more detail, such as the extra considerations that
must be made in thermodynamics and statistical mechanics when the surface properties are in-

* This work has been presented in public lectures and discussed in the literature by Cannon [26], Lewis and Pulé [27], and
Putterman [19].
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cluded, and the quantum hierarchy of the density matrices and the conservation laws. The hier-
archy is presented because it is of general interest to clarify certain points, although only the ex-
pression for the pressure tensor, which is derived from it, is actually needed for this work.

The authors are grateful to Prof. E.G.D. Cohen for many helpful discussions and criticisms
during the course of this work. One of us (R.Z.) would especially like to thank him for his en-
couragement and unfailing support.

1. Preliminaries
1.1. Introduction; basic assumptions

As mentioned in the general introduction, our main concern is the discussion of the equilibrium
properties of an ideal Bose gas of N non-interacting spinless particles in a vessel of volume ¥ and
of a given shape. In this section we collect and partially derive the necessary formulae from quan-
tum statistical mechanics and thermodynamics which are required in the discussions of the follow-
ing sections.

For a general non-ideal Bose gas the state of the system is described in the Schrodinger picture
and in configuration space by the wavefunction ¥(#V, t) which satisfies the Schrodinger equation:

mﬂfar,N—’tLﬁ(pN, MY, 1, (1.1)

where rV¥ = P Py Py, 8/0rY = a/ar,, ... 3/dry, the Hamiltonian operator is given by:
N ﬁz N
A(p", ) = 25 5+ &™) + 2 67y (1.2)
i=1 i=1

with p, = (#/i)a /or;, * and where the assumption of Bose—Einstein statistics requires that the
wavefunction ¥ must be a symmetric function of r,, r,, ... ry. Because H is a symmetric operator
in p; and r, it follows that if ¥ is symmetric at ¢ = 0, it will remain symmetric for # > 0. An ideal
Bose gas is defined by the assumption ®'"* = 0. We consider that ¢°** includes only the potential
of the wall of a vessel, and that that wall is described by an infinite potential jump (a “hard wall”),
so that ¢*! can be replaced by the requirement that ¥ - 0 at the wall (Dirichlet boundary condi-
tion). We shall also sometimes consider the Neumann (a¥/dn - 0) and periodic boundary condi-
tions which are of computational and mathematical interest, but are of less physical significance.
To describe the thermodynamical and other equilibrium properties of a Bose gas, we assume
that they follow from the usual rules of quantum statistical mechanics, which we describe in the
following sections. Especially we postulate that the proper description of the gas in contact with
a very large heat reservoir of temperature T follows from the so-called canonical ensemble, in
which each energy state ¥.() of the gas occurs with the probability e "#£/Z, where 8= 1/kT and

Z=3, e=FE (1.3)

* By 98/ar; we mean the gradient with respect to r;.
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is the so-called partition function. Note that for an ideal Bose gas there is no mechanism which
could insure the approach to the canonical equilibrium state; this becomes therefore a real postu-
late due to the fact that the ideal gas must always be considered as a limiting case.

1.2. Quantum mechanical ensembles and density matrices *

The time evolution of W(r?, ¢) is given by the Schrodinger equation (1.1). To each observable
property of the system corresponds a Hermitian operator O(p", ", t) and the average value of
many measurements of that property (or the expectation value in the state ¥) is given by:

0= [P ¥ (N, 0 0¥, 1), (1.4)

in which ¥(", £) is assumed to be normalized to unity. In analogy with classical statistical me-
chanics we define a statistical ensemble as a collection of identical systems (described by the same
Hamiltonian operator H) which are in different states ¥, (", r) occurring with a given probability
P,. The ensemble average of the expectation values is given by:

KON = 3P0V =23 P, [dr¥ W™, 1) O ¥ (M, 1). (1.5)

It combines the quantum mechanical and the statistical average and is therefore denoted by two
brackets. We associate with «0)) the macroscopic measurement of the property O in the given en-
semble and at a given time. Note that we have denoted for simplicity the different members of
the ensemble by a discrete index «. This is of course not necessary and also continuous distribu-
tions of states may be considered.

Another way of writing (1.5) is obtained by introducing the so-called density matrix. Suppose
one develops ¥ (", t) in a complete orthogonal set of functions u;(*V) according to:

W, (N, 1) = 2Zag, (D) u(rY) . (1.6)
7
Of course:
a,; ()= [dVu; (M) W (M, 1), (1.7)

and because of the normalization of ¥, one has:
2ila(D12=1, (1.8)
]

la, ,-(t)lz is the probability that in the state ¥, the observable described by the functions ui(rN )
is in the state j. Introducing the density matrix:

py (1) = 2 Py a(Dag,(t) (1.9)
then clearly the diagonal element p;;(t) is the probability that for the ensemble the observable de-

* For more detaifs se& Tolman [33]; compare also de Boer [18].
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fined by the functions u; is in the state j. Using the expansion (1.6), one can then write the en-
semble average (O as given by (1.5) in the form:

<<0>>=jZk)0jk P ()=Tr Op, (1.10)
where
O = [dr¥ul (™) 0 u (™), (1.11)

is the matrix element of the observable O in the “‘representation’ as defined by the set of func-
tions u; (V). One easily verifies the following simple properties of the density matrix P (0):

a) p,;(¢) is Hermitian: pj;(£) = p;(¢) . (1.12)
b) 2 p()=Trp=2P,=1. (1.13)
7 o

c¢) The ensemble average O) (1.10) is independent of the representation (= the set u;). The
change of representation will change p to:

p,=S_1pS, (1.14)
where S is a unitary matrix, and since also O' = S71 0 § it follows that:
TrO'p' =Tr Op. (1.19

d) Especially the expression (1.5) for O) can be looked upon as Tr Op in coordinate represen-
tation with:

prN, PN = 2P N, W (Y, 1), (1.16)
and
IN UNY — A [ ] IN 'N "N
O(r > )_OT—_—_;r 8(7' —Fr )9 (117)
1 gp'N
so that:

«O»=TrOp= [ dr™ dr'¥ o™, ") p("™, ;)

= fdr'N I:O(BLIN ,r'N) o(r'V, r"N;t)] ) (1.18)

1 ar y Ny N

We will use this last form most of the time. Note that it also follows directly from (1.5).
The time development of the density matrix is governed by the quantum mechanical Liouville
equation, which in the coordinate representation has the form:

(hl éa_l:__'_ £N) p(r'N, rnN; t) - O , (119)

with
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ey =H(E 2 Ny _g(? 2 VY. (1.20)
N ) ’ i ar’N )

It is a direct consequence of the Schrodinger equation (1.1). In general matrix form this can be
written as:

i 32.= pH — Hp = (p, H], (1.21)

which is clearly analogous to the classical Liouville equation:
apcl/at = —{pcl, Hcl} > (1.22)

where the curly brackets denote the Poisson brackets.

In general the density matrix (just as p, in the classical theory) will depend on time. Again,
just as in the classical theory, the p will be stationary in time if p depends only on constants of
the motion. Especially if p is a function of the Hamilton operator H then the density matrix will
not depend on time and can be written in the form:

p(rrNrnN) - ?PE \I,E(r"N) \I,E(r’N) , (1 23)

where the sum goes over all eigenvalues of H and where W () are the eigenfunctions fulfilling
the time independent Schrodinger equations:

HPN, MYV (M) =EY (). (1.24)

This density matrix represents an ensemble of states ‘I!E(rN ) exp(—iEt/n) with weights Pg.

The canonical density matrix, which as mentioned in the introduction we assume to describe
the thermodynamical equilibrium state of the system in contact with a heat reservoir, is a special
case of (1.23) for which P, = ePF/Z with Z = £ e PF, There are of course other stationary en-
sembles which are used to describe other physical situations, like the so-called grand ensemble
which will be introduced in the next subsection.

1.3. The connection with thermodynamics

The explanation of the laws of thermodynamics is quite similar in quantum statistical mechanics
as in the classical theory *. The internal energy U and the generalized forces X x are associated with
the quantum statistical averages of their respective operators, which in the canonical ensemble are
given by

U, T, ay, a,, ...)=<<H>)=ZIL:_\1Ee“’E, (1.25)

X (N, T,a,,a,, ...) = ((=3H/[da, ) = %) (—0E/[da,) e #F | (1.26)

1
z
The parameters a,, a, ... are the generalized coordinates which characterize the outside force fields.

* See for example Uhlenbeck and Ford {22] Chapter I.
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Since we only consider the wall potential as an outside field, the parameters a, describe the
volume and the shape of the vessel in which the gas is enclosed. In each state of the gas the force
acting “in the direction a;” on the sources of the field is (—9£/da, ) of which X, is the canonical
average. If one changes the parameters a, the work done on the gas is therefore given by:

6w——§xk 8a, . (1.27)
If one then defines the entropy S by:
e FE e FE
SN, T,a,,a,,..) = —k ?7 In®—, (1.28)
then one proves the first and second law, namely:
SU=T8S+686W. (1.29)

Of course the second law only defines S within an additive constant. The value chosen by the
definition (1.28) gives the correct ideal gas limit when T - . Note also that from (1.28) follows:

S=kInZ+U|T, (1.30)
so that the Helmholtz free energy = U — TS is given by:
FN,T,a,,a,,..)=—kTInZ(N, T,a,,a,,...). 1.3

The partition function Z has therefore the familiar thermodynamic interpretation.

Note that the entropy is the ensemble “average” of —k In (e ~##/Z), but since this contains Z
the entropy is not the quantum-statistical average of any operator and therefore is not strictly an
observable of the system. Thus the entropy (and consequently all thermodynamic potentials such
as F) is a property not of a single microscopic state but instead of the ensemble itself. Note also
that the thermodynamic functions only depend upon the energy levels so that the quantum
mechanical “probability” only enters in the specification of those levels.

Although we are postulating that the canonical ensemble should be used to find the equilibrium
properties, our calculations will lead us to the so-called grand canonical ensemble, and therefore
we also give its development. To emphasize that the averages in this ensemble are different func-
tions than in the canonical ensemble, we add the superscript gr to the symbols of the properties.

The grand canonical ensemble is a stationary ensemble composed of energy eigenstates of vary-
ing numbers of particles. To make the dependence on N explicit we now write £y, = E(N, T, a,, a,,...),
Zy=Z(N,T,a,,a,,..). In this ensemble, each energy eigenstate \I'EN(rN) exp(iEy, t/f) is repre-
sented with the probability

—1— exp(—aN — BEy) . (1.32a)
VAl
Where the normalization constant
Z8(a, T,a,, a4y, ..)= 24 exp(—aN —BEy)= 20 e"*N Z,, | (1.32b)
N,Epn N=0

is called the grand partition function. Again 8= 1/kT, and a will be defined soon. The role of the
density matrices is not quite the same in the grand canonical ensemble; there is no complete density
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matrix since the number of particles is not fixed. It is necessary to consider only the so-called re-
duced density matrices, as we shall discuss in section 1.4. First we concentrate on the thermo-
dynamic functions, which only depend upon the energy levels.

Again, the “mechanical” properties U and X, are the quantum statistical averages of their re-
spective operators, which are given by

USt(a, T, ay, ay, ) = CKHYS = -1 30 E exp(—aN — BEy) , (1.33)
ZB N.EN
oH \\*¥ 1 —0Ey
4 o= (Y = L —aN — BEy) . 1.34
XEle Tap a5, ) << aak>> Zer 1\;151\, ( da, )exp( ol -~ BEy) (139

The (average) number of particles in the system is associated with the quantum-statistical average
of N,

N, T, a, ay, ..) = (N == 27 Nexp(—aN — Ey) . (1.35)
ZE N.Ey

Then, one proves that the first and second laws of thermodynamics for a system with a variable
number of particles

SU® = T8SE + W + udN® | (1.36)

(where u is the chemical potential) is satisfied if the entropy is defined as
exp(—aN — BEN)1 exp(—aN — BEy)
n

S (a, T, ay, ay, ..) = —k 20
N, Ey ze ze
I

= (& e 4 pEr 4 gr)
T(BN U kTInZ® ), (1.37)
and the association « = —fu is made. It follows that the thermodynamic potential 2= U — TS — uN
is directly related to the grand partition function as follows:

QF(a, T, ay, 4y, ...)= —kTIn Z%(a, T, ay, a,, ...) . (1.38)

Usually the ensembles are considered to be practically equivalent for large systems, even though
they are meant to describe different physical situations. In fact as we shall show in section 3 this
can be proved in general in a one phase region. However when the system is in a two phase region,
the equivalence of the two ensembles becomes problematical. We will come back to this in the
next section, in which this difference is one of our main concerns.

1.4. The bulk limit and surface corrections

1.4.1. Thermodynamical considerations

For a given thermodynamic system, there are a set of generalized coordinates a; and forces X,
such that the work is given by (1.27). Usually these coordinates characterize the boundary of the
region, especially the volume. In fact, almost always the volume is the only coordinate that enters
in the work, so that

W= _p§V . (1.39)
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This is actually valid in two different situations. On one hand, it is rigorously true for any finite
system in which work is only done through changing the volume (compression), and in which
there is only one way to change that volume, say by moving a piston in a cylinder, or by expanding
the boundaries of the system in all directions while keeping the shape the same. Then the function
p(V, T) is peculiar to that specific system. But on the other hand, if one assumes that the system
is spatially homogeneous, and that there are no effects from the surface, then the only (compres-
sion) work can come from changing the volume, and here too the work would be given by (1.39).
Now the function p can depend only on T and the density p = N/V, and must be the same func-
tion for systems of all shapes and sizes. In fact this is usually assumed, although not always expli-
citly stated. This homogeneity property holds empirically for many large systems and simplifies
their thermodynamic description. It is an assumption and does not follow from thermodynamics.
With the single work term (1.39) the laws of thermodynamics (allowing for a variation in N)

dU=TdS —pdV+udN, (1.40)

which implies that U is a function of S, V and N, and likewise T, p and u are functions of S, V
and N since T = (3 U/3S)y, , etc. The assumption of the existence of the bulk limit implies that U
is a homogeneous function of the first order in S, ¥ and N so that for any positive number A,

UQS, AV, \N)=AUS, V,N) . (1.41)

This implies in turn that T, p and p are homogeneous functions of the zeroth order in .S, ¥V and N,
they do not change if one increases the size of the system by A, and are therefore called intensive
variables in contrast to the extensive variables U, S, V and N. Differentiating (1.41) with respect
to A and setting A = 1, this implies

UGS, V,N)=S (%)m + (g—%)&N +N (%f)w =TS —pV+uN. (1.42)
Then also

F=U-TS=—pV+uN, (1.43)

Q=F-uN= pV. (1.44)

Thus, for a homogeneous system, u is the Gibbs free energy per particle (U — 7S + pV)/N. An in-
dependent variable can be eliminated in (1.41) by setting A equal to 1/S, 1/V, or 1/N. The most
common choice is the latter, but it will be convenient for the discussion of the surface tension to
choose A = 1/V. Then,

U=V US/V,1,N/V)=Vu(s, p), (1.45)
where s = S/V and p = N/V. With these definitions, (1.40) and (1.42) become respectively

du=Tds+pudp, (1.46)
and

pu=u—~Ts+p. (1.47)

These imply the Gibbs—Duhem relation:
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dp=pdu+sdT. (1.48)

Then (1.46) can be viewed as the basic “law’’ between the variables u, T, s, u, and p, with p de-
fined by (1.47), or equivalently (1.48) can be viewed as the basic law between p, p, i, s, and T,
with (1.47) serving as the definition of u.

If the functional relationship between u, s, and p is known (such as u(s, p)) then from (1.46)
and (1.47) the other thermodynamic variables u, T, and p follow. Similarly, if the relation between
i, p, and T is known (such as p(u, T)) then from (1.47) and (1.48) the variables p, s, and u follow.
However, neither the functions u(s, p) nor p(, T) are usually measured directly. Instead, one
measures the equation of state p(p, T). Using the Maxwell relation

(g?l//i)))T ) (g‘[‘)f) ’ (1.49)

which follows from (1.48), s(p, T) can be deduced from p(p, T) except for a function of the tem-
perature, which can be determined by a specific heat measurement. Then all of the thermodynamic
functions follow.

This is the usual theory of bulk thermodynamics. Yet the property of homogeneity can never
be exactly true, as there must always be local variations near the surface at least. If these variations
are restricted to within a finite distance from the wall that is small compared with the size of the
system and the local radius of curvature, then one would expect that the nature of the surface
variations is the same all around and that they contribute a correction to the extensive thermo-
dynamic properties of the system that is proportional to the surface area A. We now derive the
various relations between these bulk and surface properties that follow from the laws of thermo-
dynamics. These considerations are similar to Gibbs’ theory of surface tension ¥, which deals es-
pecially with the free surface between two separated fluid phases. The surface corrections that we
are considering correspond to the surface tension between a fluid and a solid wall, which is a less
familiar form of surface tension.

Thus we assume firstly that both the volume V and the area 4 play a role in the thermodynam-
ics, so that the work term is §W = —p8V + y8A, and v is the force associated with changing the
area without changing the volume — the so-called surface tension. The basic law replacing (1.40) is

dU=TdS —pdV+yd4d+udN. (1.50)
1t is convenient to introduce the potential Q = U — TS — uN, so that
dQQ=-SdT—pdV+yd4d - Ndu, (1.51)

and = (T, V, A, p). Besides V and A4, € depends only upon the intensive quantities 7 and u.
Our second assumption is that §2 is a sum of functions proportional to the volume and the area:

UT, V, A, W)= VT, p) + A'(T, ) . (1.52)

This is an extension of the bulk homogeneity assumption (1.45), which in terms of the potential
§2 is just the first term above. Of course this is meant to hold only in the asymptotic sense when
both V and A are very large. Now it follows from (1.51) and (1.52) that

* Gibbs [34]. A concise treatment has been given by Ono and Kondo [35].
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p=—@QUV)p, = —w, (1.53)
Y=08Q8A) y, =w', (1.54)
S=—(08Q/3T)y ,, = V@p/dT), + A(=3v/dT), = Vs + As’ (1.55)
= —@Q/3w)yy 4 = VOplow, + A(@Y/ou)y = Vp + Ap', (1.56)

and
dp=pdu+sdT, (1.57)
—dy=p"du+s'dT. (1.58)

Likewise, all potentials have a volume part and a surface part. For example, the internal energy
which is related to Q by U= Q + TS + uN is given by Vu + Au’, where u and u' are

u=-p+7Ts+pu, (1.59)
W =y+Ts'+p'u. (1.60)

These follow directly from (1.53)—(1.56). As one would expect, the volume parts are identical to
the bulk properties, as (1.57) is identical to (1.48). The area parts act like another phase (although
two-dimensional) with the equation of state (1.58), and linked to the bulk phase by the common
T and p.

As we have shown, measuring p(p, T) and ¢, determines all of the bulk properties, such as
u(p, 7). Therefore, if one also measures y(p, T) (say), then y(u, T) follows, and then using (1.58)
all of the surface properties can be found.

