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Abstract. In this paper we prove that complete families of smooth and projective curves
of genus g ≥ 2 in characteristic p > 0 with a constant geometric fundamental group are
isotrivial.

Introduction

Let k be an algebraically closed field and letX be a complete irreducible and smooth
curve over k of genus g. The structure of the étale fundamental group π1(X) ofX is
well understood, if char(k) = 0, thanks to the Riemann existence Theorem. Namely
it is isomorphic to the profinite completion�g of the topological fundamental group
of a compact orientable topological surface of genus g. In particular the structure
of π1(X) depends only on g in this case. In the case where char(k) = p > 0 the
structure of the fullπ1(X) is far from being understood. However we understand the
structure of some quotients of π1(X). Assume char(k) = p > 0. Let πp1 (X) (resp.
π1(X)

p′
) be the maximal pro-p (resp. maximal prime-to-p) quotient of π1(X). The

following results are well known:

(1) The fundamental group π1(X) is a quotient of the group �g . In particular
π1(X) is topologically finitely generated.

(2) The structure of π1(X)
p′

is well known by Grothendieck’s specialization the-
ory for fundamental groups ([16], X). Namely it is isomorphic to the maximal
prime-to-p quotient of �g .

(3) The structure of πp1 (X) is well known by Shafarevich theorem [19]. Namely
it is a free pro-p-group on r := rX generators where rX is the p-rank of the
curve X, which is then “encoded” in the isomorphy type of the curve.

Apart from these results very little is known about the structure of the (geomet-
ric) fundamental group of curves in positive characteristic.

The anabelian geometry (or philosophy), as initiated by Grothendieck [5], pre-
dicted that the structure of the arithmetic fundamental group of hyperbolic curves
over number fields should depend upon the isomorphy type of the curve in dis-
cussion. It came as a surprise when Tamagawa proved, in [24], such an anabelian
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statement for hyperbolic affine curves defined over a finite field of characteristic
p > 0. In this paper we investigate the question whether such anabelian phenom-
ena hold for the geometric fundamental group of complete curves over arbitrary
algebraically closed fields of characteristic p > 0, which would explain to some
extent the complexity of π1 in positive characteristic. In this paper we give a new
evidence that this is indeed the case.

In order to get an idea about the complexity of π1 of proper curves in positive
characteristic we introduce the notion of fundamental group for points in the moduli
space of curves. Let Mg → Fp be the coarse moduli space of proper and smooth
curves of genus g ≥ 2 in charactersitic p > 0. It is well known that Mg is a
quasi-projective and geometrically irreducible variety. Let L be an algebraically
closed field of characteristic p. Then Mg(L) is the set of isomorphism classes of
irreducible proper and smooth curves of genus g over L. For a point x ∈ Mg(L)

let Cx → SpecL be a curve classified by x and let x ∈ Mg be a point such that
x : SpecL → Mg factors through x. We define the geometric fundamental group
of the point x to be the fundamental group π1(Cx) of the curve Cx (cf. 4.1 for more
details).

A key tool in the study of π1 is Grothendieck’s specialization theory for fun-
damental groups ([16], X). Let y ∈ Mg be a point which specializes in x ∈ Mg .
Then by Grothendieck’s specialization theorem there exists a surjective continu-
ous homomorphism Spy,x : π1(Cȳ) → π1(Cx̄). Concerning this specialization
homomorphism we have the following result:

Theorem (Saı̈di, Pop, Raynaud, Tamagawa:). Let x ∈ Mg be a closed point and
let y ∈ Mg be a point, distinct from x, and which specializes in x. Then the
specialization homomorphism Spy,x : π1(Cȳ) → π1(Cx̄) is not an isomorphism.

The above theorem was proven by Pop and Saı̈di [12] in the special case where
the point x corresponds to a curve having an absolutely simple jacobian withp-rank
equal to g or g − 1 and by Raynaud [15] in the case g = 2 and the case of super-
singular curves of arbitrary genus g > 2 (i.e. curves whose jacobian is isogenous
to a product of supersingular elliptic curves) and finally by Tamagawa [22] in the
general case.

This result suggests that the structure of the geometric fundamental group π1
is far from being constant on the moduli space Mg in characteristic p > 0 much
contrary to the characteritic 0 case. Let k be an algebraically closed field of char-
acteristic p > 0. Let S ⊂ Mg ×Fp

k be a k-subvariety. We say that the geo-
metric fundamental group π1 is constant on S if for any two points x and y of
S such that y specializes in x the corresponding specialization homomorphism
Spy,x : π1(Cȳ) → π1(Cx̄) is an isomorphism. This in particular would imply that
all points of S have isomorphic geometric fundamental groups. We say that π1 is
not constant on S if the contrary holds namely: there exists two points x and y of S
such that y specializes in x and such that the corresponding specialization homo-
morphism Spy,x : π1(Cȳ) → π1(Cx̄) is not an isomorphism. The above Theorem

implies in particular that in the case k = Fp the moduli space Mg ×Fp
Fp does

not contain positive dimensional Fp-subvarieties on which π1 is constant. It is thus
natural to ask the following question:
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Question 4.3. Let k be an algebraically closed field of characteristic p > 0. Does
Mg ×Fp

k contain k-subvarieties, of positive dimension > 0, on which π1 is con-
stant?

Our main result answering the above question is the following:

Theorem 4.4. Let k be an algebraically closed field of characteristic p. Let S ⊂
Mg ×Fp

k be a complete k-subvariety of Mg ×Fp
k. Then the fundamental group

π1 is not constant on S.

Note that it is well known that Mg ×Fp
k contains complete subvarieties ([11]

for example). In the case where the generic points of the subvariety S are contained
in the locus of ordinary curves (i.e. curves having maximal p-rank equal to g) this
result is well known and due to Szpiro, Raynaud, and Moret-Bailly ([20], and [7]).
Here one uses the fact that the p-rank is encoded in the isomorphy type of the
fundamental group. It can also be deduced from Oort’s result on complete families
of abelian varieties of dimension g with constant p-rank equal to g− 1 ([10], 6.2),
if the generic points of the subvariety S correspond to curves with p-rank equal to
g− 1. One may wonder whether there exists non-isotrivial complete smooth fami-
lies of curves of genus g with constant p-rank. It turns out that such families exist.
In [11] Oort constructed an example of a non-isotrivial complete smooth family of
curves of genus 3 having constant p-rank equal to 0. In the appendix we extend
Oort’s argument in order to construct such examples for any genus g ≥ 3 (cf. B.4).

For the proof of Theorem 4.4 it is easy to reduce to the case where S is a
complete curve. In this case we prove the following more precise result:

Theorem 4.6. Let k be an algebraically closed field of characteristic p > 0. Let
S be a smooth complete and irreducible k-curve. Let f : X → S be a non-iso-
trivial proper and smooth family of curves of genus g ≥ 2. Then there exists a
finite étale cover S′ → S of S, a finite étale cover Y ′ → X′ := X × S S

′ of degree
prime to p, and a closed point s0 ∈ S′, such that the p-rank of the geometric fibre
Y ′
k(s̄0)

→ k(s̄0) of Y ′ above the point s0 is strictly smaller that the p-rank of the
generic geometric fibre Y ′

k(η̄) → k(η̄) of Y ′ above the generic point η of S′.

The main ingredients we use in order to prove Theorem 4.6 are: first Raynaud’s
theory of theta divisors in positive characteristic. Secondly the Theorem of Szpiro,
Raynaud, and Moret-Bailly, on the isotriviality of complete families of ordinary
abelian varieties. And finally a recent result of Tamagawa on the equi-character-
istic deformation of generalized Prym varieties. Finally the statement of Theorem
4.4 can be easily generalized to the case where we consider the (geometric) tame
fundamental group (cf. theorem 4.10).

This paper is organized as follows. In sections 1 and 2 we review Raynaud’s
theory of theta divisors in characteristic p > 0 and its application to the study of
the p-rank of cyclic with order prime-to-p étale covers of curves. In section 3 we
explain Tamagawa’s result on the equi-characteristic deformation of generalized
Prym varieties. In appendix A we recall the results of Szpiro, Raynaud, Moret-
Bailly, on complete families of abelian varieties with constant maximal p-rank. In
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appendix B we extend an argument of Oort in order to construct a complete family
of smooth curves for every genus g ≥ 2 which has constant p-rank equal to 0. In
section 4 we prove our main result.

I would like very much to thank M. Raynaud and A. Tamagawa for their com-
ments on an earlier version of this paper. I would like also to thank the referee
for his (or her) careful reading of the paper. The author holds an EPSRC advanced
research fellowship GR/R75861/02 and would like to thank EPSRC for its financial
support.

1. The sheaf of locally exact differentials in characteristic p > 0 and its
theta divisor

In this section we review, mainly following Raynaud, the definition of the sheaf
of locally exact differentials associated to a smooth projective algebraic curve in
positive characteristic and its theta divisor ([14], 4, and [21], 1, for futher gen-
eralisations). Let X be a proper smooth and connected algebraic curve of genus
gX := g ≥ 2 over an algebraically closed field k of characteristic p > 0. Consider
the following cartesian diagram:

X1 −−−−→ X


�



�

Spec k
F−−−−→ Spec k

where F denotes the absolute Frobenius morphism. The projection X1 → X is a
scheme isomorphism. In particularX1 is a smooth and proper curve of genus g. The
absolute Frobenius morphism F : X → X induces in a canonical way a k-mor-
phism π : X → X1 called the relative Frobenius which is a radicial morphism of
degree p. The canonical differential π∗d : π∗OX → π∗�1

X is a morphism of OX1 -
modules. Its image BX := B := Im(π∗d) is the sheaf of locally exact differentials.
One has the following exact sequence:

0 → OX1 → π∗OX → B → 0

and B is a vector bundle on X1 of rank p − 1.
Consider the Cartier operator c : π∗(�1

X) → �1
X1 which is a morphism of

OX1 -modules. The kernel ker(c) of c is equal to B and the following sequence of
OX1 -modules is exact ([17], 10):

0 → B → π∗(�1
X) → �1

X1 → 0

Let L be a universal Poincaré bundle on X1 ×k J
1, where J 1 := Pic0(X1) is

the Jacobian variety of X1. The restriction of L to X1 × {a}, for any a ∈ J 1(k),
is isomorphic to the degree zero line bundle La which is the image of a under
the natural isomorphism J 1(k) � Pic0(X1). Let h : X1 × k J