The function p can be shown to be the pressure far from the surface. One way to see this is to
consider a bounded system that is enlarged in such a way that the shape remains the same, so that
both the volume and the surface area of the system change. Say 6V and 84 are the changes of the
volume and area associated with a small element of the surface. Then the normal pressure on the
surface is given by

where we have used that W = —p8V + v8A4. A simple geometrical argument shows that the ratio
of the change of the area to the change of the volume of a small element of the surface with the
shape invariant is given by ¥

8A/8V=1/R,+1/R, (1.62)

where R, and R, are the principle radii of curvature at that point of the surface. Combining
(1.61) and (1.62) gives the Laplace formula for the surface tension — if p is the pressure far from
the surface.

1.4.2. Statistical interpretation
As we have shown in section 1.3, the partition functions are directly related to the thermo-

dynamical properties. In the canonical ensemble,

* See for example Landau and Lifshitz {36] p. 230.
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F=—kTInZ, (1.63)
and in the grand canonical ensemble,
Q8 = —kTIn Z% . (1.64)

These associations are strictly true for a finite system, for which there are always surface effects
due to the discrete (particulate) nature of matter. To calculate the bulk thermodynamic proper-
ties, for which there are no contributions from the surface and for which the condensation is
marked by a singularity in the equation of state, it is necessary to make the volume of the system
infinite with the density N/V = p fixed. In this limit the bulk properties can be calculated from
the partition functions:

tim —* imz=F=_p+pu, (1.65)
V—)uo V
lim — %L1 z8r = (o = _prr | (1.66)
Voo V

where —p + pu and —p8* depend only upon p and T. Note that in the grand canonical ensemble,
the N above refers to the average value N8 defined in (1.35).

We call the limit V' - o with N/V = p the “bulk limit” because it enables the bulk properties to
be calculated from the partition functions. We use this name rather than the more familiar
“thermodynamic limit” because the latter gives the misleading impression that thermodynamics
is only related to statistical mechanics in that limit, which is not true. In the case of thermo-
dynamics, the bulk limit is simply assumed (namely the assumption of homogeneity) while in
statistical mechanics it must be proven. That proof must be carried out for a particular system and
is not simple to do.

We expect that the next leading term in the asymptotic expansion is proportional to the surface
area, and that the thermodynamic theory of the surface corrections that we have presented should
apply. Namely,

—kTInZ~(—p+pW)V+(y+p'wA, (1.69)
—kTIn Z8 ~ —p8'V + 84 . (1.70)

This again requires proof for every system under consideration, in which case the surface tension
can be calculated directly from the partition functions as shown above. Using (1.50) one can also
write the surface tension as follows:

v=@F[8A) 7y n =(3/3A4) y y(—kT1n Z), (1.71)
¥¥ = Q8 /0A), = (3/3A), y 7(—kT In Z&) . (1.72)

Again the problem arises whether the two ensembles give identical results for the surface tension
and the other surface properties.

1.5. The reduced density matrices, the hierarchy, and the general conservation laws

In this subsection we go back to the temporal development of the general density matrix of a
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non-ideal gas (not necessarily in equilibrium) as described by the quantum Liouville equation
(1.19). Our main purpose is to develop the quantum mechanical analogue of the so-called
B-B-G-K-Y hierarchy of equations in classical statistical mechanics, and to develop the correspond-
ing conservation laws.

Consider a system of N particles in a region A of volume V, whose density matrix is p(r), ... 7y,
ri, v ry: N, A, t) as given by (1.16). The so-called s- partlcle reduced density matrices are defined
by *:

’ ] 1t " N!
ps(rl’ ...rs,rl,...rs;N,A, t)Em fdrs+1...fdrN
A A

X PPy oo Wy Poyys e Py By i Fas Py o Iy s NS A E) (1.73)

For simplicity we will supress the dependence on N, A, and ¢, and use as before the abbreviated
notation r'* = r, ... r} etc. Note that py, ('™, F"V) = N1p(*', r"V). From the normalization

[dr¥ o™, My =1, (1.74)
A
which is equivalent to (1.13) it follows that
N!
fdr P 1) = TS (1.75)
and that the successive matrices are interrelated by
(N =) 0,5 7Y = [ Dy (75, Py 775 Py dry (1.76)
A

The equations of motion for p, follow from the quantum Liouville equation (1.19). In the coordi-
nate representation and for a general Hamiltonian

H(pN,rN)-E f + oY (1.77)
i=1

(where now @ contains both interaction and external potentials) one obtains by directly inte-
grating (1.19--20):

l:""ll —+Z) i (82 _ )]px(r“, r's)

i=1 2m ar’.2 ar'.'2
-8 's AN "s —s ts N-s "s rN—s 1.78
= v ),fdrN {O's, N=5) — d("S, N} p(rs, VS, ). (1.78)
We have used the abbreviations V=S =r, |, ... ry and &5 = dr,, ... dry.

The diagonal element of the s-partlcle density matrix defines the so-called s-particle (reduced)
distribution functions. We shall write

* These were first discussed in detail by Husimi [37] and de Boer [18].
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ng(r') = p(r', r). (1.79)

Especially n,(r) is the density of particles and [ n,(r) dr = N as follows from (1.75). By putting
r'S =r"% in (1.78) one obtains the equations of motion for the distribution functions. Fors =1 for
example one gets:

any(r) p [ @2 3?
SLLANN B DU o =0. 1.80
o T3 [(ar'z ar”2) p,(r,r ):]r'q"_r 0 (1.80)

This can be cast in the form of a continuity equation:

0 0 _
a—t(mnl(r))+a—r;-(mnl(r)va(r))—O, (1.81)
where mn, (r) is the mass density (often called p(r)) and

mn,(r)v,(r) = h[ag p,(r,g)] , (1.82)

E=0
is the a-component of the momentum current. In (1.81) the sum over « is implied according to
the usual convention with repeated indices. We have introduced p, according to

py(rg)=p,(r+38,r—38)=p,(r,r"). (1.83)
That is, p, is just p, with the change of variables
r=i@+r", E=r —r". | (1.84)

Note that for a single particle system in a pure state’y, p, (', r") = ¢* (") Y(r') and (1.82) becomes
the familiar expression for the probability current density:

Y Y@ v, () = yr (r) sb(r) — tl/(r) = kIJ (9] (1.85)
For a non-ideal gas in which the interaction between the particles is due to a pair potential ¢(r, )
(where r;; = |r; — r;1) so that the total potential is of the form

B(rV) = E o(ry) + Z) >t (r)), (1.86)

i<j=1 i=1

the equations (1.78) can be further simplified. One obtains:
s (1.87)
. a ! n ! H
(hl a_t+£’) ps(r®, 1"%) = FZI f {o0r; —roo ) —oUr] —ryD} peyy (%, Poots 7' %5 Peyy) drgyy,

—_ . h2 a2 a2 ex ! ex 1 d ! ”
6=2 [7’; (Eﬁ - p) = B+ 2 — T 160 - ¢(r,.,-)1] . (1.88)

This is the hierarchy of coupled equations for the density matrices, which is the analogue of the
B-B-G-K-Y hierarchy for the reduced phase space distributions in classical statistical mechanics.
It has also recently been given by Putterman [19], and had been partially derived by Penrose [23]
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and Frohlich [38] among others *. The first equation is:
a (rl ru
- py(ryry) +

hZ a2 82 , " ror
NI

2m \ar?  ar)?
= [100r, —r,1) = 6UF; — 1,01 py(Fy 7o Py 1) dry (1.89)

Just as in the classical theory * basic consequences of the hierarchy (1.87—1.88) are the
general conservation laws of mass, momentum and energy with the corresponding expressions for
the fluxes. The local conservation laws are:

0 0

a—f+y(pva)=0, (1.90)
0 0 3 Pt

—_ + + = -0 —

Y (pv,) o, (pvavg+ Pg)=—p or. m (1.91)
F F) L |9V, By

gt—(pe) + 57; (pev, +J,)=—3 o7, +5—a- Paﬁ , (1.92)

where p = p(r) is the mass density, P, = P,;(r) is the local stress tensor, € = €(r) is the local specif-
ic energy (energy per unit mass), and J, = J(r) is the local current density. Following the usual
convention in hydrodynamics, we use in this section only for the mass density mn,(r) the symbol
p(r) and for the specific energy the symbol €, whereas in the rest of this thesis p will be used for
the average number density NV, and e will be used for the single particle energy levels.

The derivation of the conservation laws from the hierarchy is similar to the classical theory,
except that there is an ambiguity in the expressions for the local quantities which is due to the
non-commutability of the operators which enter in their definitions. This requires an additional
rule, the so-called Weyl correspondence of the classical operators as we shall explain later.

The mass conservation law (1.90) follows from the first hierarchy equation (1.89) as before
with the mass current density given by (1.82). Note that here there is already an ambiguity in the
definition of pv since one could add any vector whose divergence is zero.

Next, the equation of motion for v (that is, the momentum conservation law) (1.91) can be
derived by taking (#/i)(3/0£,) of (1.89) after making the change of variables (1.84) and again
letting &— 0. The result can be cast in the form of (1.91), giving for the stress tensor P, =
Pig + P%g, where

_1[(h 2 n N
I e @) 5, g)Lo , (1.93)
R.R, R
Po =4 [ - "¢(R)dR0f d)\nz(r+()\—R)%,r+>\%). (1.94)

The steps that give PY; are straightforward, and those that lead to P, are identical to the classical
derivation, to which the reader is referred ¥ (in fact (1.94)is formally identical to the classical ex-

¥ Also, the hierarchy of equations of the so-called Wigner distribution functions, which are a kind of Fourier transform of the
density matrices, have been given by Irving and Zwanzig [39].
* See Uhlenbeck and Ford [22] Chapter 7.
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pression). Note that n,(r,, r,) is the two particle distribution function defined by (1.79).
Finally, defining the local internal energy density pe = p(e* + €® + ®°**!/m) with:

k)= o (220 "5 1.95
pei(r)= [( 3%, mvﬁ(r)) p,(r,g)]{;:o | (1.95)
pe?) =5 [ 60 )ny(ry,ry) dry (1.96)

the conservation of energy (1.91) can be derived. Note that in €X the transport kinetic energy
1 pv? has been subtracted off, and only the internal energy density enters in (1.95).

To derive the conservation law (1.91) one must find the rate of change of both €* and €®. The
equation for €* follows from (1.89) in a way similar to the derivation of the momentum equation.
To find the equation for €® the second hierarchy equation (eq. (1.87—88) for s = 2) is needed.
The derivation is completely analogous to the classical case, with the result that the energy flux is
a sum of the following three terms:

2

J5r) = [m{f“’aas —mua(r)}—— %Z’T—mvﬁ(r) 5, (r, é)l‘i:(), (1.97)
1) = f‘i’_("_'_zl_) 1 [{?azm_ mv (r)} By, rz,gl,gz)] i (1.98)

o= [ 2‘;2" OR) R [ dx[-;—z{iﬁé—m—mvﬁ(r)%a;m—mvﬁ(r)}
X 52(r+()\~R)%,r+ x% ;gl,gz)]ghéfo : (1.99)

where p,(r, Fy3 B, E,) = py(r, + 38,7y + 38,30, — 3,7, — 3E,), similar to the definition of p,
given by (1.83). In general we can write these as:

Bs(r®, £) = p(r* + 385, r° — 3 8. (1.100)

We now return to the ambiguity mentioned earlier. To illustrate the problem let us consider
only the three local quantities p(r), p(r) v(r), and p(r) €k . (r) = p(¥) [e*(r) + Fv(r)?], which are re-
spectively the mass density, momentum density, and total kinetic energy density. One would like
them to be quantum mechanical averages of operators of the form 0 (p", r¥) similar to the func-
tions O,,(p", r¥) which lead to the local classical quantities. For the mass density p(r) there is no
difficulty; the corresponding operator is clearly

O(‘)=m26(r~r) =oWm, (1.101)

where the coordinate r is a parameter in the operator. However, for the momentum density, the
classical function is

o0Q), = ,E Piadr — 1)), (1.102)

which would not itself be an Hermitian quantum mechanical operator, if p, and r; were taken to
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be operators. The same is true for the kinetic energy density, for which the classical function is

oW = Elé’t_a(, r). (1.103)

The operators 0¥ and 0 must be Hermitian so that p v, and p €X , are real. Also one must re-
quire that

N
[pv dr= [0 dr=2 p,,, (1.104)
A A =1
and
N 15‘2
k = 3) = —_
Afpewt dr Af<o y dr Zi S (1.105)

One might hope that by properly symmetrizing the classical functions one could guess the opera-
tors 0® and 0®. For example one might replace p;,8(r —r;) in (1.102) by

300 8(r — 1)+ 8(r — 1) i1, (1.106)

which in fact leads to the local momentum density (1.82). But already for the local energy density
the summand in (1.103) can be symmetrized in different ways, such as

1. .

35 [p28(r—r) +6(r—r)p?l, (1.107)
7’% [Dia8(r — 1) Dig] (1.108)
3 5 (280 — 1) + 251080 — 1) io+ 80— 1) P21 (1.109)

It can be verified that each of these is Hermitian and also satisfies (1.105), yet they give different
expressions for the local kinetic energy. Using (1.18) one finds respectively:

Ky _ R? { 3 . 92 } } _ R [{ 32 .10 }
perl, =—-= 12—+ 2 p ', r) = - + - p1(r.8) , (1.110)
ot dm L\gp2  apr2) ™! r=r'=r 2m 1| ag? 4 ar? e =0
ko __ B2 [ 3 3 : ”] =_Z7_2_|:_32__liz_ = ] 1.111
PEiot 2m Lar 307 py(r, ") vrr 2mlpg 4 py(r.e) £ (1.111)
k3 =_ﬁi _."& ]
ped, 2m Ly B,(r, &) e (1.112)

A solution to the problem is given by the Weyl correspondence rule (see [40]) which defines a
unique Hermitian quantum mechanical operator O(p", V) for each classical function 0,,(pN, ).
It can be stated directly in terms of the quantum mechanical average itself as follows (Irving and
Zwanzig [39]): For a given classical function O,,(*¥, p™) the corresponding quantum statistical
average is given by

0y= [dr¥ [oc, (lﬁ—aa?v ,,N) ﬁ(rN’EN)]SN:O , (1.113)
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It should be stressed however that this correspondence is ad hoc. For the momentum density this
gives our expression (1.82) and implies in turn that the operator is symmetrized according to
(1.106). For the kinetic energy density Og) it gives the expression (1.112) above, which implies
that the operator is symmetrized according to (1.109), and implies that the local kinetic energy
density is given by the expression (1.95) that we have used *.

In the following we are only concerned with the equilibrium properties, in which case the
density matrices p,(r'*, r"*; N, A, t) are replaced by the corresponding canonical equilibrium
density matrices p, ("%, ¥"; N, A, T) which are time independent. The conservation laws simplify
because the properties are time independent and also because v = 0. The equation of motion
(1.91) becomes simply the statement of hydrostatic equilibrium:

0 _ o Oxt(p)
aTﬁP"‘ﬁ(r)_ ,o(r)aT et (1.114)

[+3

Furthermore (1.92) implies that /, must every where be zero.
In the grand canonical ensemble the density matrices are defined as averages of the canonical
reduced density matrices as follows:

pE(r, r"a, A, T) = > ¢ “WZWN, A, T) p(r's, "N, AT . (1.115)
N=s Z8(a, A, T)

The role of these density matrices are similar to those of the canonical ensemble. Making use of

the fact that the canonical density matrices satisfy the equilibrium hierarchy, it can be verified

that the grand canonical ones also satisfy it and lead therefore to the same conservation laws.

Note however that there is no “‘complete’ density matrix in the grand canonical ensemble. Note

also that pf" are normalized by

fdrs' pgr(r/s S a, A, T) =< N__‘ >g" (1.116)
J s b s M E] (N _ S)! b . ‘
and inter-related by
(— :_a +N& s)pf'(r's, ra, ATy = [ o8 (7 r P, ra, A, T) dr (1.117)
A

In (1.116) and in the following we use one bracket instead of two for simplicity to denote the
quantum statistical averages.

1.6. Specialization to the ideal Bose gas

Since the Hamiltonian of the ideal gas is a sum of single particle Hamiltonians

N
H(pNarN)=§ﬁo(piari)’ (1.118)

* Putterman {19] has also derived the conservation laws with the corresponding expressions for the fluxes, based upon using
(1.110) for the definition of the local energy density.
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with
o2

. D;
H, (p;,r)= 2—'m+¢e“(r,.), (1.119)

the energy eigenvalues E and eigenfunctions ¥ (") can all be expressed in the single particle
energy states €, and eigenfunctions y,(r) defined by:

Hy(p,P) U, (r) = €, ¥, . (1.120)

(This €, should not be confused with the specific energy of the previous subsection.) One gets

E=E, , =2Jn.e,, (1.121)

27 n, =N. (1.122)

To satisfy the requirement of Bose statistics the ¥, (V) must be the symmetrized sum of the
products of the corresponding single particle functions y,(r), so that

qu(rN)=\1f,,o,,l,,2_“(rN)=_~L_ 23 Wolr) e Yoltny) ¥y(e) oo ey (1123)

VN'ny!in .. p{sV}

where the sum is over all permutations of the coordinates ¥V = r, ... r,, . These ¥(+") are normal-
ized to unity in the ¥ (r).

With the energy levels all of the thermodynamic functions follow. The canonical partition func-
tion (1.3) for the IBG is

no n

N
ZIN, A, ) = {Z)} exp(—B20 , Ny €y) (1.124)
ng

where the summation is over all gccupation sets {n,} satisfying (1.122) and A symbolizes as
before the boundary of the region and the outside fields described by the parametersa,, a,, ... .
Likewise, the internal energy (1.25) and the generalized external forces X, (1.26) become

N

UN, A, T) = %— {Z)} (2 me) exp(—BL , ny €) (1.125)
ng
N

XN, AT = {E}Z),n,(—ae,/aa,.) exp(—8 20, 7y €;) - (1.126)
ny

The entropy follows from In Z and U according to (1.30).
These expressions imply evidently that the probability for the occupation set {nyn,...} is

—é—exp(—BEknkek), (1.127)
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so that the average occupation number of the state €; must be given by

(n,.>—- 2 n; exp(— ﬁz Ny €, (1.128)

Z {ny}

and the corresponding mean square occupation by
i N
(n?y==2 27 n? exp(—B27, ny€,) . (1.129)
Z {m}
The equilibrium density matrix (1.23) for the IBG is

pr'™, r"N;N, A, T) = 1 E \ "y v (r'Y) exp(—B 27, ny €;) - (1.130)

Z{n nony..

nong...