1 → X1 and f :
X1 × k J

1 → J 1 be the canonical projections. As Rif∗(h∗B ⊗ L) = 0 for i ≥ 2
the total direct image Rf∗(h∗B ⊗ L) of (h∗B ⊗ L) by f can be realized by a
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complex u : M0 → M1 of length 1 where M0 and M1 are vector bundles on J 1.
We have ker u = R0f∗(h∗B⊗L) and coker u = R1f∗(h∗B⊗L). Moreover as the
Euler-Poincaré characteritic χ(B ⊗ La) = 0, for all a ∈ J 1(k), the vector bundles
M0 and M1 have the same rank. In [14], Théorème 4.1.1, Raynaud proved the
following theorem:

Theorem 1.1 (Raynaud:). The determinant det u of u is not identically zero on J 1.

In particular one can consider the divisor θ := θB on J 1 which is the positive
Cartier divisor locally generated by det u. This is the theta divisor associated to the
vector bundle B. By definition a point a ∈ J 1(k) lies on the support of θ if and
only if H 0(X1, B ⊗ La) 	= 0.

2. p-Rank of cyclic étale covers with degree prime to p

We use the same notation as in 1. We will only discuss in this section the p-rank
and the notion of new-ordinariness for cyclic covers of degree l := a prime integer
distinct from p. This is the only case we use in this paper. For the general case of
any integer prime to p see [15], 2, and [21], 3.

The absolute Frobenius morphism F : X → X induces a semi-linear map
F : H 1(X,OX) → H 1(X,OX) and we have a canonical decomposition:

H 1(X,OX) = H 1(X,OX)
ss ⊕H 1(X,OX)

n

whereH 1(X,OX)
ss is the semi-simple part on whichF is bijective andH 1(X,OX)

n

is the nilpotent part on which F is nilpotent. The p-rank rX := r ofX is the dimen-
sion of the k-vector space H 1(X,OX)

ss. By duality it is also the dimension of the
subspace of H 0(X,�1

X) on which the Cartier operator c is bijective ([17], 10).
The p-rank rX of X is also the rank of the maximal pro-p-quotient πp1 (X) of the
fundamental group π1(X) of X, which is known to be a finitely generated free
pro-p-group [19]. If A is an abelian variety of dimension d over k then the order
of the étale part of the kernel of the morphism [p] : A → A of multiplication by
p is ph, where 0 ≤ h ≤ d is the p-rank of A. The abelian variety A is said to
be ordinary if it has maximal p-rank equal to d , which is also equivalent to the
fact that the Frobenius F is bijective on H 1(A,OA). With the above notation if
J = Pic0(X) is the jacobian variety of X then it is well known that the p-rank of
X equals the p-rank of J .

The relative Frobenius morphism π : X → X1 induces (because it is a radicial
morphism) a “canonical” isomorphism π1(X) → π1(X1) between fundamental
groups [16], IX, Théorème 4. 10). In particular for any prime integer l, which
is distinct from p, one has a one-to-one correspondence between µl-torsors of X
and those of X1. More precisely the canonical homomorphism H 1

et(X
1, µl) →

H 1
et(X,µl) induced by π is an isomorphism. Consider aµl-torsor f : Y → X with

Y connected. By Kummer theory, the torsor f is given by an invertible sheaf L of
order l on X and Y = Spec(⊕l−1

i=0L⊗i ). There exists then an invertible sheaf L1 on
X1, of order l, such that if f ′ : Y 1 → X1 is the associated µl-torsor we have a
cartesian diagram:
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Y
f−−−−→ X

π ′


� π



�

Y 1 f ′
−−−−→ X1

Let JY := Pic0(Y ) (resp. JX := Pic0(X)) denote the Jacobian variety of Y
(resp. the Jacobian of X). The morphism f : Y → X induces a natural homomor-
phism f ∗ : JX → JY between Jacobians which has a finite kernel (f ∗ is given
by the pull-back of degree zero invertible sheaves). Let J new := JY/X denote the
quotient of JY by the image f ∗(JX) of JX. The variety J new is an abelian variety
of dimension gY − gX and p-rank equal to rY − rX. It is called the new part of the
Jacobian JY of Y with respect to the morphism f .

Definition 2.1. Theµl-torsor f : Y → X is said to be new-ordinary if the new part
J new of the Jacobian of Y with respect to the morphism f is an ordinary abelian
variety, i.e. if the equality gY − gX = rY − rX holds.

Raynaud’s theory of theta divisors allows another important geometric interpre-
tation of new-ordinariness which we explain below. This interpretation has allowed
significant recent progress in the study of fundamental groups of curves in positive
characteristics.