In terms of the single particle states this can be written

1 r "
NZ {Z%v},z{ [J exp(—fe) i) v (r)) (1.131)

p(r'N, PN N, A, T) =
using (1.123) for ¥ and elementary combinatorial identities. The reduced density matrices then

follow by direct integration, according to (1.73), and the following expression results:
(1.132)

N = "t
P, "5 N, A, T) = E B ) Vg, “’”7{2} I o 06T e

where the set {n;} satisfies the restriction Enj =y, and the set {n, } satisfies 2 n, =N. The ¥’s
are the s-particle wavefunctions given by (1.123) with N replaced by s. For example, whens = 1,
the only possible occupation sets {n,-} aren,=1,m=0(#k)fork=0,1,2,..,and (1.132)
becomes

N oo
P1(rL PN A ) = E VD 4 ) ‘{E}nk exp(—8 20, 1y €)= 20 (m) Y)Yy r))
ny

(1.133)
The grand partition function defined in (1.32) becomes for the IBG:
L N oo oo
Z%(, A1) = 20 e 35 exp(—B 2, nee)= 11 20 (exp(—a — fe, )™
N=0 {me} k=0 np=0
= kl:IO (1 — exp(—a — Be,)) 7! . (1.134)

Likewise, one easily verifies that the thermodynamical functions (1.33)—(1.3 5) for the IBG are
given by the following well known expressions:



194 R.M. Ziff et al., The ideal Bose—Einstein gas, revisited

N (a, A, 7)=kE (n e (1.135)
=0

U (a, A, T)=kE € (M5 (1.136)
=0

XF(a, A, T) = kZ; (—d€,/0a,)(n)¥ (1.137)

and the entropy is given in terms of N8, U®", and Z®8" according to (1.37), and where

(n )% = (exp(a + fe, ) — 1)1, (1.138)
is the grand canonical occupation of the state k. The mean square occupation is

(RDET = ()8 + 2((n, )87)? . (1.139)

For the grand canonical density matrices of the IBG one finds

N
pE (e, A, T = 25 11 p8Gr)r) 50, AT, (1.140)
P{rrs} i=1

where the first density matrix is given by the simple expression

PEC, 1" 0 A T) = 2 S Y (") 9, ) (1.141)

Evidently the s-particle grand canonical density matrix is just a symmetrized sum of products of
the single particle density matrix ¥.

2. Bulk properties of the ideal Bose gas
2.1. Introduction

In this section the bulk properties of the ideal Bose gas are discussed and then derived. Follow-
ing our remarks in section 1.4.2, these are found by means of the bulk limit, in which a sequence
of similar systems of increasing N and V is considered with N/V = p fixed, and the bulk properties
are found in the limit V' — . In this limit, the Bose condensation will be evident. As a product of
the calculation, also the grand canonical properties are derived, and it turns out that some of
them differ from the corresponding canonical properties — even in the bulk limit! The origin and

* Note that these results can also be found directly by using the construction operator definition of the reduced density matrices.
Namely, in terms of the creation and annihilation operators Y (#) and \pT(r) which obey the Bose commutation rule, and in which
the coordinate r is a parameter, the first two reduced density matrices are:

P, i) =Trpvt D weD), p2ri i, r) = Trp T yTaD v verD .
This holds in both the grand canonical and canonical ensembles, with the appropriate definition of the density operator g and
the trace (Tr). From this point of view the density matrices themselves can be thought of as quantum statistical averages of

these construction operators. One can show that the above definition is identical to (1.73) and (1.115). For more details see for
example de Boer [41].
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meaning of the unexpected difference, which has also been noted by some other authors, will be
discussed in section 2.4. Finally, in section 2.5, the bulk canonical properties of a system whose
number of dimensions is other than three are briefly considered.

2.2. The bulk properties

Here we simply list and discuss the bulk properties of a three dimensional ideal Bose gas. As
one would expect for a bulk system, there are only two independent thermodynamic variables,
which we choose to be p and T .¥

The pressure and energy density are given by

kT
—X;gsl2(a)> p<pc ’

p(p, T)=5ulp, T) = (2.1
KT sy, p>pe
)\3

where A? = 27h?/mkT,
pe = p (1) =GN, (2.2)
and for p < p_, @ = a(p, T) is the unique root of

1
p=Fg3/2(a) . (2.3)

We have introduced the Bose functions
gala)= 20 jme ™, (2.4)
j=1

whose properties are discussed in Appendix 2.A.

The equation of state (2.1) is divided into two analytic segments by the density p.. For p > Pes
the pressure is independent of the density and equal to p, =p_(T) = kT ¢(3)/A3, while for p < P
it is found by eliminating o between (2.1) and (2.3). The isotherm of p versus p, scaled by p. and
P, is given in fig. 0.1. With this scaling the isotherms for all temperatures fall on this one curve.
Note that there is no critical point beyond which the condensation ceases to occur, and that the
subscript c refers here to the point of condensation. One can also define the temperature T, at
which the condensation occurs for a given p, determined by

PN =5G), N =2mn?/mkT,, =)

which also defines the thermal length at condensation A, . The two phase region p > p, corresponds
toT<T,and A>A_.
For low densities p < p_, the pressure is given by

$3) »

p=pkT(l — .
42 P

-, (2.6)

* The following thermodynamical properties are of course well known. Compare for example Einstein [2—4], Kahn [42], London
[17] and Huang [43-44].



196 R.M. Ziff et al., The ideal Bose—Einstein gas, revisited

and clearly approaches the classical ideal gas behavior as p/p, - 0. As p approaches p_ the pressure
reaches p, with zero slope, and when p > p_ the isotherm is flat. At p_ there is a discontinuity in
the second derivative.

In analogy to a regular (first order) phase transition, where there is also a horizontal piece in the
isotherm, a state for p > p, can be interpreted as a two phase system, with p, non-condensed
particles of specific volume 1/p_ and p — p, condensed particles of specific volume zero, in each
unit volume. The fraction of condensed particles is therefore

1 —p./p=1—(T/T ). 2.7)

That the condensed particles have no volume follows from the fact that they do not contribute
to the pressure. This of course is where this transition differs most from the usual ones.

The entropy density (that is, entropy per unit volume) s, Helmholtz free energy density f, and
chemical potential u (= Gibbs free energy per particle) are given by

5 k
Eﬁgs/z(a)'i'kpa: pP<p.,
sp, T)= (2.8)
Sk s
E i_a §(2) B p>pc >
kT
Y 8s;2(@) — kTpa pP<p.;
flo, T)=u—Ts= (2.9)
kT
__i; f(%), p> P>
—kTa, P<p.;
up, T)=(f+p)lp= (2.10)
0, P> P

where for each of these, a is determined by (2.3) when p < p_. One can verify that these satisfy
the thermodynamical relations (1.46—47).

Note that for a given fixed temperature, when the density is increased beyond p_ the entropy
density and also the density of non-condensed particles (= p_) are fixed, while the density of con-
densed particles (= p — p_) varies. Therefore one can say that the condensed particles carry no
entropy, and the difference in the specific entropy and specific volume of the two phases satisfy
the Clapeyron equation, as in a first order transition:

dpe(T) _ AGs/p) _ 5 k$B) (2.11)
a7~ A/p) 2 3

Similarly, u, f, and pu depend only upon T when p > p_, and therefore the condensed particles
do not contribute at all to the thermodynamical properties.

These functions can also be written in terms of T and T,. For example, for the internal energy
per particle we have
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s B T>T,,
g3/2 (a)
ulp = . 2.12)
T £G3)
2kT(-—) Q- rer
2 T, $G3) ¢

As T — =, u/p approaches the classical value 3 k7. At T, there is a discontinuity in the second deri-

vative. The derivative of u/p with respect to T is the specific heat per particle at constant volume
(density), which in terms of T and T is given by

15 gs/z(a) 2g3/2(a)

7 2,@ dgn@ 0T

e Jk = . (2.13)
1 T 3
7 (T) Q) T<T..

T/Te

Fig. 2.1. The energy per particle u/p divided by kT plotted as a function of the temperature T divided by T, at constant density p.

cy/k

1 1
o] | 2 3 4
T/ Te

Fig. 2.2. The specific heat at constant density c¢,/k as a function of T/T,.
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We have plotted the energy and specific heat per particle as functions of the temperature in figs.
2.1 and 2.2 respectively. At T= T, c,/k reaches a maximum value of 15¢(3)/4¢(3) =~ 1.926, with
a discontinuity in the first derivative given by:

] [T e

HTIT,)) ~ 16w

and as T - o, it reaches the classical value 3.
In the bulk limit, the average occupation of the lowest single particle state, divided by the
volume, is given by:

(ng) {O> pP<p,,

p“pca p>pc

It is non-zero only for p > p.. On the other hand, the density of particles in the other states
always goes to zero. They are represented by a continuum in the energy distribution. Thus we see
that the condensation found from the thermodynamical properties is comprised of particles
occupying the ground state.
The fluctuations around the average values, divided by V2, goes to zero for all states including
the ground state and for all densities:
(n2) —(n,)? ((An)?

lim —————— =lim ———=0. (2.16)
Voo |14 Voo P2

(2.15)

In particular, there are no “macroscopic fluctuations’ in the occupation of the ground state, in
the two phase region. We will discuss this further in the section 2.4.

The properties that we have discussed so far are well known. Now we turn to the density
matrices, which have not previously been discussed completely. For all s, they can be written

27 H F(r{—r{l,a,T), p<p,,
P{r s} i=1
ps(r's, r" e, T) = 1 s 1 (2.17)
— 95— explt(p—p)} 25 [N (FUr—r1,0,D)+ ), p>p,,
2mi p{r's} i=1 !
where
F(,a,T) =3\13_ > %2 expl—aj — N}, (2.18)
j=1
and again a = a(p, T) as determined by (2.3). Note that
1 (o —p)*
5 § S explrto — pyek ==, (2.19)

where the contour goes around the origin in the positive sense. To find an explicit expression for
the density matrix when p > p_, the products of the expression

2 H (F(r; —r!1, 0, e+l ) (2.20)

P{r S}l 1
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must be multiplied out, and the contour integral carried out. According the (2.19), that means
simply replacing the factor (1/¢)* in each term by (p — p_)¥/k!. This gives an alternative expression
for p, in the two phase region p > p_:

p Yk K

p,(rS, F'S p, T) = Z) - 12 Z) F(r, —7),0,T), (2.21)

k! i=1 I, 1j=1
with the restriction on the multiple sums that /; # [, (i # /) and I+ lj' G#)).
The one particle density matrix is given by

F(ri-ril,a, T), p<p,,

py(ri,riip, = (2.22)

FUri~=r,0,D+p—p,, p>p,.

The diagonal element (which according to (1.79) is the local density) is independent of position as
it should be. When |r}; —r[| >, F-> 0, and

o 0, p<p.,
py(ry, 0, 1)~ (2.23)
Pe > p>p, -

The non-zero value for p > p_ is described as off diagonal long range order (ODLRO).
Note that F(r, «, T) can also be written as

NFEr, o, T)= %exp(—Z\/w_ar/)\) +27 exp(—A*r/A) 2 cos(47r/N),
s§=1

‘:,>J

(2.24)
172
A* =271 (a® + 4n?s?)V4 l: —a-—————jl .

(012 + 4TT2S2)1/2

The proof will be given in Appendix 3.A. When r/A > 1 the first term dominates, from which it
can be seen that the limiting behavior for »r > o is an exponential decay, except when a« = 0, when
F goes to zero as 1/A%r. Actually, for small but positive a there is a regime in which F ~ 1/A?r,
namely for r < \/v/a. When a - 0 this bound goes to infinity, which explains how the transition
from exponential to reciprocal behavior takes place.

The “curvature” of p, about |F; —r|| =0 is related to the local energy density, according to
(1.95). One can verify that this gives a value for the energy that is identical to (2.1).

For the two particle density matrix p,(r 7y, r{r3; p, T), we have from (2.17) for p < p,:

p, =F(ry—ril, e, DF(r,—ril,a, T)+ F(r, — 1|, a, DF(ry —ril, e, T), (2.25a)
and for p > p_:
p, = F(r,—ril,0, TYF(Ir, — 131, 0, T) + F(ir, — 131, 0, T) F(Iry, —r}1,0, T)
t(p— pIFUry—r{l,0,T) + F(ir, —r31, 0, T) + F(Iry - 31,0, T)
+F(ry—r}1,0, D]+ (o — p.)* . (2.25b)

When both primed coordinates are far from both double primed ones,
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0, P<p.,
p, (2.26)

(P'—Pc)z, P>Pc;

and p, also exhibits ODLRO when p > p_. The diagonal element ry =r}, r, =r} is the two particle
distribution function, according to (1.79):

p2+ [F(r,—r,l, a, H1?, p<p,,
ny(ry, 1y 0, 1) = (2.27)
P>+ [F(ry—ry),0, DI* + 2p — p )F(r, —r,1,0,T),  p>p, .

When |r, —r,| = =, n, - p? for all p, or equivalently the cluster function x,(r,7,) = n,(r,, r,) —
n,(rpn,(ry) > 0. Since the distribution functions are the diagonal elements of the density matrices,
we express this behaviour by saying that there is no diagonal long range order (DLRO). This in

turn implies that there is no spatial separation of the phases ¥. When p < p., this cluster function
can be integrated over all space:

fx:(rprz) drz =f[F(|r1 "‘rzla «a, T)]zdfz =% .sz—3/2(j__ l)e-aj
]:

=(_ 0 _ d
—(—m—l)p(a,T)—(kTPE)—l)P(P,T), (2.28)

using the fact that op/da = —kTp at constant T. This result agrees with the fluctuation-compres-
sibility formula of Ornstein and Zernike [47].

Now we extend these considerations to all p,. First of all, when all {r'*} are far from all {r"*}
then it is clear from (2.17) that

0, p<p.,
oy~ (2.29)

(e—p), p>p.

This is namely the general ODLRO of the density matrices, as has been given by Yang [25].
To discuss the DLRO, we introduce the general cluster functions x by the scheme of Ursell:

n,(r)=x,0r),
ny(ryry) = X,(r r) + X, x, (), (2.30)
ns(f! r3r§) =Xy ryr) T X, (r) X (rars) + X, (P) X, (P ) + X () X (1) + X, (P X, () X, (r3)

On the right hand side there are terms representing each possible partition of the set {r’}. These
equations determine the functions x successively in terms of the n . The relations can be inverted *
to give explicit expressions for the x but they will not be needed here. The importance of these

X, is that they have the so-called cluster property if and only if the distribution functions have the
co-called product property. These properties are defined as follows. If the particles {#*} are split
into two groups {r°} and {r?} which are separated far from each other and contain a and b particles
respectively, then #n, is said to obey the product property if

* See Uhlenbeck, Hemmer and Kac [45]; also Kac [46].
* See for example Kahn and Uhlenbeck [12].
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n(r') > n,(r*) ny(r®), (2.31)

and X, is said to obey the cluster property if under such a separation it goes to zero. That one
property implies the other follows immediately from the definition of x given in (2.30).

For the IBG, the distribution functions which follow as the diagonal elements of (2.17) all satis-
fy the product property (2.31). This can be verified using (2.17) (or (2.21) for p > p_) and the
fact that F(Ir, — r;l, @, T) = 0 if r, and r; belong to the two different groups. Hence it follows that
the functions x satisfy the cluster property, and therefore that x, must be composed of just
those terms of n that vanish under every possible separation of the particles. By inspection of n,
implied by (2.17) or (2.21) one finds

23 F(r —ryl, 0, D F(Iry, — 131, 0, T) ... F(Irg—ryl, 0, T),

<p.>
X, (%, p, T) = PSPer 237y

20 F(lry —1,),0, TYF(iry —131,0, T) ... F(Ir, — 11,0, T)
+(p —p) D F(r —1),0,T) ... F(Ir_, — 1,0, T),  p>p,,

in which 2J indicates a sum over permutations of {r,... r,} and 27 indicates summation over per-
mutations of all {r, ... r;}. It is interesting to note that the explicit expressions for x are much
simpler than the expressions for ng, especially when p > p_.

When p < p_, x,(r®) given above can be integrated over all space and the result satisfies the
generalized fluctuation-compressibility formula

s—1

fxs(r‘, p, Ty drs? ={ [1 (kTp :—p - n)} p(p, T), (2.33)

n=1

as has been given by Hemmer [48] for a general system. For the case s = 2 this agrees with (2.28).
Note that when p > p_ both sides of this equation diverges.

Therefore we have characterized the structure of the Bose condensation by the presence of
ODLRO in all of the density matrices, without DLRO. This is consistent with the absence of a
phase separation. The long range behavior can also be shown to be consistent with the macroscopic
occupation of the ground state (2.15) and their fluctuations (2.16).

2.3. Proof of the results of section 2.2
a. The notion of the generating function. For the calculation of the bulk limit of a given

canonical function f(N, A, T) (where A represents the bounded region, with volume V), it turns
out to be useful to introduce the corresponding generating function f%(a, A, T) defined by

A= D CZN AT (A Ty, (2.34)
N=0 Z8(a, A, T)

Clearly these functions are closely related to the grand canonical quantities discussed in section 1.
In fact, inspection shows that the generating functions of N, U, x, (including p), and the reduced
density matrices p; are identical to their grand canonical averages. For instance, the grand canoni-
cal energy as defined by (1.33) can also be written as
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U, AT = 5 ZNAD gy ATy, (2.35)
N=0 T Z%(a, X, T)
where U is the canonical energy defined by (1.25). All of the above quantities are quantum-
statistical averages of operators that depend only upon E and N, and therefore can be called
“mechanical”. It is clear that for all such quantities f® defined above is identical to /3" defined in
section 1. Note however that this is not the case for the entropy, since its generating function is

e~ 2Nz exp(—BE.) exp(—BE
SE=—k 2 N 5 ORCPEY) | X Py
A En Zy Zy

(where E,, = E(N, A) and Z,, = Z(N, A, T)) which differs from the grand canonical entropy S
of (1.37) by the amount
—aN —aN
sv_st= kDS NS A (2.37)
N Zgl‘ - Zgl' -

Similarly for all the thermodynamic potentials such as F and £ one must distinguish between the
grand canonical definitions denoted by the superscript gr and the generating functions denoted by
the superscript g. The origin of this difference is that the entropy and these other thermodynamic
potentials describe the ensemble and are not strictly quantum statistical averages.

From now on we will always use the superscript gr instead of g when the expressions are the
same (namely for the mechanical quantities). But for the entropy and the thermodynamic poten-
tials the different superscripts must be watched! For an unspecified quantity f we must always
use the superscript g to denote the generating function.

b. Outline of the method. For a given intensive canonical quantity f(V, A, T) the bulk limit is
defined by

flp, Ty = lim FN, AT, (2.38)

, (2.36)

where p = N/V. This can be accomplished for the ideal Bose gas by first introducing the generating
function defined by (2.34) and calculating the limit

fep, )= lim f8(a, A, T), (2.39)
Voo
where a = a(p, A, T) is determined by:
gr = —aN
p=NVE L N ZN AT (2.40)
V. Vo Z#AD

Evidently f(p, T) and f®(p, T) are related by

rE. D= [ vlx, p3 1) f(x, T) dx (241)
0

where

—aN
Ve *YZ(N,A, T) , (2.42)
Z8(a, A, T)

vx,p;T)= lim
Vo0
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with N/V =x and « = a(p, A, T) as determined by (2.40). Therefore f(o, T) can be found from
f&(p, T) by inverting (2.41).

All of these steps can be accomplished for the IBG. First of all, the generating functions can be
written in simple terms — indeed, for all of the functions that we will consider except for the
entropy they are identical to the corresponding grand canonical expressions which have already
been given in section 1.5. Then for all of the functions the limit (2.39—40) can be calculated.
Note that f2(p, T) in (2.39) is written as a function of p instead of a because the limit V' - oo is
taken not with « fixed but with the average density p = N#/V fixed. The function v(x, p; T) is
calculated in the same way. That function can be interpreted as the distribution of overall density
in the grand canonical ensemble when the average density is equal to p, in the bulk limit. In the
one phase region we shall find that it is a delta function and the bulk properties in the two en-
sembles are therefore identical; this can be proven even for a general one phase system using the
method of steepest descents, as we shall sketch in section 3. However, in the two phase region of
the 1BG we shall find that »(x, p; T) is not a delta function and that therefore the inverse of (2.41)
is not completely trivial, but still can be done. The function » has been named the Kac density.

c. Application to the thermodynamical properties. First of all the limit ¥V — < has to be defined
precisely, especially with reference to the shape of the system. It is most reasonable to assume
that as ¥ - <= the shape does not change and the region A is simply enlarged in all directions. This
can be accomplished by scaling the coordinates of A to a “unit” cell A, of volume unity by the
factor L, as shown below:

Then as L is increased, A expands uniformly about the origin of the coordinate system, assuming
that that origin is chosen somewhere inside of A,. The bulk limit is found by making N and L in-
finite while keeping N/L® fixed. One expects that the properties in that limit will not depend
upon the shape of A, nor on the location of the origin within it.

The single particle wavefunctions in A, ¥, (r) and the energy levels €, (ordered so that
€, < €, L €,...) satisfy the Schrodinger equation (1.120), namely:

n? 92

m 'aF ll/k(r) + €, ll/k(r) =0, (2.43)

and are normalized to unity:
[ W@ dar=1. (2.44)
A

We consider that y, satisfy either the Neumann (3 y/dn - 0) or the Dirichlet ({ > 0) boundary
conditions. When L is increased, the states scale in the following way:

W= L), (2.45)
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_ 2nn?
mL*

where y, and e, satisfy

>\2
Be, = F € > (2.46)

Bey

2

a% (&) +4me, ,(8) =0, 2.47)
and
e®)N*de=1, (2.48)
Ao

as can easily verified, letting ¢ =r/L. Also y, must satisfy the same given boundary condition of
the boundary of A, as does ¥, on the boundary of A. Thus y, and ¢, satisfy the dimensionless
Schrodinger equation (2.47) in the region A, and are independent of L. Note that e, are defined
so as to make the dependence of €, on A as well as on L explicit.

By a theorem of H. Weyl ¥, the number of eigenstates g(e) de between e and e + de goes as

gle) de ~2 et? de, (2.49)
NE:
asymptotically as e > = independent of the shape of A, and for either Dirichlet or Neumann
boundary conditions. This means that the limit of the ratio of the two sides of (2.49) is equal to
1 for e - <. This result enables us to calculate the limit (2.39—40) without specifying the shape
of A,.

First we consider for the function f(N, A, T) the pressure, whose generating function is given
by (1.137). In terms of e, this is:

T = Nle, /L?
.25 £/ , (2.50)
KT 313 k=0 exp(a + \2e,/L?) — 1
and (2.40), which determines «, becomes
p=L % ! (2.51)

L3 k=0 exp(a + A2e, [L?) — 1

This pressure is the average of (—3e/d V) = (—d€/dL)/3L? and therefore represents the force re-
lated to changing the volume of A without changing its shape.

To obtain the equation of state p8 (p, T) in the bulk limit one should first eliminate « between
(2.50) and (2.51) and then let L - o=. On the other hand for a fixed « > 0, the limit L —» < for
the two functions (2.50—51) can be taken right away since the sums go over to integrals by defi-
nition. Then one gets, using (2.49):

gr
pF 2 x 2 *V2 dy =;\1_3 g5p(@) (2.52)

KT 33§ e _ 17

* See Kac [49]; also McKean and Singer [50].
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oo

1 L 2 gy =;\1_3 2y/2(@) . (2.53)

AS 8 eoz+'x -1 \/77—

A difficulty arises (as Einstein already noted) when a approaches zero. Since g, /z(a) is mono-
tonically decreasing with the maximum value g;,,(0) = ¢(3) at @ = 0, it seems that there would be
a maximum value of the density equal to p (T) = £(3)/\3. In fact, the Bose functions g, (a) are
analytic functions only for & > 0 (see Appendix 2.A), and the procedure of letting L - o« with «
fixed is not valid for a = 0. To resolve this difficulty one must allow for the possibility that « - O
as L - o, and clearly one must be careful with the order of the two limits. First we consider that
e, =0, which is the case for Neumann and periodic boundary conditions. Indeed, for any finite L
it follows from (2.51) that p is infinite when & = 0. Suppose that « ~ ¢/L3 as L - o, where c is a
constant. Then the £ = 0 term of (2.51) is

p~

L SV S (2.54)
L3e*—1 L3a ¢
On the other hand, for k > 0, a is negligible compared to A2 ek/L2 (note that e, is a number);
therefore one can put & = 0 in all these terms and for L - oo their sum can again be replaced by an
integral, giving {G)/A> = p,. If one now chooses ¢ = 1/(p — p_) so that & ~ 1/[L3(p — p,)], then
(2.51) becomes the identity p = p_ + (0 — p.) when L — e and this must therefore be the correct
asymptotic behavior of «. Then for the pressure one sees that with this o even the first term of
(2.50) goes to zero for L - =, so one concludes that (2.52) remains valid for all « = 0. Thus for
p > p. the pressure stays constant and is equal to:

Pe D=3 8n @ =50, p> (255)

Clearly this argument needs more mathematical scrutiny. It has been made mathematically respect-
able by Lewis and Pulé [27].

For the more physical Dirichlet boundary conditions the argument must be modified slightly
because then e, > 0. From (2.50) and (2.51) one sees that the smallest value of « is now negative,
namely —A%e,/L%. When p > p, one must now consider that a goes to zero as a + A2ey/L? ~
1/[L3(p — p.)] and one obtains the same results as before.

Therefore for both the Dirichlet and Neumann boundary conditions we have

kT
I gs2(@) , p<p>
p¥(p, T) = (2.56)
kT
)\_3 §G), P> P, .

The results for the generating function of the energy density u8" = U8'/V follow immediately
since u8" = 3 p& as is evident from (1.136) and (2.50). Note that we introduce the energy density
u®* so that the bulk limit exists.

For the entropy there is the difficulty that the generating function S® as given by (2.36) cannot
be calculated simply in terms of the single particle states. However, the grand canonical entropy
(1.37) can be used in its place, because the difference between the two, which is given by (2.37),
vanishes in the bulk limit. This can be argued simply by noting that the factor e~ *V Z, /Z8" must
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go as 1/¥V as V = o to maintain its normalization to unity, and therefore that (2.37) goes only as
In V, while S& and S8 are proportional to V. In the bulk limit 58" = S#'/V can be found in a manner
similar to p#*, with the result that

Sk
2)\ gs/z(a)+kpa, p<pc ’
s¥(p, D =sp, 1= | 5 ) (2.57)
i ¢3), pP>p, .

Next we calculate the Kac density »(x, p) = v(x, p; T), by means of the characteristic function
of the distribution:

. it . —aN T 3
(elENIVy = Z} clENIV € Z(N, A\, T) = Z8(a—iE/V, A, T) ) (2.58)
N=0 Z8 (o, A, T) L (o, A, T)

Evidently this is the Fourier transform of v(x, p) in the limit of V —» o, if a = a(p, A, T) is deter-
mined by (2.40):

oo

lim <ei5N/V>=f w(x, p) ei¥* dx . (2.59)
Ve 0

The limit of (2.58) can be calculated in a manner similar to the generating functions such as the
pressure. When p < p_, a can be fixed and determined by (2.53), and using (1.134) for Z%" and
(2.49) for the density of states, it follows that

o L’ . L3 , =
In (eltVVy ~ F gs/z(a —i&/V) “5\‘3‘ g5/2(a) ~ 13\% g3/2(°‘) =ikp, (2.60)
as L ~ o. Again when p > p_ it is necessary to take a + N2ey/L* ~ 1/[L3(p — p.)] forthe k=0

term of Z8" (1.134), while for the rest o« can be taken to be zero and the sum replaced by an inte-
gral. This gives

3 : 3
In (el&NVy ~ % gs;2(a) —In {3—1—— — ‘I_E } — 5_3_ 85;2(0) +1n ———
A L>(p™—p.) A L(p-p)
~;i3 @) —In(l — (o — p,)) , (2.61)
as L —» o, or
igpc X —
(elENIVy ~ © f dx exp{ Pe _ iEx} . (2.62)
1 —i(p — pc) p -~ Pc P =P

N

By virtue of (2.59), the results (2.60) and (2.62) imply that

p<p,

v(x, p)=86(x — p), (2.63)
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p>p,

0 3 X < pc s
v(x, p) = (2.64)

1 X — P
——XP R x> p. .
p_pc p_pc

For p < p,, this implies by (2.41) that all f(p, T) are identical to their corresponding f&(p, T).
When p > p_, v(x, p) as a function of x is distributed over all densities greater than p_. A plot of
v(x, p) as a function of x is given in fig. 2.3. In this case f8(p, T) is an integral transform of f(p, T).
The inversion is simple because all of the /® that we have calculated depend upon p only in integral
powers of p — p., and from (2.64) one can verify directly that

D (k= p)
(0 —p)*= [ w0~ dx. (2.65)

0

Therefore the transformation from f8(p, T) to f(p, T) for p > p, can be accomplished by replacing
the factor (p — p_)* in each term of the former by (p — p.)/k!. This can be written formally as

flo. =5 6 Lexpl(o —p)r) 2+, 1), (2.66)

by virtue of (2.19). In fact, the integral transformation with v(x, p) of (2.64) is basically a Laplace
transform, and (2.66) can be recognized as the general inversion formula.

Especially if f8(p, T) is independent of, or proportional to, p — p_, then it is identical to f(p, 1),
and vice versa.

Therefore p, u, and s are identical to p®", u®, and 8", since for p > p_ the latter are all indepen-
dent of p. This proves the results (2.1) and (2.8) of the previous subsection. Note that this also
implies that all of the bulk thermodynamical properties are identical in the canonical and grand
canonical ensembles, for all values of the density.

Fig. 2.3. The Kac density v(x, p) plotted as a function of x for a given fixed p (greater than p¢) and at a fixed temperature. The
mean at x = p is shown by the dotted line.
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d. Calculation of the occupations of the states and their fluctuations. The generating functions
are given by (1.138—139), and the discussion of the limit V' - e« with p determined by (2.40) is
similar to that of the pressure. One finds for the excited states k > 0,

fm T R (2.67)
im = lim =0, )
V2

Voo YV —>o0

while for the ground state,

(no)gr 0 ’ P < pc ’

pm oy T (2.68)
P — pC s P > pc 3
(ng)gr 0 ) P < pc ’

lim = (2.69)
e v 200 —p)*, p>p, -

Note that we must divide by ¥ and V2 to make the quantities intensive. Using the inversion
method that has been derived, the corresponding canonical quantities can be calculated. Thus it
follows that these occupations and their fluctuations are the same in the canonical ensemble,
except for the mean square occupation of the ground state, which is 2(p — p,)? above but accord-
ing to (2.65) or (2.66) is equal to (p — p,)? in the canonical ensemble (when p > p.). Hence, the
fluctuations are zero, as stated in (2.16).

Note that we have also found that the fluctuation of the density of particles in the ground state
in the grand canonical ensemble is not zero, since according to (2.68) and (2.69),

(Ang)»® (n2)¥ — ((ny)¥)?
im — — = lim
V= oo V2 Voo _VZ_
These are huge fluctuations in an infinite system that occur even at 7 = 0. This is in sharp contrast
to the canonical case. We will discuss this result further in section 2.4.

e. Calculation of the density matrices. In the bulk limit (2.39—40) the generating function of
the s-particle reduced density matrix (1.140) clearly becomes

=(p—p,)*. (2.70)

s
e, rsp, Ty = L 11 o, rl 0, T) 271

p{r‘s} i=1
for all p, and we need only consider p§" (1.141). In terms of y, and ¢, it is

oo

1 1
PE (', r o, A, T = 20 —
! k=0 L3 exp(a +A%e, /L?) — 1

In the one phase region p < p, the limit L - oo can be taken with « fixed and determined by
(2.53), with the result:

ye" /L)y, (r'[L) . 2.72)

ey, r";p, )= —1—3 Z) =32 exp{—aj — wir' —r"*[iN2}=F(r'—r"l,a, T) . (2.73)

This follows by expanding (2.72) in powers of e~® and using a generalization of Weyl’s theorem,
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which states that
kE exp(—te,) yr(r") v, ') ~ 1= exp{—mlr' —r"?/t}, (2.74)
=0

as ¢t - 0, for all shapes of the region A, and for all boundary conditions as long as neither r' nor 7"
is on the boundary of the region. When p > p_. one must take a > 0 as before, in which case the
k=0 term of (2.72) gives a special contribution while for all the terms k > 0 one can set o = 0 and
use (2.74), with the result ¥

pF (', r"p, ) =F(r' —r",0, )+ (p — p )|y, (0)1* . (2.75)

This result leads to the following difficulty. With the Neumann boundary conditions, y, = const.
=] and therefore the diagonal element of p§" becomes p. + (p — p.) = p as it should. However
with the more physical Dirichlet boundary condition, the ground state y ,(§) is not constant so
that y ,(0) # 1 in general, and therefore the diagonal element which is the local density differs
from the average density p and depends even upon the choice of the origin! The reason is that the
ground state (which is macroscopically occupied) varies smoothly over the whole region A, and
when the volume is made infinite the local density is any finite region about the origin becomes
constant at a value that depends upon y,(0). Thus the bulk limit for the density does not exist in
the usual way. If the average density were fixed not at p but at a value that makes the local density
given by the diagonal element of p§ equal to p, then clearly (2.75) would be replaced by

P r" p, H=FUr'~r",0, 1)+ (@ —p.), P>0p - (2.76)

We will use this expression in all of the following. Note that it also follows from (2.75) by averag-
ing the latter over all choices of the origin. In any case, this “renormalization’ of the density does
not change any of the relations between the thermodynamical properties since they are all inde-
pendent of the density when p < p_. Clearly the variation of the density is a pathology of the
ideal gas, and one would expect that for an interacting system (say with a hard core repulsion)
that this problem would be removed.

Thus, the bulk generating functions of the s-particle density matrix is given by (2.71), (2.73)
and (2.76). Evidently it depends upon powers of p — p, (when p > p_) from zero to s, and the
general inversion (2.66) applies and leads to (2.17) for the canonical density matrices. This com-
pletes the derivation of the bulk canonical properties.

Actually, it should be pointed out that the fact that the bulk canonical properties and the bulk
generating functions are related by the integral transform (2.41) does not really follow simply
from (2.34), since there is the delicate question of interchanging limits. This step has been justi-
fied by$Cannon [26]. Also, he was the first to derive the general expression for the density matrix
2.17*.

Since the generating functions are all identical to the corresponding grand canonical averages
(in the bulk limit), we have been led inadvertantly to the following surprising situation: The
canonical and grand canonical ensembles differ in their predictions for some of the bulk properties

* This expression has been derived with more mathematical detail by Lewis and Pulé [27].

* (Unpublished notes.) Note that the two particle distribution function (2.27) was first derived by London [16] and also by
Placzek [51] in the one phase region only, and is called the London—Placzek formula. Note also that in the grand canonical
ensemble the density matrices have been given recently by Girard [52], and the distribution functions in the one phase region
by Jaen [53].



210 R.M. Ziff et al., The ideal Bose—Einstein gas, revisited

of the IBG, especially ((An,)?*) and pg fors 2 2, in the condensed region, while (x,), p,, and all of
the thermodynamical properties are the same. The fluctuations in the average occupation of the
ground state according to (2.69) and (2.70) are quite different in the two ensembles, as we have
already noted. Compare also the density matrices, which in the grand canonical ensemble are given
by (2.71,73,76). In the off diagonal limit, in which all primed coordinates are far from the
double-primed ones, they evidently behave as

0, p<pg,
sgr(r's’ r's;p’ T) - (277)
stp—p), p>p.,

which differs from the canonical ODLRO (p — p.)* as given in (2.29), when p > p_. The diagonal
elements of the density matrices are the grand canonical distribution functions, and one can show
from (2.71) that their cluster functions defined according to (2.30) are given by

g0, D= 25 o8y, 10, 1) p8 (g 150, T) o p¥(rg, 150, T) (2.78)
p{rg rs}
forall p. When p > p_ these differ from the canonical cluster functions (2.32) fors 2 2, and do
not satisfy the cluster property, since in the limit that all coordinates r, ... r, are separated far
apart,

0, pP<Pp
& (2.79)

s—D'p—-n), pP>p, -

The grand canonical system exhibits therefore DLRO in the condensed region.

In the grand canonical ensemble, the fraction of systems containing N particles is given by
e *NZ(N, A, T)/Z#¥ (a, A, T). The mean of that distribution is (N)&' = N# of (2.40), and about
that mean there is a fluctuation in number. In the bulk limit this can become a fluctuation in the
average density which evidently can be calculated directly from v(x, p):

o 0 p<p
2\gr > )
im SO - ) ux, p) dx = (2.80)
VeV 0 (0~pJ)*, pP>p,

using (2.65). Thus in the condensed region there are fluctuations in the density of the entire sys-
tem. These cannot be directly compared to the canonical ensemble since by assumption the num-
ber of particles in that ensemble is fixed. Since (2.80) is identical to the fluctuations in the average
occupation of the ground state, the latter must be due to the former. And finally the DLRO (2.79)
can also be attributed to these density fluctuations, since the normalization of the grand canonical
density matrices is related to the distribution of N, by (1.116).

2.4. The significance of the grand canonical ensemble

The differences that we have just found between some bulk properties in the canonical and the
grand canonical ensembles are particularly striking because they represent infinite systems for
which it is usually supposed that the ensembles are equivalent. Therefore one might wonder at
this point which of the results are correct and why we have been preferring the canonical ensemble.
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Indeed, in terms of calculational convenience the grand canonical ensemble is clearly preferred, as
we have seen. In this section we investigate the grand canonical ensemble and show that it loses its
validity for the IBG in the condensed region *.