There exists an isomorphism H 1(JY ,OJY ) � H 1(Y,OY ) ([18], VII, théorème
9) and H 1(Y,OY ) = H 1(X, f ∗OY ) = H 1(X,⊕l−1

i=0L⊗i ). From this we deduce
that H 1(J new,OJ new) � H 1(X,⊕l−1

i=1(L)⊗i ). Note that the above identifications
are compatible with the action of Frobenius. Hence the kernel of Frobenius on
H 1(J new,OJ new) is isomorphic to the kernel of Frobenius acting onH 1(X,⊕l−1

i=1L⊗i ).
On the other hand as f ′ is étale we have (f ′)∗(BX) = BY . Thus also (f ′)∗(BY ) =
BX ⊗ (f ′)∗(OY 1) = ⊕l−1

i=0(BX ⊗ (L1)⊗i ). Now by duality the kernel of the

Frobenius acting on H 1(X1,⊕l−1
i=1L1⊗i

) is (non-canonically) isomorphic to the
kernel of the Cartier operator acting on H 0(X1, π∗�1

X ⊗ (⊕l−1
i=1(L1)⊗i )) which is

⊕l−1
i=1H

0(X1, BX ⊗ (L1)⊗i ). Thus we see that the above µl-torsor f : Y → X

is new ordinary if and only if the Frobenius F is injective (hence bijective) on

H 1(J new,OJ new), i.e. if and only ifH 0(X1, B⊗(L1)
⊗i
) = 0 for all i ∈ {1, . . . , l−

1}. Finally this last statement is equivalent, by the very definition of the theta divisor
θX associated to the vector bundle BX, to the following:

Proposition 2.2. The µl-torsor f : Y → X is new-ordinary if and only if the sub-
group< L1 > generated by L1 in J 1 intersects the support of the theta divisor θX
at most at the zero point 0J 1 of J 1.

Using the above interpretation of new-ordinariness and with an input from inter-
section theory one can prove that for l >> 0 “most” µl-torsors are new-ordinary.
More precisely one has the following result which is essencially due to Serre and
Raynaud (see [14], théorème 4.3.1, and [21], corollary 3.10, for a proof):
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Theorem 2.3. There exists a constant c depending only on g and p such that for
each prime integer l 	= p the set of elements of J [l](k) whose corresponding µl-
torsor is not new-ordinary has cardinality ≤ c(l − 1)l2g−2 (Here J [l] denotes the
kernel of multiplication by l in J ). Moreover one can take c = (p − 1)3g−1g!.

In particular if l >> 0 we can find an element of J [l](k) such that the corre-
sponding µl-torsor is new-ordinary since Card J [l](k) = l2g .

3. Equi-characteristic deformation of generalized Prym varieties

In this section we state the theorem of Tamagawa on the local infinitesimal Torelli
problem for generalized Prym varieties. This theorem is an essential tool in the
proof of the main result of this paper.

Let k be an algebraically closed field of arbitrary characteristic. Denote by Ck
the category of artinian local rings with residue field k. For a proper and smooth
k-variety X0 one defines the (equi-characteristic) deformation functor MX0 of X0
to be the functor:

MX0 : Ck → (Sets)

which to an elementR of Ck associates the set of isomorphism classes of pairs (X, ϕ)
whereX is a proper and smoothR-scheme and ϕ is an isomorphismX×R k � X0.
The functor MX0 is well understood in the case where X0 has dimension 1 and
genus g ≥ 2 (resp. if X0 is an abelian variety of dimension d). In this case the
functor MX0 is pro-representable by a ring of formal power series of 3g − 3 (resp.
d2) variables over k. We will be mainly interested in these two cases.

Now assume that X0 is a proper connected and smooth algebraic curve over k
with genus g ≥ 2. Let l be a prime integer distinct from the characterisic of k and
let f0 : Y0 → X0 be aµl-torsor with Y0 connected. The torsor f0 corresponds to an
element L0 ∈ J0[l](k)where J0[l](k) denotes the k-subgroup of l-torsion points in
the jacobian J0 of X0. Let J new

0 be the new part of the jacobian of Y0 with respect
to the morphism f0. Then for any element R of Ck there is a natural map:

TL0(R) : MX0(R) → MJ new
0
(R)

defined as follows: let (X, ϕ)be an element ofMX0(R).Theµl-torsorf0 : Y0 → X0
lifts uniquely, by the theorems of lifting of étale covers ([16], I, 8), to a µl-torsor
f : Y → X. Let JX := Pic0(X) (resp. JY := Pic0(Y )) be the relative jacobian
of X (resp. the relative jacobian of Y ) which is an abelian scheme over R and
let f ∗ : JX → JY be the natural homomorphism which is induced by the pull
back of invertible sheaves. Define J new := JY /f

∗(JX) to be the quotient of JY
by the image f ∗(JX) of JX. Then J new is an abelian R-scheme and there exists
a natural isomorphism ψ : J new ×R k � J new

0 which is induced by ϕ. Thus the
pair (J new, ψ) is an element of MJ new

0
(R) which we define to be the image under

TL0(R) of (X, ϕ) in MJ new
0
(R). The infinitesimal Torelli problem asks whether or

not the above natural map:

TL0 : MX0 → MJ new
0
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is an immersion. More precisely let k[ε] (ε2 = 0) be the ring of dual numbers
on k. Then the question is whether the natural map: TL0(k[ε]) : MX0(k[ε]) →
MJ new

0
(k[ε]) between tangent spaces is injective. This is also equivalent asking

whether if A (resp. B) is the pro-representing object of the functor MX0 (resp.
of the functor MJ new

0
) then the natural homomorphism B → A induced by TL0 is

surjective. If this is the case it would in particular imply the following: for every ele-
ment R ∈ Ck and (X, ϕ) ∈ MX0(R) if the image (J new, ψ) of (X, ϕ) in MJ new

0
(R)

via the map TL0(R) is a trivial deformation of J new
0 then X is a trivial deformation

of X0. This is a generalization of the classical infinitesimal Torelli problem which
asks whether the natural map from the space of deformations of the curve X0 to
the space of deformations of its jacobian is an immersion in which case one knows
that the answer is yes, if the curve X0 is not hyperelliptic. Concerning the above
generalization Tamagawa proves the following:

Theorem 3.1 (Tamagawa:). Let X0 be a proper connected and smooth algebraic
curve over an algebraically closed field kwith genusg ≥ 2. LetdX0 :=min{deg(f ) /
f : X0 → P

1
k non constant} be the gonality of X0 ([22], 1). Assume that dX0 ≥ 5.