This ensemble, as defined in section 1.3, is normally thought to represent an “open system”
which exchanges particles with a resevoir that determines the temperature and the average density.
This is based upon the simple derivation of the grand canonical distribution (1.32) as the most
probable distribution when the exact number of particles and energy are not specified but only
their average values. Then according to (2.80) there should be huge density fluctuations in a con-
densed “open” IBG.

However, the relationship between this open system and the most probable distribution (1.32)
is not entirely clear. A more fundamental derivation of the ensemble for an open system is to con-
sider the properties of a system A that is part of a much larger system A’ described by the canoni-
cal ensemble (which in turn is in contact with a heat resevoir that determines the temperature). In
this way the grand canonical distribution also can be derived * but a careful examination shows
that some of the steps might be suspect in a two phase region. We will return to this point later.

In this subsection we will derive the fluctuations in density in the subregion A of an IBG by
direct calculation. That is, we consider that the system A (of volume V) is part of a larger system
A’ (of volume V') containing N' particles, as represented below:

N ®

The boundary between A and A" — A is an imaginary surface separating the regions, and A can
contain any number of particles N between zero and N'. The spatial distributions of the N' par-
ticles are described by the complete distribution function n(*¥’; N’, A") (which we shall later take
to be the canonical distribution but for now can leave general), from which ‘ne probability that
there are N particles in A follows:

CATOANY = N N NN, ,N' N’
PN, A;N', A) (-——N,_N)!N!l[dr _{'_Adr n@r™ ,N', A). (2.81)

Letting V'~ e with N'/V' = p = const., this gives the probability that there are N particles in A
when the total (infinite) system has a density p, namely:

PN, A;p)=lim PN, A; pV', A'). (2.82)

V' -0

Now letting V' - o« with N/V = x, this gives the probability that A (which is now also infinite) is at
density x when the larger total system is at density p, namely:

P(x, p)= Li)m VP(xV, A; p) . (2.83)

If indeed A were described by the grand canonical ensemble, then this should be precisely the Kac
distribution v(x, p), according to (2.42).

* This point has also been discussed by Johnston [28].
¥ See for example Huang [43].
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First we consider that n(r"¥'; N', A') is constant, which is the case for the IBG in the classical
limit (T - <) and also when T = 0. Then, to satisfy the normalization requirement it must be
equal to (V')~¥', and it is easy to show that

. "N = Nt . K. N lN’—N
PV, AN A = N () (-4 (2.84)
PN, A; p) = 3 0V eV, (2.85)
P(x, p) = 8(x - p) . (2.86)

This final result is in sharp contradiction with v(x, p) (2.64) at T = 0, where p_ = 0.
We now consider all temperatures. In general, (2.81) can be written in terms of the reduced
distribution functions as follows:

> (1N
PN, A;N', A =25

—_— S.N' ! s
by (R VY Y Af”s(’ VL A)drt (2.87)

where ng are defined according to (1.73, 79), namely
N oAy = N N.AT AN dpN'—
ns(rs,N,A)=W_—S)!{n(r SN, A drVs (2.88)

Note that in (2.87) the integral is over the subregion A while in (2.88) it is over the entire region
A'. Eq. (2.87) can be proven by the inclusion-exclusion method, namely by writing

J

'—A

N
N = [Ny T -em), (2.89)
2

i=N'—N+1

where ©(r) is unity when r € A and zero when r € A’ — A, and multiplying out the products of
the integrand. Now, letting V' — o with N'/V' = p, (2.87) becomes:

e 3 (DN ) drs
POV Asp) = Ti { ny(r'; p) dr* (2.90)

where this n, represents the bulk limit of (2.88). To take the next limit V' — e we must first intro-
duce the characteristic function of the distribution (compare with (2.60-62)):

o

. . o~ (eif/V _ 1Y
(elNIVy = NZ=)O NIV PN, A: p) = SZZE) Les—ll_)_ f ns(rs;,?) drs
A
i PEV 1y
=exp{Z% @———T—Qfxs(rs;p) drs}. (2.91)
5= : "

The last step is a consequence of the first theorem of Mayer ¥. Since in the limit ¥ - « the charac-

* See Uhlenbeck and Ford [22], {55] Ch. 2. Note that (2.90) and (2.92) have been given recently by Vezzetti [54]. Compare
also Kac and Luttinger [56].
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teristic function is evidently the Fourier transform of P(x, p),

lim <ei$N/V>=f eif* P(x, p) dx , (2.92)
0

V—>oo

the function P(x, p) can be found by inversion. Now, for the s = 1 term of (2.91):

Vo2

as V - o since x, = p always. For s > 2 we must refer to the explicit expression for x, (2.32) in
the canonical ensemble; when p < p_,

: . 1 g2 .
(elt/V — I)Afxl(r, p) dr= (1 s 1 I% .--)pV~ it (2.93)

Yoo

1 ,
lim /{ X, (r*; p, T) dr* (2.94)

clearly exists in which case all terms s 2 2 in (2.91) must vanish at least as fast as 1/V, as V'~ =,
and then from (2.91-93) it follows that:

P(x,p)=06(x - p), (2.95)
which agrees with v(x, p) of (2.63). When p 2 p_, the s = 2 term of (2.91) is given by

l2(eiE/V - 1)2 f Xz(rlsrz;P; 7 dl'l dl'2 =
A

=(—% ) SRR = 71,0, D1 + 20 — ) PUr, =11, 0, D} dry dry . (296)
A

Since according to (2.24) F(r, 0, T) ~ 1/r for large r, both terms of this integral go to zero as
V - oo:

V1/3 2
L [Fur,—r0,Dar dr,~ 3, f A gp~ v (2.97a)
VoA 0 r
1 1 " qmr
L [ tRur—r,0, D1 drydry ~ 3 [ 3 gr~ o2, (2.97b)
V2 Af 1 2 1 2 be r2

although not as fast as when p < p_. Further inspection shows that all terms for s > 2 vanish at
least as fast. Again only (2.93) remains and therefore P(x, p) is a delta function (2.95) for p > p,
also, sharply contradicting the prediction of the grand canonical ensemble (2.64). In particular
there are no fluctuations in the overall density.

Therefore, the properties of an IBG in a region A which is part of a larger system A’ are always
identical to those predicted by the canonical ensemble, in the double limit V, V' - <. The grand
canonical ensemble does not represent this (and probably not any) physical situation for the con-
densed IBG, and therefore its anomalous predictions should be ignored.

In the general derivation of the grand canonical ensemble for an open system, the basic assump-
tion is that the properties in the two parts A’ and A’ — A are independent, at least to the extent
that the interaction is a surface term. This is not the case for the condensed IBG and must be due
to the ODLRO.



214 R.M. Ziff et al., The ideal Bose—Einstein gas, revisited

Finally one might wonder how the grand canonical ensemble gives any property correctly of
the condensed IBG, as it does for the thermodynamical properties and the first reduced density
matrix. From the argument following (2.66) it follows that any canonical property f(p, T) that is
either independent of or proportional to the density p is also given by f8(p, T) = f8(p, T). This
only makes use of the fact that the density distribution v(x, p) is normalized to unity and its
mean is at x = p, and these two properties are basic requirements of any density ensemble.

2.5. The bulk properties of an IBG in d-dimensions

The methods of section 2.3 can easily be generalized for any number of dimensions d making
use of the generalization of the Weyl theorem, namely that the density of states g(e) is e?/2~1/T'(d/2).
Here we just list the results and omit the proofs.

The pressure, energy density, chemical potential, and entropy density are given by

kT
)\_dg“'d/z(a)’ pP<p.,
2
p(p, T)=Eu(p, = (2.98)
kT
Fg'(l-i-d/z), p>pc5
kTa, pP<p,
o, ) =(u— Ts+p)/p= (2.99)
0, P> P,
where a = a(p, T) is the unique root of
1
1Y =F gd/z(a) s (2.100)
and
pe = p(T) = S/ d23. (2.101)

For d < 2 there is no condensation and p_ is infinite. The expressions for p > p_ refer only to
dz 3.

For d 2 3 there is a first order phase transition at p = p, such that for greater densities (at con-
stant temperature) the pressure is constant and equal to p, = kT¢(1 + d/2)/A\?. We have plotted
the pressure isotherms, scaled by p_ and p_, in fig. 2.4. Also included are the curves for d = 1 and 2
for which there is no phase transition, and for which the quantity p, = po(T) = 1/A9 is used for
scaling the density. The analytic properties of the curves can be found using the properties of the
Bose functions g, (a) given in Appendix 2.A. The one dimensional IBG has no phase transition; its
isotherm is never flat and approaches the ordinate (p = 0) with slope

d(p/p.) _ox
e = ==~ -2405, (2.102)
(d(po/p)),,= o SGID)
while in two dimensions all derivatives are zero at p = p, . In three dimensions the first derivative
is zero and the second derivative is discontinuous at p = p_, as we have already noted, and in four
dimensions the first derivative is continuous and zero while all higher ones are infinite, at the tran-
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9,/

Fig. 2.4. The isotherm of the bulk pressure p (scaled by p¢) versus the specific volume 1/p (scaled by 1/p for d 2 3 and 1/p¢ for
d £ 2), for dimensionality d =1 to 5.

sition point. For d 2 5 the condensation point is reached with slope

dw/p,) _ [E(d/2)]?
(d(pc//o)),,:pc @2+ DidR -1 (2.103)

which approaches —1 as d > oo,

The condensed region p > p, can again be interpreted as consisting of two phases with the frac-
tion of condensed particles given by (o — p,.)/p = 1 — (T/T,)¥?, where T, is defined analogous to
the case d = 3. Again the thermodynamical properties are independent of the density for a given
temperature in the condensed region and therefore the condensed phase does not contribute to
the thermodynamics. One can also verify that the Clapeyron equation is satisfied.

The specific heat per particle at constant volume (density) follows from (2.98) and is given by *:

" e -

2\2 T, tdrR)

It is plotted in fig. 2.5 as a function of the temperature, scaled by 7, ford = 3,4, and 5, and T,
ford =1 and 2, where T,(p) is the solution of p,(T) = p, as T, is the solution of p (T,) = p.

As we have noted earlier, at 7 = T, there is a discontinuity in the first derivative of the specific
heat, for d = 3. When d = 4 the specific heat itself is continuous, but on the right hand side of the
transition point 7~ T the second and all higher derivatives are infinite. For d > 5 there is a dis-
continuity in the specific heat itself. Note that by virtue of the relation u = (d/2)p (valid only for
an ideal gas) there is a direct relation between the discontinuities in the specific heat and those in
the equation of state.

CU
k

pP>p, -

* This formula has been given by May [57].
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Fig. 2.5. The specific heat per particle as a function of the scaled temperature, ford = 1 to 5. Ford = § the curve is shifted.

The average occupations of the energy levels and their fluctuations can be calculated, and the
bulk behavior for all d > 3 is exactly like the three dimensional case. Likewise the bulk density
matrices are the same except that F is now

o0

F(r,a,T) =)\i 23 4 exp(—aj — art/iA2) . (2.105)
j=1

The discussion of the DLRO and the ODLRO in the condensed region for d > 3 is the same as
that for d = 3.

Appendix 2.A: The Bose functions

These functions are defined by

oo

= 1 ~ tn_l dt =E —n ,—ajf

for « > 0 and all #, and also @ =0 and n > 1. In the latter case,
g,0=2 /7" =¢(n), (2.A2)
j=1

which is the zeta function of Riemann. The behavior of the Bose functions about & = 0 is given by
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l"(l—n)an—1+2§(n_k)(__"“—)k’ ne1.2.3. .
k=0 k!
ga(0) = . 3 (2.A3)
(_a)n_l _1_ _ (_a)k =
n—1)! l:_ln“"'mzjl m]+k§o §(n — k) A n=1.2,3,...
#n—1

(In the second formula, for the case n = 1, the sum over m should be interpreted as zero.) At a =0,
g,(a) diverges for n < 1;indeed for all n there is some kind of singularity at « = 0, such as a
branch point.

The expansions (2.A3) are in terms of {(n), which for n £ 1 must be found by analytically con-
tinuing (2.A2). With the asymptotic properties of the zeta function it can be shown that the &
series in (2.A3) are convergent for |«| < 27. Consequently (2.A3) also represents an analytic con-
tinuation of g,,(a) for a < 0. As shown by Robinson [58], these expansions can be derived most
simply by means of the Mellin transformation,

G,@s) = f g,(a)a* da=§(n +5)T(), (2.A4)
0

which can be formally inverted as follows:

ctioo

-1 —s
gale) =5 [ Gu®)e*ds, (2.A5)

c—joo

where ¢ is to the right of all the singularities of G,(s). The contour can be deformed to encircle
just the singularities, and since the contribution of the semi-circles vanish, g, (a) can be found by
evaluating the residues, and this gives (2.A3).

When a > 1 the series (2.A1) itself is rapidly convergent, and as « > o, g, () ~ e~ for all n.
Some plots of g,(a) are given in fig. 2.6. Accurate tables have recently been given by Kincaid and
Cohen [59]. Also, a table of the zeta functions has been compiled by Gram [60].

~N=-1/2
[»]

Fig. 2.6. The Bose function g,(a) forn = ~1/2 to 7/2.
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3. The thermodynamical properties of an IBG in a finite volume
3.1. Introduction

In this section we study the properties of an IBG in a large but finite volume. The motivation is
to show more explicitly how the bulk limit is reached and to discuss the surface properties,
especially the surface tension.

To be specific we consider a d-dimensional box (rectangular parallelopiped) with sides L, L,, ...
... L;. We will always assume that the L, are large compared to the thermal wavelength, so that

L= LA> 1 3.1)

(since A must be finite this excludes the point 7 = 0) and also for simplicity that the I, are all of
the same order of magnitude. The energy levels are given by

2 2
_w|™ ny
Be"l---nd _Z{F+...+IT s (32)
1 d
where
n;=1,2,3,.. (Dirichlet boundary conditions, ¢ = 0) , (3.3)
and
n;=0,1,2,.. (Neumann boundary conditions, dy//on - 0) . 3.4
We will also consider the case of periodic boundary conditions, for which
= i ng, 3.5
Benl...nd—ﬂ ;2_+"'+;2—'} s ( )
1 d
where
n; =0,x1,£2,... (periodic boundary conditions) . (3.6)
We will use the ratios
w =LiI=LJL (3.7a)
where
I=L/N, L=, L,...LHY?. (3.7v)

Thus w; describe the shape (relative dimensions) of the rectangular box and satisfy w, w, ... wg; = 1.
We will also use the abbreviations

2 2
n n
nr=1 4 Ma M>=m2a? + ..+ mia? | (3.8)
w? w?
since these combinations will occur quite often. As in section 2 we will use the dimensionless
energy levels e, defined by ‘

Be, =e/l1?, eg e, Sey .. 3.9)

We restrict ourselves to the discussion of the thermodynamic properties and start with the
grand partition function.
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3.2. The grand partition function Z®
According to the general definition (1.134),
In Z% = 25 —In{1 —exp(—a —fe, | 0 - (3.10)

ni

To discuss the sums over #n; for all values of a, we begin with the case of periodic boundary condi-
tions for which the analysis is most straightforward. Furthermore, as we shall see, the results for
the other boundary conditions can be expressed in terms of these results ¥

a. Periodic boundary conditions, a/? > 1. By expanding the logarithm in (3 10) and using (3.5)
and (3.8), one gets

In Z8(a, 1y, ... 1;) = nZz) ’Q i~ exp{—j(a + aN?/I?)} . (3.11)

The subscript O indicates the periodic boundary conditions, and the sum over »n; means a product
of sums fori = 1, ... d. Interchanging the sums and using the identity ¥

T exp(—man?)=—— T exp(-mm?/a), (3.12)
S Jam=—w
one gets
In Z8& =14 25 j~1-42 ¢=o 25 exp(—mI*M?[j). (3.13)
. j=1 mi=—oo
Splitting off the m; = 0 term (m, = ... = m, = 0) and approximating the sum over j by an integral

(following Greenspoon and Pathria [29—-31]) one gets:
InZ§ ~1% g, 4,(a) + f dr t71792 exp(—al?t) > exp(—tM?/t) , (3.14)
0 my

where the prime denotes that the single term m; = 0 is omitted from the summation, and where
1%t =j. The g,(a) are again the Bose functions described in Appendix 2.A. This approximation is
justified in Appendix 3.A for large / by showing that the error induced is of order O(e~*). Note
that the second term in (3.14) is a function of just a/? and the shape parameters w;. Interchanging
the sum and the integral and using

¥ There has been a long interest in the analysis of ZB" for a box. Indeed some of the expressions in this section have been given
(wholly or partially) by Greenspoon and Pathria [29-31], Chaba and Pathria [61], Kruegar [62], and Sonin [63]. See also the
related results of Barber and Fisher [64], Carmi [65], Ziman [66], Osbourne [67], Fraser [68,69] and Fowler and Jones [70].
* This is a Jacobi theta transformation and is a simple result of the Poisson summation formula,

E fn) = E f (%) exp(2nimx) dx ,

m=—oo

for f(n) = exp(—man?). (See for example Whittaker and Watson [711)
¥ See Erdélyi et al. [72] p. 82, eq. 23.
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K,@=5a" [ exp{—(t+a?/n)j2bt """ at, (3.15)
0
where K, is the modified Hankel function of order v, one gets the final result,
' al2 dj/4
InZ§ = ldng/z(a) +2, 2(72) Kd/2(2\/7ralM) . (3.16)
mj m

Since for half integer order the K can be expressed in elementary functions, one gets simple expres-
sions for d odd. Especially one gets for:

d=1
In Z& (e, 1) = 15, (a) +2 25 an exp(—2v/malm) (3.172)
m=1
d=2 -
In ZE(a, 1, 1) =~ Pgy )+ 5 5 & V§K1(2\/31M), (3.17b)
my, mo=—o° M s
M?=mlwl+miwl,
d=3 _
- ! 1 l «
In Z&(a, 1,15, 13) = DBgg () + 22220 ( 4+ Vi)exp(—Z\/—ﬂalM), (3.17¢)
0 R 512 mymymy \2gM3  M? n

2~ 2,2 2,2 2,.2
M*=miwi+myw; +tmjw; .

1t is not difficult to justify the various interchanges that we have used.

b. Periodic boundary conditions, 0 < «/? < 1. Although the expressions (3.17) are valid for all
a when [ > 1, it is clear that the series converge quickly only when a/? is large compared to 1, so
they are only useful in that case. From the discussion in section 2 we expect that in the condensa-
tion region, a ~ N3/V = 1/I3 for d = 3 so that a/? will be very small. Furthermore from the same
discussion one must expect that then In Z# will become singular as In «. This singularity must sit
in the sums of (3.17). Finally one cannot expand (3.14) or (3.17) in powers of a/? because each
is singular for a/? = 0. So one must proceed in a more sophisticated way.