Then there exists a constant c1 which depends only on X0 and such that for each
prime integer l 	= char(k) the subset of the elements L0 of J [l](k) such that the cor-
responding natural map TL0 : MX0 → MJ new

0
is not an immersion has cardinality

≤ c1l
2g−2.

In particular if l >> 0 then one can find an element L0 ∈ J [l](k) such that
the corresponding map: TL0 : MX0 → MJ new

0
is an immersion. For a proof of the

above result see [22], corollary 4.16. Concerning the gonality of curves Tamagawa
also proves the following:

Theorem 3.2 (Tamagawa:). Let X be a proper connected and smooth algebraic
curve over an algebraically closed field k, with genus g ≥ 2. Then there exists an
étale cover f : Y → X such that the gonality dY of Y satisfies dY ≥ 5. More-
over the cover f can be chosen to be a composition of two cyclic étale covers of
(suitable) degree prime to the characteristic of k.

For the proof of Theorem 3.2 combine Theorem 2.7, Proposition 2.14, and
Corollary 2.19 from [22].

Combining both the Theorems 3.1 and 2.3 above we obtain the following result
which we will use in the proof of our main Theorem in section 6. This result was
also used by Tamagawa, in [22], in order to prove Theorem 6.1 in that paper.

Theorem 3.3. Let X be a proper connected and smooth algebraic curve of genus
g ≥ 2 over an algebraically closed field k of characteristic p > 0. Assume that
the gonality dX of X is ≥ 5. Then if l 	= p is a prime integer such that l >
1 + c1 + (p− 1)3g−1g!, where c1 is the constant in Theorem 3.1, there exists a non
zero element L ∈ J [l](k) such that the following two conditions are satisfied:

(i) The µl-torsor f : Y → X corresponding to L is new ordinary.
(ii) The natural map TL : MX → MJ new is an immersion.
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4. Complete families of curves with a given fundamental group in
characteristic p > 0

This is our main section in which we prove the main result of this paper which
asserts that complete families of curves with a constant geometric fundamental
group are isotrivial. In all what follows we fix a prime integer p > 0.

First we will explain how to define the fundamental group of points in the mod-
uli space of curves. Let Mg → Spec Fp be the coarse moduli scheme of smooth
and projective curves of genus g in characteristic p > 0. Let k be an algebrai-
cally closed field of characteristic p > 0. For a geometric point x ∈ Mg(k) let
Cx → Spec k be a smooth and projective curve of genus g which is classified
by x and let x ∈ Mg be the point such that x : Spec k → Mg factors through
x. We define the geometric fundamental group of the point x to be the geometric
fundamental group π1(Cx) of the curve Cx (we assume of course the choice of a
base point). We remark that the structure of π1(Cx), as a profinite group depends
only on the point x and not on the concrete geometric point x ∈ Mg(k) used to
define it. Indeed, first if k(x) is an algebraic closure of the residue field k(x) at x
and Cx is the curve classified by Spec k(x) → Mg then Cx � Cx ×k(x) k is the
base change of Cx to k. Hence π1(Cx) � π1(Cx) by the geometric invariance of
the fundamental group for proper varieties ([16], X, Corollaire 1.8). Second the
isomorphy type of Cx as an Fp-scheme does not depend on the choice of k(x): a
geometric point of Mg dominating x.

Next we recall the specialization theory of Grothendieck for fundamental groups.
Let y ∈ Mg be a point which specializes into the point x ∈ Mg . Then Grot-
hendieck’s specialization theorem shows the existence of a surjective continuous
homomorphism Sp : π1(Cy) → π1(Cx) ([16], X). In particular if η is the generic
point of Mg then Cη̄ is the generic curve of genus g and every point x of Mg

is a specialization of η. Hence for every x ∈ Mg there exists a surjective homo-
morphism Spx : π1(Cη) → π1(Cx). For every such an x we fix such a map once
for all. In particular if y specializes to x we also fix a surjective homomorphism
Spy,x : π1(Cy) → π1(Cx), such that Spy,x ◦ Spy = Spx .

Definition 4.1. Let S ⊂ Mg be a subscheme of Mg . We say that the (geometric)
fundamental group π1 is constant on S if for any two points x and y of S such
that y specializes in x the corresponding specialization homomorphism Spy,x :
π1(Cy) → π1(Cx) is an isomorphism. We say that π1 is not constant on S if the
contrary holds namely: there exist two points x and y of S such that y special-
izes in x and such that the corresponding specialization homomorphism Spy,x :
π1(Cȳ) → π1(Cx̄) is not an isomorphism.