Going back to (3.14) we transform the integral by writing

f(U) = f dr t*l~—d/2 e—at E' e—‘lTM2/t , (3.18)
0 mi

where ¢ = o/?, and introducing the Mellin transform as in Appendix 2.A:

F(s) = f £(0)0*1 do =T'(s)T <s +‘—i) I —
0

2) i (mmyar ¢

b4

since the integrals over ¢ and ¢ can be evaluated in terms of I'-functions. Call:
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C. (o ) =T() 0 —L_ | G>dJ2), (3.20)
n; (wN?)?
then clearly:
1 1
F(s) = T5) Cyps (Ul Ud‘) . 3.21)
Note that in one dimension,
— 1
C, =T 2 = 21 T(2) £(22) | (3.22)
—e (gn?)

so that C,(w,,... w,) is a kind of generalization of the Riemann {-function to d-dimensions. In a
way similar to the derivation of Riemann’s integral representation of {(z), one can show (see
Appendix 3.B for some details):

Cz(wl O.Jd) = z—-_?i/_2

where E,(z) = [~ dtr t~" e”* = z"I'T(1 — n, 2) is a form of the incomplete I'-function. From
(3.23) also follows the reflection formula:

1 ! ’
— ot D E,_ N+ D By gy (TM?) (3.23)
n; mi

C,(wy . wg) = Capn, ('0171 61;) . (3.24)
Inverting the Mellin transform (3.19) and using (3.21, 24), one gets formally:
1@ =k [ 0 T O, 000 (3.25)
i (Wi wy), .

where the path must be taken to the right of all singularities. Now it follows from (3.23) that C_|
is an analytic function of s except for the two poles at s =0 and —d/2. ['(s) has poles at s = —k
(k=0, 1, 2...) with residues (—1)*/k!. So the integrand of (3.24) has a double pole at s = 0, single
poles at s = —k and s = —d/2 for d odd, or double poles at s = 0 and s = —d/2 plus the remaining
single poles of I'(s) for d even. It is easy to show that the integration path may be deformed to a
set of small circles around the poles, and by calculating the residues one gets for:

d odd

_ = k
f(0) = ~In 0 = T(~d[2) 0% + Cy(@, . ) =7+ 2 O ;o wg) (3.26)
d even a2
—g)d/? _
flo)=—-Ino+ ((d%!— [ln oty — El ’;11—+ Cypz(w, ...‘wd)}
_ = Nk
+ Gl w0g) =7+ 10 O ey 00), (3.27)

#dJ2
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where
Co(w; . ) = lim [c,(w1 ) +ﬂ= _.ﬁ_+ 2 E,(aN?) + 2 Ey_gp(iM?) (3.282)
z— n; m;
= - 1 =~ {1 1
Can(@, - @)= lim [Cz(wl... w,) ‘7-‘3/‘2] =¢C, (UI w—d) , (3.28b)

and y = Euler’s constant = —0.572 ... . Note that at o = 0, f(0) has a logarithmic singularity and
also a branch point, apparent in the second term in (3.26) and (3.27). Using these results in (3.14)
one finds for:

d=1

In Z§(a, ) = 123;(@) — Inal?) + ie « cp,
=0

C(?E CO -, (3.293)
ce=c¢,, k>0,

d=2

In Z8(e, 1, 1,) ~ 1%g,(a) — In(al®) + al? In 12 + ’;E( =) co(,, ),
V]

Co(wy, wy) = Cylwy, w,) — 7, Co(w,, wy) = Cy(wy, wy) +, (3.29b)
Ceolw,;, w,y) = Ek(wl’ w,), k>1.
d=3*%
N (_~12YK
InZ§(a, 1,15, 13) = 1355/2(‘1) — In(al?) + ,FZ% ( aﬁ .I, ) CR(w,, w,, w3),
Cowy, Wy, w3) = Colw,, w,, w3) — 7, (3.29¢)
C}?(w1>w2’ w3)ECk(wl, w2, w3), k> O,
where
g,(e) — (1 — ”“Ef(n— SRy nt1,2,3..
g (a) = . . (3.30)
a1 1 Nk
gx(e) _(E "L)I : [—lna+'§l %] =k§) $n — k) (—"‘ ,) , n=1,2,3...
#n-1

In arriving at these final formulas, evidently the branch point terms of f(a/?) and [ dgl+d/2(a) have
exactly cancelled out. Now, these expressions are equivalent to (3.17) but clearly useful when
al? < 1 since then the (—al?)* series are rapidly convergent. In fact, from (3.20) it follows that

* Zasada and Pathria [73] have recently given an expression equivalent to (3.29¢), using a different but related derivation. The
relationship is discussed by Ziff [74].
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those series are only convergent for |a/?| < m, where [, is the largest dimension.

The coefficients C;(w, ... wy) depend only upon the shape parameters and are independent of
the volume of the system. For k > d/2 they are given by the simple lattice sum (3.20) while for
0 £ k£ d/2,(3.23) (which is always valid) must be used. For the particular case of d = 1 we have
the explicit expressions for C in terms of the {-functions (3.22) for £ > 0, and even C, can be
written explicitly as follows:

C, =lim [2n~=r(z) t(2z) + -l—] =y+1Indr. _ (3.31)
z—+0

Indeed the second term in (3.17a) can be written simply as
—21In(1 — exp(—2v/mal)) = 2g, 2V/7mal) , (3.32)

and this can be expanded to give (3.22, 29a, 31) directly, using (2.A3).

¢. Connection to the Dirichlet and Neumann boundary conditions. The grand partition func-
tions Z% and Z¥ for the Neumann and Dirichlet boundary conditions on the box respectively
can be expressed in terms of the Z§" (Pathria [75]). Using the energy levels (3.2—4) one gets for

d=1

—_— o0

InZ¥(e, )= 27 —In(1 — exp(~a — mn?/41?))

n=1{?}
=1 'Ezm (1£34,0)[—In(1 — exp(—a — 7n?/41?))] = 3 [In Z§(a, 20) £ g,(a)] . (3.33a)
Quite similarly one gets for
d=?2
In Z8(a, 1,,1,) =5 (In Z§ (o, 21,, 20,) + In ZE (e, 2,) * In Z§ (a, 21,) + g, ()] , (3.33b)
d=3

In Z5(a, Iy, 1, 1;) =  [In ZE(a, 21, 21,, 21,) + In ZE(a, 21;, 21,) * In ZE(a, 21,, 2,)
+1n Z8 (a, 21, 2) + In ZE(a, 21,) + In ZE (e, 20,) + In ZE (e, 21,) + g, ()] . (3.33c)

d. Dirichlet and Neumann boundary conditions, a/? > 1. Using (3.17) and (3.33), one gets for
d=1

In Z8 (a, 1) = lg55 () 38, (a) + O(exp(—2v/mal)) . (3.34a)
d=?2

InZ¥(a,l,1,) = 12g,(a) £ %(11 + 12)8’3/2(‘1) + %gl(f!) + O(exp(—2/mal)) . (3.34b)
d=3

In Z8 (e, ), 1, 13) = PPggp(a) £ 30,1, 1l +150,)8,(0) + 5, + 1,4 1,)g5, 5(0) 3, (@)
+ O(exp(—2v/Tal)) . (3.34c)
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Although the explicit form of the O(exp(—2+/mal)) term also follows, it is a complicated expres-
sion and will not be needed.

e. Dirichlet and Neumann boundary conditions 0 < a/? + ¢, < 1. Now one must use (3.29) for
Z§ in (3.33). For d = 1, one gets:

(4al)

In Z§ (a, 1) = 1g35(a) £ %gl,z(a) 02 DIna—3ndi?+4 E cy e (3.35)
Thus for the Neumann case one has for
a=1
In ZE(e, 1) = I8, 5(@) + 32, (@) — In ol? + Z) c: (_“,‘;f_) ind4?
(3.36a)
C; =34k CP .
Likewise, one gets for
d=2
InZf(a,l,,1,)= l2§2(a) +%(l +7 )§3/2(a) + %gl(a) —al?’In4l? —Inal?
i 12)%
~in 4 + D Cllwy, )( hoaly (3.36b)
Cilw,, wy) = 45 CR(w,, w,y) + wf"C,? +wikCP] .
d=3
In Zfr(a:lplz,lg) = l3§5/2(°‘) + %(1112,1213,l3ll)§2(a) + %(11 +12 +l3)§3/2(a)
+32,(@) —Inal?—§In 42 —Ja(,l,Inl 1, +1,1,Inl, 0, +1,0, Inl,l,) + f; CiHw,, w,, w )(_alz)k
1 23 1M Egly) T G (W, W, W) o —
(3.360)
Ci(w,, w,,w;) =34k I:C,‘c’(wl,wz,wa)+(wlw2)"c,?( ! , ! ) +w1"Ck:|
(X 3] Ww, Vw w, (x3]
The [X 3] in the definition of C; indicates the addition of two more terms with the indices
cyclically permuted. Also, when k > d/2, C; can be written
’ —k
CHwy, o wy)=(k— 1! 25 (%1\”) : (3.37)

in which the n; = 0 term is omitted.

Now however for the Dirichlet case there is the difficulty (going back to (3.35)) that the expan-
sion is about a = 0, while we require an expansion about the first singularity of Z&" which accord-
ing to (3.11) is at « = —e, /1> = —w/4]* for d = 1. Note in (3.35) for the Dirichlet case (—) there is
no In « term, and also that the (—al ?)* series is convergent for {a/?| < 7/4 only. We want to put
that first singularity in evidence.
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Using the explicit expression for C¢ = C, (3.22) in (3.35), the (—4al?)* series can be summed
for k> 0:

0

Z) G“”"“’—)'(k—n' 2

n=1 [7n

b 2
=2 —In ( 4ol ) , (3.38)
2]k n=1 n?
and has therefore logarithmic singularities at « = —mn2/4{% = —e, /I?, as does the exact expression
for In Z# (3.11). Splitting off the first singularity above at @ = —w/4l? = —e, /I? and expanding

the rest about that point, one finds:

d=1
_l? !
In Z8(a, 1) = I3,,(a) — 12, (a) — In(ad? + w/4) — §In [2 + Z) c; M—,
C; =k —D'@&m* 22 n*— 1), (k>0). (3.39a)
n=2

The expression for the constant C; can also be found, but will not be needed for our discussions.
Likewise, for d = 2 and 3, one finds

d=2
In Z8(a, Iy, 1) = IPg,(a) — 3, +1,)855(0) + 38, (@) — d? In 4% — 3In [? — In(al® + ¢,)

l2__ k
* Z) Cr (wy, @ 2)£i_"')_, (3.39b)

o0

Cr(wy, w) =k — DI T (N4 — eg)~¥ k>1),

nyjn;=1

€, %( Tt wr?).

d=3
In ‘ZEr(a,ll,lzal3) = 1355/2(‘1) - %(1112 +lzl3 +l311)§2(0‘) + %(ll +12 +l3)§3/2(°‘) - %gl(“)

. ) ) (—alz—eo)k
—3In 12— In(al? + eg) + S Ul Infyly + Ll In Ll +1yl 1n11)+Z) Ci (@3, @ w3) —;
Cp (W, Wy, wy)=(k — 1! 2 (TN?4 —e,) 7%, k>1), (3.39¢)
ninanz=1
ey =T (Wit wy it w3?).
0= 2 3

Again, expressions can also be found for C; and C[, but they will not be needed here. The im-
portant fact is that they depend only upon the shape parameters of the box. The prime on the
summations above indicates that the term n, =n, = 0 or n, = n, =n, = 0 is skipped.

It is interesting to note that for all boundary conditions and all d, the C, that we have found
for k > d/2 can all be written
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G, (wy, .. wy)=(k —1)! Z)l (e, — ey %, (3.40)

where e, are the set of energy levels (dimensionless) representing the system. This suggests that the
results may be generalized to a region of any shape by inserting its energy levels above. In fact, all
of our expressions (3.29, 36, 39) for the grand partition function satisfy the following relation:

oo

iz_ In Z% ~ fg(e) de{ exp(a + e/l?) B 1 + Z) 1 , (3.41)

da? lexpla +e/l) — 112 [a+efl?]?] k=0 [a+e,/I?]?

where g(e) is the density of states, taking into account the surface corrections. These expressions
were of course derived as approximations of (3.11), which after two differentiations after « is

2 i 2
O jnzw=3 __ SXplatel’) (3.42)
da? k=0 [exp(a +e,/I?) — 1]?

Comparing this and (3.41) puts the approximation (3.14) in evidence: the “‘singular part” of this
summand is split off before the sum is replaced by an integral. One would expect that (3.41)
should apply to any set of energy levels, with the same error of O(e*). Later in this section we
will give the expression for the density of states g(e) including the surface term, for a general shape,
and in section 4 we will make use of (3.41). This method can be applied to Z?8" itself, with the
addition of a convergence factor and limiting procedure. In this way the results of this section can
in fact be generalized to a system of arbitrary shape (see Ziff [74]).

These various results will be discussed in subsection 3.4.

3.3. The canonical partition function

In conformity with our basic postulate that the canonical ensemble describes all equilibrium
properties of the system, we now calculate the canonical partition function for the box. This will
make use of the results of the previous section, since according to (1.32) the grand partition func-
tion is the generating function of the canonical partition function. That relation can be formally
inverted as follows:

ctiooe
Z(N, A, T) = %{—1 do eV ZE (o, A, T) (3.43)

c—io

where the integration path must be to the right of all singularities. We will consider only the three
dimensional box, for which A» L, L,, L, withl;=L,/xA> 1.

For the discussions of Z8" we have distinguished the two ranges of , a/?> > 1 and al? + e < 1.
As a consequence of that it will turn out that the discussion of Z(N, A, T) must be divided into
two ranges of N, which will correspond to the one phase and condensed regions in the bulk limit.

a. The “one phase” region. The integral in (3.43) can be approximated by means of the well
known saddle point method ¥ with the result:

* See Fowler [76], or textbooks such as Huang [43] Ch. 10.



R.M, Ziff et al., The ideal Bose—Einstein gas, revisited 227

ag+ioe eaoNZsr(ao A, T)
ZN, A, T) = da exp{G(ay) + (@ — 2g)>G"(ay)/2} = ' ’ , (3.44)
&{—lw VvV 2nG (ao)
where G(a) = In Z% + Na and the saddle point «, is determined by
G'lag) =N+ z% In Z¥(ag, A, T) =0 . (3.45)

0

The relationship between a, and NV is evidently the same as that between a and N®".

When a4/? > 1, one must use the expressions (3.17¢) and (3.34c¢) for In Z#". To estimate the
range of N that corresponds to a4/? > 1, and also to estimate G"(a,), one may use the leading
term of In Z#" which is 3g,/, (). Then,

N~ l3g3/2(a0) , (3.46)
and if one defines N, by
N, =1%;,(00=1°¢3) , (3.47)
then this implies that a/? > 1 corresponds to
Ne-N, 1 (3.48)
N, l

(4

or essentially that N< N, since / is assumed to be large. This follows from the expansion for small
@, g35(a) = ¢3) — 2¢/ma (2.A3). We call this the one phase region since this range of N corre-
sponds to p < p in the bulk limit. Then also G"(a,) = 1%g, ;,(¢,) and thus

In Z(N, A, T) =~ In Z¥(ay, A, T) + Nay, + O(In ]) . (3.49)

To find In Z(N, A, T) for N satisfying (3.48) it is therefore allowed to use for In Z8" (e, A, T) the
expressions (3.17¢) and (3.34c), including the terms linear and quadratic in /.

b. The “condensed” region. When N > N, the saddle point defined by (3.45) will be at
a, +e,/l2 =~ 1/(N— N,), as can be verified directly from (3.29c¢, 36¢, 39¢). (Actually, this is true
for (N NN, > 1 /l ) Because the saddle point will be very close to the first singularity of
In Z®¥ at ay = —eo/l the use of the saddle point method is problematlcal* This can be seen by
carrying out (3.44) to next order:

_aoNZgr(ao, A Tv) L 1_5. [Gm(ao)]Z
V2G(ag) 8 [G"(@))?®

and for these small values of «, it can be shown from(3.29c¢, 36¢, 39¢) that G"'?/G "3 is of order
unity. On the other hand, when «,, is large compared to 1//2, that term is of order 1/13. We will
not try to review the various attempts to improve the saddle point method but instead present a
different approach for calculating Z in the particular case of the IBG.

First rewrite (3.43) in terms of z = e~ %:

ZIN, A, T) = 50 £ 2 A, Ddz=i.35 1 , (3.51)
2mi 2N 2T el (1 — zexp(—e, /%)

ZIN, A, T) ~

(3.50)

* This point has been studied in detail by Schubert {77, 78], Dingle [79], and especially Dingle [80] pp. 267--271.
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where we have used (1.134) for Z#" and the dimensionless energy levels e, = €, /*. The contour

must encircle the origin and exclude the singularities of Z8" at z = exp(e, //?). Replacing z by 1/¢,

the integral can be performed by evaluating the residues at ¢ = exp(—e¢,/I?). Assuming for simplic-
ity that all levels are non-degenerate, this leads to the identity ¥

ZIN, A, T) = 25 exp(_ _e"/ ) =25 ZOW, A, T). (3.52)
k=0 _l;[k[r?esep‘—(ej —e)I2]  k=o
7

For Dirichlet and Neumann boundary conditions the states e, are nondegenerate if the dimensions
L., L,, L, areincommensurate, while for the periodic boundary conditions there are always
degeneracies in the excited states. The ground state is always non-degenerate and as we shall see
the corrections required if some of the higher states are degenerate are of minor importance.

This result allows one to express Z(N, A, T) successively in terms of Z#& . Consider first Z(®);
comparing the definition (3.52) with Z% (a, A, T) of (1.134), one concludes,

In ZO(N, A, T) = —Ney/l*+ lim  [in Z8(a, A, T) + In(1 — exp(—a — e,/I*))] . (3.53)

(¢ Rand -EO/I
For In Z®" one just use (3.29¢, 36¢, 39¢) since they give the behavior about a = —e,//%. By a straight-
forward calculation one obtains therefore for (N — N )/N_ > 1/I,

In ZOWN, A, T) = 13¢(3) + C(w,, Wy, wy) —In 1%, (3.54a)

InZOW, A, T =13¢G) + UL A LI+ LIS+ 3+, H1)EB) — In 12+ CJ(w,, w,, w;),
_ (3.54b)
In ZOW, A T) = —Ne,/I? + l3§5/2(—e0/12) — 3 Lt L+ 11 )8, (—ey/17)
+3,+ 1+ )85, (—eg/1?) — 58, (—ep/1?) — In 12 + Cq (W, 0y, W3)
= 135(3) — 31U, 1, + L1+ 11)E(2) — (N — Neg /17 +O() . (3.54¢)
Note that In Z(®) depends only upon N by —Neo/l2, and therefore for Neumann and periodic

boundary conditions it is independent of N. Turning now to Z(", which is clearly negative, one
can express it in terms of Z#8" as follows

In(—ZM) = —Ne,/I* — In(exp{-(eq — ¢)/I*} — 1)+ lim [InZ®¥(a, A, T)

(Jl—’fel/l2

+1In(1 — exp(—a — ey/1?) + In(1 — exp(~a — e, /I*)] . (3.55)

Again a direct calculation can be carried out using (3.29¢, 36, 39c¢) after resumming the (—a/?)*
series to put the a = —el/l2 singularity in evidence. In all cases one finds that In(—Z()) is smaller
than In Z(© by the term (N — NJ)(e, — eo)/lz, where N, is again defined by (3.47). Therefore, if

N— N)e. — N_N
¢ e~ ¢o) <Is 1, (3.56)
!2 NC

then —Z(" is much smaller than Z(®). This is essentially N > N_ if / is large. Likewise, one can
show that the k¥ > 1 terms of (3.52) are even smaller, so that for N satisfying (3.56), we have

* This identity has also been derived by Dingle [81] by means of a partial fraction expansion of the denominator of (3.51).
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Z(N, A, T) = ZO(N, A, TH{1 — O(exp{—(N — N)/I* 1)}, (3.57)
or
In ZN, A, T) = In ZO(N, A, T) — O(exp{—(N — N,)/I?}), (3.58)

with Z(®) given by (3.54). In the same way one can show that the eventual degeneracies of the
states e, for k > 0 do not affect this conclusion *.

Thus with the results (3.49) and (3.54--58) the discussion of the properties of the canonical
partition function has been related to the previous discussion of the grand partition function for
all values of N except in a small region about N,

IN— N,IIN, < 1/, (3.59)

which vanishes in the bulk limit.
3.4. Discussion

a. Proof of the bulk properties. In the last two sections we have derived expansions of the
grand partition function Z8(a, L, L,, L;, T) and of the canonical partition function
Z(N,L,,L,, Ly, T)for the two ranges of a and N. We called these two ranges already the *“‘one
phase’ and “condensed” regions, and our first task must therefore be to show that in the bulk
limit these expansions actually lead to the equation of state and the thermodynamic properties of
the IBG in the one phase and condensed regions as discussed in section 2. We must also show that
we get the same results for both ensembles and for all boundary conditions.

The proof is simple and can essentially be read off the equations. Consider first the expansions
(3.17¢, 34¢) and (3.29c¢, 36¢, 39¢) of the grand partition function in the two ranges of a. For large
l; = L,/ the leading term in all these expansions are proportional to /3 = (L ,L,L,)/A\*. Next ob-
serve that the parameters @, a,, ... introduced in section 1.3 to describe the outside force field
become in our case the lengths L,, L,, L; and that the corresponding generalized forces X, X,,...
become p,L,L,,p,L;,L,,p;L,L,, where p,, p,, p; are the pressures on the three pairs of sides
of the box. From the general thermodynamic relation (1.34):

Br = .
14 I 3L,‘ oL, L, (3.60)

it follows therefore immediately that asymptotically for large L,, the pressures p,, p,, p; become
equal and the common value p & is given in this limit by:

2 kT
gr = 9 gr) =4 gr
p kT(aVInZ )a Lin 2. 3.61)
Finally note (1.35), which can also be written as
Ner= O gp zer (3.62)
oo

From (3.17¢) and (3.34c) one thus reads off that in the range « > 0 in the bulk limit L, - o
(using g5 (@) = —g3/5()):

* Compare Dingte [81] Appendix.
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pgr ='];TT gs/z(a) s (3.63a)
gr
pfF =EV_ =L3 g32(@) (3.63b)

for all three boundary conditions. On the other hand from (3.29¢, 36¢,39c¢) one reads off that in
the bulk limit for a + ¢,/ 2> 0as 1/V, one gets for all three boundary conditions

kT .3
gr — 3
12 F §G3), (3.64)
using (3.61), while from (3.62) one concludes that in this range
| . 1
L T P — (3.65)
N V(e /1?)

which implies that (3.64) holds asymptotically in V for all p > p_, where as before p, = £(3)/A3.
These are just the results of section 2.3, demonstrated for the case of the box.

It is also easy to show that one gets the same results from the expansions of the canonical par-
tition function (3.45, 49, 54) in the two ranges (N, — N)/N_ > 1/l and (N — N_)/N_ < 1/I. The
asymptotic equality of the three pressures p,, p,, and p, follows from the same argument as
before, except that now

__kT (_a_)
P; L,L,L, L; oL, kTn Z, (3.66)
so that instead of (3.61) the common value of p is given by
_ olnZ
p—kT( Y )N . 3.67)
In the “one phase region” one gets therefore from (3.49)
day
L -9 gr +___ 8r .
T aVan (ag, A, T) + (aV) [N 2, In Z¥ (ay, A, T)] (3.68)

But from (3.45) it follows that the last term is zero, so that one gets again (3.61) with p = p8*
while (3.45) becomes (3.62) with N = N®". One obtains therefore the same equation of state (3.63)
except that a is now called a,. In the “condensed region” one sees from (3.54) directly that in the
bulk limit the pressure is given by (3.64) and that then the pressure is independent of N and there-
fore of the density. Note especially that for Dirichlet boundary conditions the term « (N — N)
disappears.

We will not spell out the proof that besides the equation of state also all other thermodynamic
properties derived in section 2 follow from the leading terms in our expansions, since this is almost
obvious. One can say therefore that at least for the box we have given a more rigorous derivation
of the results of section 2, and have shown explicitly the independence of these results from the
choice of ensemble and of boundary conditions. The question remains of course to show that all
thermodynamic properties are in the bulk limit also independent of the shape of the container. To
show this the argument of section 2 is still needed.
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b. Surface properties. Just like the bulk thermodynamic properties one can read off from our
expansions the surface corrections by looking at the terms which are proportional to the area
A=2LL,+L,Ly+L,L,) of the box. Consider again first the expansions of the grand partition
function. From the equation for the grand canonical surface tension (1.72)

yE = (i) [—kTIn Z%(a, T, V, A)], (3.69)
04 a,V,T

and from (3.17c¢, 29¢) one concludes that for periodic boundary conditions 8" = 0, while for

Neumann and Dirichlet boundary conditions one gets in the “one phase’ region from (3.34c)

kT
8 = 1
=8, (3.70)

where to be consistent asymptotically for large L;, « must be determined from (3.63b). The same
result follows from the equation (1.71) for the canonical surface tension

y = (i) [—kT'In ZWN, T, V, A)] , 3.71)
04 NV, T

and from (3.45, 49) by using exactly the same argument by which we showed that p8" = p. In the

“one phase region” the surface tension is therefore (just like p) a function of p and T. It is positive

for Dirichlet boundary conditions and negative for Neumann boundary conditions. Note also that

in these two cases one can speak of a volume and a surface contribution to the total number of

particles NV, since from (3.62) one gets by using the first two terms in our expansions:

N= 7\—‘: g52(0) i% g@. (3.72)

Interpreting g3/2(oz)/)\3 as the contribution per unit volume, then the surface contribution per
unit area becomes:

' 1
p == Zﬁ g,(a) (3.73)

(positive for the Neumann case and negative for Dirichlet). For the periodic boundary conditions
there is no surface term.

Turning now to the “‘condensed region” one reads from (3.36¢, 39¢, 54b,c) that for both
ensembles ¥

y=% f—; ¢Q2), (3.74)

and is therefore a function of the temperature alone (just like the bulk thermodynamical proper-
ties in the condensed region). We have plotted |y| as a function of T/T, at constant p, and as a
function of p_/p at constant 7, in figures 3.1 and 3.2.

Thus the behavior of v is exactly like the behavior of the pressure, and just as in that case we
may interpret its independence of the density for p > p_ by saying that the condensed particles

* This expression has been given by Singh [82]. Note also that the surface contributions to C,, have been calculated by Barber
and Fisher [64].
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Y/ ¥(Te)

0 | 3
T/T,

Fig. 3.1. The surface tension vy as a function of the temperature T at constant density, scaled by v(T,) = szcg(z)/4}\Z and T.

7 7(8,)

0 : 2 3
p,/P

Fig. 3.2. The surface tension 4 as a function of the specific volume 1/p, at constant T, scaled by v(p¢) = +kT(2)/4A2 and /e

do not contribute to the surface tension as well as not to the bulk thermodynamical properties.
Note in particular that this is true in the Dirichlet case since the ground state gives a contribution
only of order / (when N — N, = 0(73)) in (3.39¢) and (3.54¢).

With respect to the surface density, there is the apparent difficulty that in V8" as given by
(3.62, 36¢, 39¢) there are no terms proportional to the area (in the condensed region) since g,(0)
= (0, and furthermore as the condensed region is approached and « —» 0 the surface density given
by (3.73) diverges according to (2.A3). As we will discuss in more detail in section 5, the reason
is that in the condensed region the transition from the density at the wall to the density inside
goes so slowly that it is not integrable and cannot be replaced by a *‘surface density”.

Note that p' and v satisfy the thermodynamic relation

p'=—@y/ow)y , (3.75)
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with g = —akT according to (1.58). This is only applicable in the one phase region since « is con-
stant when p > p_. Furthermore, (1.58) implies that the surface entropy is

67 _'27/T+kap,’ p<pc5

= _(__) _ (3.76)
aT# —'27/T3 p>pc3

and from (1.60) it follows that the surface energy isu’ =y + Ts' + up' = —y.

Finally we must discuss the question whether the results (3.70, 73, 74) are independent of the
shape of the vessel (just like the bulk properties). To do this we must generalize the argument of
section 2 by taking into account a refinement of the Weyl theorem (2.49) to include the surface
corrections, namely that *

Ve .1 a
gle)~ 5t ——— |, (3.77)
rG) 4TI
as e - o, for Neumann (+) and Dirichlet (—) boundary conditions, where a is the surface area of
the (unit) volume A, so that 4 = aL?. In the grand canonical ensemble, the surface tension
follows as the area part of the asymptotic form of £28*:

QE = kT InZ8 ~ —p¥V + 4¥4 (3.78)

according to (1.70). First of all note that the first term of (3.77) implies p8" equivalent to (2.52)
since

o0 3 oo
QF = kT 2 In[1 — exp(—a — Ne, /L)) ~ kT2 [ 2 X dxIn[l - e=2~*]
k=0 Ny VT

b 3/2
- _EST\/L_ 12 [ - e 3.79)
A T o eT*—1

(by partial integration), and that when o + e /! 2~ 1/I1L3(p — p.)] the k = 0 term gives an insig-
nificant contribution which vanishes when V' - « and again (2.55) follows for p > p_. Likewise,
including the second term of (3.77), one finds Q8 = —p® L3 + ¥8'qL? with the same 5" as before,

(3.70). Then it also follows that the canonical surface tension is identical to 8", according to
(2.41,63, 64).

Appendix 3.A. Justification of (3.14)

An application of the Poisson sum formula gives the identity

=_o0c

O+ fG)= 2 [ fex) emier dx = I Gy dx+2 2 J £ costamsx s, B.AD
= s 0 0 =1

for any f(x). This can be used to discuss the sum over j in (3.13), as the Fourier integral above
can be done according to (3.15). For example, for d = 1 one gets

* See Kac [49], also McKean and Singer [50].



234 R.M. Ziff et al., The ideal Bose—Einstein gas, revisited

-3 + oo

IZE jTY? exp(—aj — al2m2j)= 2, -r:-l-exp{—2\/7ria + 2wis)im}
7= S=—o0
= % exp(—2Vmalm) + 2 ) 7n1— exp(—A*ml) cos A~ ml , (3.A2)
s=1

A* =2 (a® +4n2s2)V4 )/ 1 ¢ ¢

Va2 +4nis?

The first term gives (3.17a). (Note that f(0) = 0.) No matter how small or large « is, the s = 1,

m =1 term is at least as small as e~ 2™ ~ O(e™ "), and the higher s and m terms are much smaller.
Without discussing the convergence of these series, we argue that asymptotically in I the error in-
duced by going from (3.13) to (3.14) is of this order.

Appendix 3.B. Proofof(3.23)

C,(wy,... w,) as defined by (3.20) only converges for z > d/2. To get a representation valid for
all values of z, use the integral representation of the I' function:

' T(2) Z;, = . sy
= dx x*7 ! exp(—mN*x)
ni [aN2)% g Of P

r4
y 1 r £

=2 fclxx"1 exp(—TN2x) + 2o f dx xZ~! exp(—7N2%x) . (3.B1)
4 ni

The second integral converges for all z. In the first integral the transform (3.12) can be used after
adding and subtracting the n; = 0 term:

, 1 1
2 f dx x>~ exp(—nN2%x) = Ef dx x*71 exp(—mN2x) _1
no mi z (3.B2)

11
z—df2 =z’

oo

1 !
=2 f dx xZ~9/21 exp(—wM?/x) — zl =27 f dt 19221 exp(—mM?*t) +
mj

mio 1

where M is defined in (3.9), and in the last line we have split off the m, = 0 term. The exchanges
of the sum and integral can be justified for all d, as for the case d = 1 when this is Riemann’s
integral representation of the zeta function ¥.

It should be noted that the lattice sums C, have appeared in connection with perturbative ex-
pansions of the hard sphere gas. (See for example Huang, Yang and Luttinger [83], and Wu [84].)
In fact there has recently been renewed interest in the mathematical theory of the Madelung con-
stant and related sums, and in this connection the sums C, have also been introduced. Especially
in the most recent of these (Zucker [85]) the identity (3.23) has also been given.

* See Whittaker and Watson [71].
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4. The fluctuation problem for the finite IBG
4.1. Introduction

In section 2 we found that the canonical and grand canonical ensembles differ in some of their
predictions of the bulk properties for the condensed IBG, such as the fluctuations in the overall
density of particles in the ground state, and that the macroscopic fluctuations in the grand canoni-
cal ensemble indicated the unphysical nature of that ensemble. Now one might wonder whether
for large but finite systems these differences also occur, or whether they depend sensitively on
the size of the system and are a result only of the infinite volume limit. In the last section we dis-
cussed the partition functions for the IBG in finite boxes, but since we were only concerned with
the thermodynamical properties, whose behavior in the infinite system is the same in the two en-
sembles, we did not address this point. In this subsection we will show how the expressions for the
partition functions can also be used to discuss these fluctuations. In fact we will find that the large
system acts qualitatively like the bulk system; namely, in the “‘condensed region” when
(N — N,)/N,_ > 1/l the fluctuations in the density of particles in the ground state in the canonical
ensemble goes to zero as

(Ang)®» 1 1
V2 Y34 k:lo (ek _ 60)2 ’
where e, are the dimensionless energy levels given by (3.10), so that the coefficient of ¥ ~2/3\~*

is a constant that depends only upon the shape of the system. In the grand canonical the fluctua-
tions are ‘““macroscopic’:

((Ang)*® (NE' — N_\2
2 4 ) '

When V - oo these give (2.16) and (2.67).

We will also show how the occupations and their fluctuations can be used to calculate the one

and two particle density matrices. We only consider a three dimensional box; and always assume
that/, > 1.

4.1

4.2)

4.2. Proofof(4.1--2)

In the grand canonical ensemble we have according to (1.138—9) that for all &,
T — QIR ()2 +(ny )"
V2 B v?
(exactly), where

4.3)

1
(n ¥ = 4.4)
k exp(a+e,/l?) — 1
are the occupations in terms of the dimensionless e;. From these the well known result (4.2)
follows directly, since when (N8 — N_)/N, > 1/l then a + ¢,/I? ~ 1/(N®¥ — N_) and therefore

(ng)s ~ N¥ — N_ . (4.5)
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For the excited states k£ > 0 we can take @ = 0 and therefore
2
1 <2
exple,—e )P —1 " (ex —€g)

so that (n,)8"/V — 0 as ¥ ~V3, and their fluctuations (4.3) go to zero as V' ~%¥3 jas V' = o,
In the canonical ensemble, we have found that when (N — N_)/N, > 1/I, then

(4.6)

(n, )8 ~

In Z(N, A, T) = —Ne,/I? — ké)o In(1 — exp{—(e, — €,)/I?}) + O(exp{—(N — N)/I*}) . (4.7)

Evidently the average occupations of the states and their fluctuations (1.28-29) can be found by
considering Z to be a function of the energy levels and differentiating with respect to them:

1 ]
(ny) = 7 2 n, exp(—Z)j n;e;fl*) = —I? Fv InZ, (4.8)
{n;} k
2y nyt =(_y2_ 2\
(np) — (ny) '} InZ. 4.9)
de,
Then (4.7) can be used for In Z when (N — N_)/N, > 1/1, and one finds .
( l =1’ 0
exple, — e -
() = koo (4.10)
N-2 iy, k=0,
j>0
(n? +<ny) , k>0,
2 —np?=] " - 4.11)
2 [(n)* +<np], k=0.
j>0

Clearly for the excited states £k > 0 this gives the same results as the grand canonical ensemble
(4.6). For the ground state there is evidently the following formal relation between these expres-
sions and the grand partition function:

(ngy~N— lim {(~3/3a)In Z# — [exp(a + eo/I?) — 1171},

= —eofi? (4.12)
(nd) —(nyp?* =~ lim , {(8/3a)? In Z& — [exp(a + €,/1?) — 117" — [exp(a +¢,/I®) —1]72} .
a-—>—eo/l

These are similar to (3.53). Specializing now to the box these can be evaluated using the explicit
expansions of Z& about a = —e¢,/I2, (3.29, 36, 39). One finds:

o?) periodic b.c.
(ng)=N— N, + (4.14)
O(/%2In7?) Neumann and Dirichlet b.c.

* These expressions have been found by Dingle [79—-81] (in a similar way) and Fraser {69]. Reif [86] and Hauge [32] also
arrived at these results, using however the saddle point method.



R.M. Ziff et al., The ideal Bose—Einstein gas, revisited 237

and for the fluctuations one finds that the leading term is given by:
(nd) —(ng»? = 14CP* (w,, Wy, w3), (4.15)

for all three boundary conditions. Writing these in terms of e, according to (3.40), the result (4.1)
follows. This expression has also been given by Hauge [32]. Now it is immediately suggested that
(4.1) might hold for an arbitrary shape of the boundary, not just a box, whose single particle
energy spectrum is given by e,. In fact (4.1) also follows directly from (3.41) and (3.77), which
represent a system of arbitrary shape. Alternatively, one can use the fact that (4.1) is true for a
box to prove it for an arbitrary shape, by inscribing and surrounding the region by a box and
using the Hilbert inequality of the ordered eigenvalues, but we will omit the details here.

Note that the relative fluctuations in the occupation of the ground state have also been cal-
culated by Fujiwara, ter Haar, and Wergeland [87], for a large system in the canonical ensemble.
They also found that they vanish when V' -  in the condensed region (as well as the non-
condensed region), but that they approach this value as ¥ /3, This contradicts our result of
V~%3 a5 given by (4.15) (divided by V?2).

4.3. Further comments

The “cross fluctuation” (n;n,) (j # k) can also be found by differentiation:

-1 _21)_2_3_) - +(_2_3_)(_2i)
gy =2 (-1 ” (~ ) 2= g+ (17 2 ) (<17 55 ) m 2. (4.16)
Using (4.7) for In Z one finds that in the “condensed region”’:
(npmy) i*tk; jk#0,
(njmg)= 4.17)
(mp¥ng) —np* —<np,  j#0; k=0.