For every field k of characteristic p we define in a similar way the geometric
fundamental group of points in Mg ×Fp

k as well as the notion of a subvariety
S ⊂ Mg ×Fp

k on which the geometric fundamental group π1 is constant.

Definition 4.2. Let S be a connected scheme of characteristic p and let f : X → S

be a relative smooth S-curve of genus g. We say that the (geometric) fundamental
group π1 is constant on the family f if for any two points t and s of S, such that t
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specializes in s, the corresponding specialization homomorphism Spt,s : π1(Xt̄ ) →
π1(Xs̄) is an isomorphism, where Xt̄ := X×S k(t̄) (resp. Xs̄ := X×S k(s̄)) is the
geometric fibre of X over the point t , (resp. the geometric fibre of X over the point
s). If the above condition doesn’t hold we say that the fundamental group π1 is not
constant on the family f .

Let S be a scheme of characteristic p and let f : X → S be a relative smooth
S-curve of genus g. It is clear that the fundamental group is constant on the family f
if and only if the fundamental group is constant on the image of the map S → Mg

induced by the family f . It is quite natural to ask the following question:

Question 4.3. Let k be an algebraically closed field of characteristic p. Does
Mg ×Fp

k contain k-subvarieties of positive dimension > 0 on which π1 is con-
stant?

Our main result is the following:

Theorem 4.4 (Main Result:). Let k be an algebraically closed field of character-
istic p. Let S ⊂ Mg ×Fp

k be a complete k-subvariety of Mg ×Fp
k. Then the

fundamental group π1 is not constant on S.

For the proof of Theorem 4.4 it is clear that one can reduce to the case where S
is a complete and irreducible curve. The proof of Theorem 4.4 then follows easily
by using B.1 (appendix) from the following Theorem 4.5:

Theorem 4.5. Let k be an algebraically closed field of characteristic p. Let S be
a smooth complete and irreducible k-curve. Let f : X → S be a non-isotrivial
proper and smooth family of curves of genus g ≥ 2. Then the fundamental group
π1 is not constant on the family f . Or equivalently if h : S → Mg ×Fp

k is the
map defined by f then the fundamental group π1 is not constant on the image h(S)
of S in Mg ×Fp

k.

In the process of proving Theorem 4.5 we prove in fact the following more
precise result:

Theorem 4.6. Let k be an algebraically closed field of characteristic p. Let S be
a smooth complete and irreducible k-curve. Let f : X → S be a non-isotrivial
proper and smooth family of curves of genus g ≥ 2. Then there exist a finite étale
cover S′ → S, a finite étale cover Y ′ → X′ := X ×S S

′ of degree prime to p, and
a closed point s0 ∈ S′ such that the p-rank of the geometric fibre Y ′

k(s̄0)
→ k(s̄0)

of Y ′ above the point s0 is strictly smaller that the p-rank of the generic geometric
fibre Y ′

k(η̄) → k(η̄) of Y ′ above the generic point η of S′.

First we start with the following lemmas:

Lemma/Definition 4.7. Let k be an algebraically closed field of characteristic p.
Let S be a smooth complete and irreducible k-curve. Let f : X → S be a smooth
family of curves. Let s be a closed point of S and let fs : Ys → Xs := X× S k(s) be
aµn-torsor over the fibre ofX above the point s, where n is coprime top. Then there
exist a positive integer d , such that if n is coprime to d, then there exist a finite étale
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cover h : S′ → S, aµn-torsor f ′ : Y ′ → X′ := X×S S
′, and a closed point s′ ∈ S′

with h(s′) = s such that the fibre f ′
s′ : Y ′

s′ := Y ′ ×S′ k(s′) → X′
s′ := X′ ×S′ k(s′) of

the torsor f ′ above the point s′ ∈ S′ coincides with the given cover fs : Ys → Xs .
We call such a pair (f ′, h) a good lifting of the cover fs : Ys → Xs .

Proof. In the case where the morphism f has a section the above lemma follows
easily from the homotopy exact sequence of fundamental groups in [16], XIII,
Proposition 4.3 (see Lemma 4.3.1 in loc. cit). In the general case, let x be a closed
point of the generic fibre Xη of X over S and let Z be the schematic closure of x
in X. Denote by Y be the normalization of Z. The canonical morphism Y → S is
finite of degree d, it is a “multisection” of f of degree d. Assume further that the
integer n is coprime to d . In the following we may and shall identifyµn with Z/nZ.
The sheaf R1f∗(Z/nZ) is locally constant on Set. In particular there exists a finite
étale cover h : S′ → S such that R1f∗(Z/nZ)/S′ is constant. We denote by Y ′ →
X′ := X × S S

′ → S′ a multisection of f ′ : X′ → S′ above Y . The Leray spectral
sequence in étale cohomology with respect to the morphism f ′ : X′ := X×S S