With this result, along with (4.10) and (4.11), the one and two particle density matrices can be
calculated, since according to (1.133):

P17 N, AT = 2 tm YD () (4.18)
while the result (1.132) for p, can be written in the form:

Pa(ry, PPy N, AL T) = ]_ZIE‘I’;k(";':";)‘I’jk("{J;)C}k ,

W (ry, 1) = 3(; () Wi (ry) + 4, (r) W) (4.19)
2(n1- ng, J#* k,
Gix =
2 .
<nj>~<n]->, i=k.

To see this one must replace the restricted sums over the occupation numbers by the unrestricted
sums over the energy states. Then one can show that when / - o= the bulk canonical density
matrices in the condensed region (2.22, 25b) follow. The result in the one phase region also
follows from (4.18-19); then the saddle point method is valid and one has from (3.49):
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(ny) = L , (4.20a)
explag + e, /1?) — 1

() =2An)? +<(ny , (4.20b)

(ning) =<y ny) , J# k, (4.20¢)

where « is determined by (3.45).

In this way, London [16] first calculated the two particle distribution function (= the diagonal
element of p,) for all densities. Note however that he assumed that (n;n,) = (n;) (ny) forallj# k,
even for j or k equal to zero. One can see from (4.17) that this is essentially true, since the contri-
bution of the (n,-)2 +{n;) term (when k = 0) vanishes in the limit / » e. Thus we have verified
London’s method.

5. Local properties of an IBG near a wall
5.1. Introduction

Near the boundary of a region, there will be variations in the local density, pressure, and energy,
as well as in the distribution functions and density matrices. These variations are responsible for
the finite volume corrections that we have discussed in the last two sections, but they also occur
at the boundary of an infinite system, or more accurately a half-infinite system. Up till now we
have not discussed the local structure of a finite IBG as described by the density matrices, which
we had emphasized in the description of the bulk properties in section 2. In this section we return
to the density matrices, calculating them for a half-infinite system, and discuss the local proper-
ties that derive from them. The advantage of using the half-infinite system is that there are no
complications from curved boundaries, edges, finite size, or finite number. The results should also
describe the surface characteristics of large finite systems in an asymptotic sense.

5.2. The density matrices of a half-infinite system

We proceed as in section 2.3, using the grand canonical density matrices as generating functions
of the canonical ones.

Consider a region A in the shape of a flat slab of constant thickness D, whose face is the two-
dimensional region A® in the x—y plane of area L2, as shown below:

€z

ey k2

The walls are assumed to be perpendicular to A®), so that the states factor into a product of
states Y$2) (x, ) on A® and one dimensional states Y{!)(z) of the segment D, which we call the
region AV, Then the grand canonical one particle density matrix (1.141) becomes
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oo

PE(, P N, AD, AP, Ty = 25 e~ WO W@ | (5.1a)
P
W= T (550 (F ) exeiereie, (5.1b)
k=0 [2 "L
o= 1 y(l)'( )y(l)( )exp( —jeN3D?) . (5.1¢)
no D" \D D '

We have written this in terms of the dimensionless states and energy levels on both A() and A®|
as in section 2.3. The origin of the coordinate system is chosen so that the plane z = 0 corresponds
to the lower face — in other words, the endpoint of the segment A(") — and falls within the
boundary of A?. As L —» o,

W ~ % exp[—m{(x' — x")* +(y' —y")?}/iN], (5.2)
]

analogous to (2.74), for all boundary conditions. On AM the dimensionless states and energy

levels for the various boundary conditions are given by:

periodic b. c:
i (%)=e-2"imﬂ>, el =mn?, n=0,1,2,.. (5.3a)
Dirichlet b. c:
y ( ) =+/2 sin(nnz/D) , e = n?/4 n=1,2,3,.. (5.3b)
Neumann b. ¢:
1, (D=0, n=0,
m (—) = { (5.3¢)
D V2 cos(nmz/D) , e =mn?/4 n=1,2,3,...
Then, for periodic boundary conditions:
w1 =5 2 exp{—jmn?A?/D?* + 2min(z' — z")/D} ~ e exp{—m(z' — z")?[jA?}, 5.4
Dp=-= J
as D -+ o, while for Dirichlet (—) and Neumann (+), one gets:
+ o0
m11 o 2v2/472 ( nm(z' —z") nm(z' — z"))
7% D3 ngm exp {—jan*A\*/4D*} {cos 5 £ cos )
T (exp{—m(z' — z")*[jA*} £ exp{—n(z' +2")?/j\*})
=L exp{—n(z' — 2)2//A%} (1 £ exp{—4nz'2"|\?}) . (5.5)

jl/2>\
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In the periodic case there is no effect from the presence of the boundaries, except that z' and z"
are restricted to z > 0, while in the Neumann and Dirichlet cases there is an extra term that is only
important when both z’ and z" are near the surface z = 0.

Using the results (5.2,4, 5) the expression of p§" in the limit of D > « and L - « rogether such
that N8 /L2D = p can be found. Again « as a function of p is determined by (2.40). As before,
when p < p., o will limit to a value greater than zero given by (2.3), and p§* will be given by

pyE(', r"; 0, T) = 3\13 27 ¥ exp{~aj — mir' —r"P/\%} (5.62)
j=1

pye(r',r"; 0, T) —)\—1 27 ¥ exp{—aj — w|r' — r"12/)\2 (1 £ exp{—4nz'z"/j)\2}), (5.6b)
i=1 ‘

for periodic (0), Neumann (+) and Dirichlet (—) boundary conditions.
In the condensed region, one must take for a:

elDA\Z (22
o+ L (5.7)
D? L? L*D(p - p,)

so that the occupation of the lowest state ~L2D(p — p.) as L and D > e, Then it follows simply
as before that the density matrices are given by:

peE(, 1" p, T)=>\—1 ,2 7% exp{—mlr' — r"12/i\2} +p — p, (5.82)
=1

B D= L T exp(orle - PRI exp 4NN 40— b, (580
]:

™

pyE(, "0, T)= j7¥% exp{—mir' — r"12/jA2}(1 — exp{—4nz'2"[j\?}) , (5.8¢)

|
w|—
S,

]

-

for p > p_. In the periodic and Neumann cases the ODLRO is p — p_ because the contribution of
the lowest state is constant and equal to unity. However in the Dirichlet case there is no ODLRO
because y,(0) = 0, or namely that when D is made infinite, the ground state remains zero any
finite distance from the plane z = 0. We will discuss this more in the next subsection.

The s-particle grand canonical density matrices are just symmetrized products of these one
particle matrices, according to (2.71). The canonical reduced density matrices follow by the in-
version technique of section 2. Since the density distribution v(x, p) is clearly the same as in the
bulk case, one has again that p, = p%" for p < p_, and for p > p_. one must use (2.66). This implies
first of all that p, = p%" (for all boundary conditions). Note that for the Dirichlet case p; = p%" for
all s since (5.8¢) does not depend upon the density. Now we will discuss the properties that follow
from the density matrices, especially the one particle density matrix.
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5.3. The local density and the pressure-stress tensor

The basic characteristics of the one-particle density matrix are the diagonal element r' =r" and
the “‘curvature” about that point. These are related to the two local properties, the density and
the pressure-stress tensor.

The diagonal element is just the local density. Thus, from (5.8a) it follows that for periodic
boundary conditions the local density is constant and equal to the average density:

nf=plr,N=p, (5.9)

while for the Neumann and Dirichlet cases it follows from (5.8b, c) that the density varies near the
boundary at z = 0:

p<p,
nt(z) =)\—1 2 j2 ¢=%I(1 £ exp{~4nz3 /A = p £ F(2z,0, T), (5.102)

p> b,
m@ =5 T2 ¢ exp{-AmNPD) +p — pe=p+ F22,0, ), (5.10b)
ni(z) = =1 20 ¥ (1 — exp{—4nz3/j\?}) = p.— F(2z,0,7). (5.10¢)

k j=1

We have written these in terms of the function F(r, a, T) defined in (2.18). Some plots of n,(z)
are given in fig. 5.1. The limiting behavior at z = 0 and < is summarized below:

2p, p<p,
n}(0) = ni(=)=p (5.11a)
p+pc’ p>pc

p’ p<pc >
n7(0)=0 ni(e)= (5.11b)

pc! p>pc'

Note that when p > p_, the value n, (o) is reached as 1/z according to the discussion of the proper-
ties of F(r, 0, T) of (2.24). In the Dirichlet case in the condensed region the density approaches p,
and not p as z - «. This is because the ground state y,(z/D) varies over the thickness D, and when
D - = it is flat and zero any finite distance from the boundary. This is why there is no ODLRO
term in (5.8¢).

In the one phase region it is possible to integrate the difference of n,(z) from the bulk value
ny(2) = p:

of [n,z) —pldz=¢ of )\13 2732 exp{—aj — 4mz2/jA2} dz = «.»4_)1\2 £,(a) . (5.12)

It can be interpreted as the surface density p' and agrees with the expression found in the third
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Fig. 5.1. The local density n;(z)/p¢ near a wall (at z = 0) in a half-infinite IBG for the average density p equal to 0.5 o and 20,
for the Dirichlet and Neumann boundary conditions on the wavefunctions at the wall.

section (3.73). In the condensed region a = 0 and this integral doesn’t exist; in fact the integrand
(= F(2z,0,T)) ~1/z as z - o=. Thus the concept of a “‘surface density”’ as defined by the integral
above is not valid in the condensed region. This explains why we failed to find such a function in
section 3. Note that this behavior is due to the long range behavior in F(2z, 0, T) but is not due
to either the ODLRO or the variation of the Dirichlet ground state.

The pressure-stress tensor follows from the one-particle density matrix according to (1.93):

n:l 8 o ( 13 13 )
()= = +2 r—-2 )
Pl](r) m [agl aE} pl r 2” 2 j|§=09 (5 13)
assuming that the local velocity v defined by (1.82) is zero, which is the case here as can easily be
verified. Then it follows from (5.6) and (5.8) that the off diagonal elements P, ,, P,,,, and P, are
zero always, and that for periodic boundary conditions,
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kT
7\3—g5,2(oz) , p<p,

x = Py =P, = =p, (5.14)
K esi),  p>o,
)\3

while for Dirichlet (—) and Neumann (+4),

%T gs2(a), p<p,
P = =p, (5.15a)
—’;TT $5/2),  p> 0,
I;—Z 2j ¥ em(1 £ exp{~4n2/(\*}),  p<op,,
P:(2)=P;(2)= (5.15b)
l;\sz 237752 (1 + exp{—4mz2/iA2}) , p>p, -

The normal pressure (5.15a) is constant and equal to p, as is necessary for the maintenance of
hydrostatic equilibrium (1.114):

3
P,
El F’!: . (5.16)

The tangential pressure (5.15b) is only equal to p (and the pressure is only isotropic) when z - .
Near the wall it is increased for the Neumann case and decreased for the Dirichlet. In fact the
integral of the difference is equal to the surface tension, since according to the mechanical defini-
tion the surface tension <y is (minus) the extra force per length (tension) along a cut in the surface
due to a decrease of the tangential pressure P, . from its bulk value ¥ Forp< p. one gets:

r kT 7 5, . . kT
y=— | (P, (z)—p)dz=7—— 2]—5’2 exp{—oj — 4mnz?/jA*}dz =7 == g, (a), (5.17a)
0[ xx )\3 0[ 4)\2 2

and similarly for p > p,:
y=5 5L ¢2). (5.17b)
422
This agrees with our previous result (3.70, 73) and demonstrates therefore the equivalence of the
thermodynamical and mechanical definitions of the surface tension for the IBG.

The integral for vy (5.17a) is quite similar to that for p’ (5.12), as indeed p' and v are related by
the thermodynamical expression (3.75). Note however that « exists in the condensed region since

* This is the so-called Bakker relation [88]. See also Ono and Kondo [35].
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P, — p as 1/z> as z - o, which is integrable. Note also that the condensed phase contributes
neither to P;; nor to v.

The negative p' and positive v of the Dirichlet case are what would be expected for a fluid that
is repelled from a wall, and the positive p’ and negative y of the Neumann case is what would be
expected for a fluid that is attracted to a wall. The behavior of attraction and repulsion can be
seen quite clearly in the plots of the local density in fig. 5.1. In fact the Dirichlet boundary condi-
tion represents an infinite hard wall and therefore a repulsion. However, the Neumann boundary
condition has no direct physical connection.

The values of n,, P,, = P, and P,, can be used to illustrate the behavior of the density matrices
themselves. Consider

By(r8)=p (r+38,r—38), (5.18)
and expand for small g about &= 0. One finds:

- _ £ P E P, £ P

using that v=0and P; =0 (i #j). In the§ = r' —r"” space, a surface of constant g, (for small £) is
an ellipsoid whose axes are proportional to 1/+/P, .5 1 /\/Pyy ,and 1//P,,. When all of these are
equal, as is the case for large z, the surface is a sphere. However near the wall the surface is
flattened for the Dirichlet case, while for the Neumann case it is an ellipsoid with its long axis
perpendicular to the wall — that is, stretched toward the wall.

Note that the local energy density mn, €* is related to P; according to (1.93) and (1.95):
mn, ek =3P, + P,,+P,)=P, (2)+p/2, (5.20)

(5.19)

and evidently varies near the wall according to the behavior of P, ,(z). It is always positive and
approaches the bulk value 2p far from the wall.

5.4. The two-particle distribution function

This also follows from p¥'. First of all the (canonical) density matrices can be found as in section
2, according to (2.41,61,71). When p < p_, the density matrices are symmetrized products of the
p¥, and in particular taking the diagonal element r| = r{, r; =r; of p, one gets the two-particle
distribution function:

ny(ry, 1)) =n(z)n(z,) + [py(ry, ry)]1? (5.21)

for all boundary conditions, using the appropriate expressions for n,(z) and p,. Transforming to
the coordinates r = (r, +r,)/2, & =r, — r, and expanding to lowest order in § for a fixed r, one
gets

Hy(ry, 1)) = (n,(2)* + (F(§, o, T) + F(2z,0, T))* . (5.22)

This exhibits clearly the departure from the bulk behavior p? + F(§, a, T)? for finite z.

In the condensed region (5.21) also holds, with the appropriate n, and p,, except for the case
of Neumann boundary conditions where the constant (p — p, )2 must be subtracted. Essentially
the behavior is like in the one phase region.
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Concluding remarks

This survey of the properties of the IBG does not pretend to be in any sense complete. We will
list here a number of topics which have attracted attention recently and which need we believe
further clarification.

a) The two dimensional film of an IBG of thickness D. The interest lies in the question how the
transition from two to three dimensions occurs as D increases from zero to infinity, and especially
how the condensed phase and the ODLRO develops when D — < Because of the paradigmatic
quality of the IBG this may throw light on the question when a liquid He II film becomes super-
fluid. For a flat IBG film one can discuss the thermodynamic properties in a way similar to the
treatment in section 3 for a finite box. (In fact, there is a direct relation to the properties in a one
dimensional segment.) Many aspects of the film have been studied in detail, especially by
Greenspoon and Pathria [29-31] and Barber and Fisher [64] (whose motivation was also to
determine the scaling of the critical exponents of a finite system). But so far the local properties
and the density matrices have not been discussed in detail.

There is a peculiarity of this system with regard to the bulk limit which should be mentioned.
When D - o the bulk thermodynamical properties are obtained, but the density matrices differ
from the bulk ones: there is never any ODLRO in the lateral direction, and also the large fluctua-
tions in the grand canonical ensemble never develop. This is a result of the double limiting process,
since first the lateral extent of the film is made infinite, and then D - . For each finite D the
volume and number is infinite, there is no phase transition, and the ensembles are identical. To
find the asymptotic properties of large but finite systems (in all dimensions), i.e. physical systems,
it seems more appropriate to take the limit D and L — < all at once (L being the lateral extent of
the film), equivalent to the bulk limit of section 2.

b) A half infinite IBG in an outside constant gravitational field. This has attracted attention
(Nordsieck and Lamb [89], Widom [90], Becker [91], and Uhlenbeck [92]) because of the
question whether for a strong field the condensed phase will appear somehow at the bottom of
the vessel, and how the hydrostatic equilibrium is maintained. In fact one finds that there is no
separation of the phases although most of the condensed particles stay within the short distance
(7%/m?g)""? of the bottom (where there must be a hard wall boundary) and are held up by the
zero point motion or the quantum pressure, while the non-condensed particles extend over the
characteristic length k7T/mg and are held up by the hydrodynamical pressure. A precise discussion
requires the elucidation of the notion of local equilibrium and the calculation of the density
matrices, the distribution functions, and the stress tensor. A similar system that can be studied is
an IBG in a “harmonic oscillator” external field V = mw?z?/2 in one dimension and free in the
other two *. The advantage is that with known identities of the Hermite polynomials the density
matrices in the finite system can be written explicitly. But in either case, because the extent of
the fields is infinite, there is a difficulty in the concept of the infinite volume limit which in our
opinion needs further examination. Intriguing is the question in which sense one still can speak of
the ODLRO.

c) An IBG in a rotating vessel. This was first considered by Blatt and Butler [94]. The special
interest lies in the fact that there are cirtical angular velocities w,, w,,... which can be interpreted

* The IBG in a three dimensional harmonic oscillator “vessel” has been studied by de Groot, Hooyman and ten Seldam [93].



246 R.M. Ziff et al., The ideal Bose—Einstein gas, revisited

as due to the appearance of a quantized vortex at the center of the bucket with vorticity #/m,

2% /m,... as pointed out by Putterman, Kac and Uhlenbeck [95]. This shows that the condensate
has some superfluid properties.. As in the case of the external fields there is a problem of the defi-
nition of the bulk limit. Again a more thorough discussion is needed, making use of the density
matrices (which have been given by Putterman [19]) and .also for finite buckets and finally non-
cylindrical vessels.

d) The approach to the canonical equilibrium state of the IBG. This is a completely open
problem! As we mentioned in the introduction it requires some kind of interaction between the
particles which may be in some sense very small, as for instance a hard sphere repulsion with a
small radius @ € A and € n~"3. In the one phase region and especially close to the classical limit it
is possible to discuss the approach to the Bose distribution by the Uehling—Uhlenbeck equation,
which is a generalization of the Boltzmann equation. This fails however in the condensed region.
Putterman [19] has tried to adapt the notion of local equilibrium as used in the Chapman—Enskog
theory of a classical gas to the IBG. In this way he obtains a version of the two-fluid equations of
Landau, just as in the classical theory one obtains the Euler hydrodynamical equations. It remains
to be seen whether these interesting ideas can be substantiated.

Note added in proof: It has come to our attention that the function C, (w, ... w,) introduced on
p. 221, along with more general forms of Riemann’s zeta function, has been exhaustively treated
by Epstein [96]. Especially the representation (3.23), which is derived in Appendix 3.B, is also
contained in his work.
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