′ →
S′ and the constant sheaf Z/nZ gives rise to an exact sequence of terms of low
degree: 0 → H 1(S′, f ′∗(Z/nZ)) → H 1(X′,Z/nZ) → H 0(S′, R1f ′∗(Z/nZ)) →
H 2(S′, f ′∗(Z/nZ)) → H 2(X′,Z/nZ). Note that f ′∗(Z/nZ) = Z/nZ. Let s′ be a
closed point of S′ such that h(s′) = s. The fibre of the sheaf R1f ′∗(Z/nZ) at s′ is
isomorphic toH 1(Xs,Z/nZ). Let cs ∈ H 1(Xs,Z/nZ) be the class corresponding
to the torsor fs : Ys → Xs := X ×S k(s). Then cs can be lifted to a global section
c ∈ H 0(S′, R1f ′∗(Z/nZ)) since R1f∗(Z/nZ)/S′ is constant. The element c is the
image of a class c̃ ∈ H 1(X′,Z/nZ) via the above sequence if and only if its image
c′ in H 2(S′, f ′∗(Z/nZ)) vanishes. The element c′ is thus the obstruction to lift the
µn-torsor fs : Ys → Xs := X ×S k(s) to a µn-torosr f ′ : Y ′ → X′. We will
show that c′ = 0. The image of c′ in H 2(X′,Z/nZ) vanishes thus it also van-
ishes in H 2(Y ′,Z/nZ) via the canonical map H 2(X′,Z/nZ) → H 2(Y ′,Z/nZ).
We have a canonical map H 2(S′,Z/nZ) → H 2(Y ′,Z/nZ). We also have a norm
map H 2(Y ′,Z/nZ) → H 2(S′,Z/nZ) and the composite map H 2(S′,Z/nZ) →
H 2(Y ′,Z/nZ) → H 2(S′,Z/nZ) is multiplication by d. Hence we deduce that the
class c′ is annihilated by d . Since it is also annihilated byn, the groupH 2(S′,Z/nZ)
being n-torsion, we deduce that c′ = 0. 
�
Lemma 1. Let k be an algebraically closed field of characteristic p. Let S be a
smooth complete and irreducible k-curve. Let f : X → S be a proper and smooth
family of curves of genus g ≥ 2. Assume that the fundamental group π1 is constant
on the family f . Then for every finite cover S′ → S, and every finite étale cover
Y ′ → X′ := X ×S S

′, the fundamental group π1 is also constant on the family
Y ′ → S′.

Proof. Standard using the functorial properties of fundamental groups. 
�
Lemma 2. Let k be an algebraically closed field of characteristic p. Let S be a
smooth complete and irreducible k-curve. Let f : X → S be a proper and smooth
family of curves of genus g ≥ 2. Let S′ → S be a finite étale cover and let
Y ′ → X′ := X ×S S

′ be an étale cover. Assume that the smooth relative S′-curve
Y ′ → S′ is isotrivial. Then the smooth relative S-curve X → S is also isotrivial.
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Proof. Use Lemma 1.32 in [23]. 
�

Next we will prove the main Theorem 4.5.

Proof of Theorems 4.5 and 4.6. Fix a closed point s of S and let Xs := X×S k(s)

be the fibre of X above the point s ∈ S. By Tamagawa’s result, Theorem 3.2, we
can find an étale cover Ys → Xs such that the gonality dYs of Ys is ≥ 5. Moreover
the cover Ys → Xs can be chosen to be a composition of two cyclic of order prime
to p covers and such that these degrees are coprime to the degree of a given mul-
tisection of X → S. In particular we can find by Lemma 4.7 a finite étale cover
h : S1 → S and an étale cover f1 : Y → X1 := X×S S1 such that the pair (f1, h)

is a good lifting of the cover Ys → Xs . Now consider the smooth family of curves
Y → S1. Let s1 be a closed point of S1 such that h(s1) = s. Then by construction
the gonality of the fibre Ys1 := Y ×S k(s1) of Y above s1 is ≥ 5. In particular by
using Theorem 3.3 we can find a prime integer l >> 0 distinct from p and a non
trivial µl torsor Zs1 → Ys1 such that the following two conditions hold:

i) The µl-torsor Zs1 → Ys1 is new ordinary.
ii) The natural map T : MYs1

→ MJ new
s1

induced by the µl-torsor Zs1 → Ys1 ,
where J new

s1
is the new part of the jacobian of Zs1 with respect to the above

torsor, is an immersion (cf. 3).

Also by applying Lemme 4.7 we can find a finite étale cover h′ : S2 → S1 and
a µl-torsor f2 : Z′ → Y ′ := Y ×S1 S2 such that the pair (f2, h

′) is a good lifting
of the µl-torsor Zs1 → Ys1 . Let JY ′ (resp. JZ′ ) be the relative jacobian of Y ′ over
S2 (resp. the relative jacobian of Z′ over S2) which is an S2-abelian scheme. Let
f ∗

2 : JY ′ → JZ′ be the canonical homomorphism which is induced by the pull back
of invertible sheaves. Let J new := JZ′/f ∗

2 (JY ′) be the new part of the jacobian JZ′
with respect to theµl-torsorZ′ → Y ′. Let η′ be the generic point of S2 and let s2 be
a point of S2 such that h′(s2) = s1. The fibre J new

s2
:= J new ×S2 k(s2) of J new above

the point s2 is by construction an ordinary abelian variety. This implies a fortiori
that the generic fibre J new

η′ := J new ×S2 k(η
′) of J new where η′ is the generic point

of S2 is also ordinary since J new
η′ specializes to J new

s2
. The following two cases can

occur:
Case 1: The abelian scheme J new → S2 has constant p-rank, i.e. all fibres of

J new over S2 are ordinary abelian varieties. Then since S2 is complete we deduce
from Theorem A.3 that the abelian scheme J new → S2 is isotrivial. Note that the
deformation J new of J new

s2
induces infinitesimal deformations of J new

s2
which are

trivial deformations since J new is isotrivial. Since the map T is an immersion we
conclude that the deformation Y ′ → S2 is isotrivial, as well. A fortiori the family
X → S is also isotrivial by Lemma 4.9. But this contradicts our hypothesis that
the family X → S is not isotrivial. So case 1 can not occur.

Case 2: The abelian scheme J new → S2 does not have constant p-rank, i.e.
there exists a closed point s̃ ∈ S2 such that thep-rank of the fibreJ new

s̃
:= J new×S2 s̃

of J new over the point s̃ is strictly smaller than the p-rank of the generic fibre J new
η′

of J new. This in particular implies that the p-rank of the fibre Z′
s̃

:= Z′ ×S2 s̃

of Z′ above the point s̃ is strictly smaller than the p-rank of the generic fibre
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Z′
η′ := Z′ ×S2 η

′ of Z′. This already proves Theorem 4.6. Now this implies in
particular that the geometric fundamental group π1 is not constant on the family
Z′ → S2. Thus by Lemma 4.8 we deduce that the geometric fundamental group
π1 is not constant on the family X → S. This finishes the proof of Theorem 4.5. 
�

Theorem 4.5 can be generalized to the situation where we consider the full tame
fundamental group. More precisely we have the following theorem:

Theorem 4.8. Let k be an algebraically closed field of characteristic p. Let S be
a smooth complete and irreducible k-curve with generic point η (resp. geomet-
ric generic point η̄ above η). Let f : X → S be a proper and smooth family
of curves of genus g ≥ 2. Let {s1, s2, . . . , sn} be n sections of f with disjoint
support such that 2 − 2g − n < 0. Assume that the family f is not isotrivial.
Then the tame fundamental group is not constant on the pair (f, {s1, s2, . . . , sn})
i.e. there exists a closed point s ∈ S such that the specialization homomorphism
Sp : πt1(Xη̄ − {s1(η̄), s2(η̄), . . . , sn(η̄)}) → πt1(Xs − {s1(s), s2(s), . . . , sn(s)})
between tame fundamental groups, where Xη̄ := X ×S η̄ (resp. Xs := X ×S s), is
not an isomorphism. Here η̄ is a geometric point above η.

The proof of 4.10 follows from the fact (easily seen) that if the geometric tame
fundamental groupπt1 is constant on the fibres off then this implies that the geomet-
ric fundamental group π1 (which is the quotient of πt1 by the normal subgroup gen-
erated by inertia) is also constant on the fibres off (one has to use the fact that inertia
specialises to inertia via the specialisation map) and we are then reduced to 4.5.

Appendix A: Families of abelian varieties with constant p-rank
in characteristic p

Let p > 0 be a fixed prime integer. In this section we would like to explain the
startification of the moduli space of polarized abelian varieties in characteristic p
by the p-rank, and state the theorem of Raynaud, Szpiro and Moret-Bailly on the
isotriviality of complete families of ordinary abelian varieties.

Let g ≥ 1 be an integer. Let Ag → Spec Fp denotes the coarse moduli scheme
of principally polarized abelian varieties of dimension g in characteristic p. The
scheme Ag is a quasi-projective variety of dimension g(g + 1)/2 and has the fol-
lowing property: for every scheme S of characteristic p and X → S a principally
polarized abelian S-scheme of relative dimension g there exists a unique natural
map S → Ag defined by the family X → S. This map sends a point s ∈ S to the
moduli point corresponding to the fibre Xs → Spec k(s) of X above the point s.

Let k be an algebraically closed field of characteristic p. For each fixed integer
0 ≤ f ≤ g let Vf ⊂ Ag ×Fp

k be the subset of points corresponding to abelian
varieties having a p-rank ≤ f . Concerning the subsets Vf we have the following:

Theorem A.1. For each fixed integer 0 ≤ f ≤ g and any algebraically closed
field k of characteristic p let Vf ⊂ Ag×Fp

k be the subset of points corresponding
to abelian varieties having a p-rank ≤ f . Then the subset Vf is a closed sub-
scheme of Ag ×Fp

k and every irreducible component of Vf has dimension equal
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to g(g+1)/2−g+f . Moreover the closed subscheme V0 is a complete subvariety
of Ag ×Fp

k of dimension g(g − 1)/2.

For the proof of the fact that Vf is closed see [11], Corollary 1.5. For the state-
ment concerning the dimension of the above strata see [9], Theorem 4.1. Finally
for the fact that V0 is complete see [11], proof of Theorem 1.1 a).

Next we state the theorem of Raynaud, Szpiro and Moret-Bailly.

Definition A.2. Let k be a field of characteristic p > 0. Let S be a normal and
integral k-variety and let X → S be an abelian S-scheme of relative dimension g.
The familyX → S is called isotrivial if there exists a finite cover S′ → S such that
the abelian scheme X ×S S

′ is S′-isomorphic to the product of S′ with an abelian
variety defined over some finite extension of k.

Theorem A.3 (Raynaud, Szpiro, Moret-Bailly [7], chapitre XI, 5:). Let k be a field
of characteristic p > 0. Let S be a normal and integral k-variety which is projec-
tive. Let X → S be an abelian S-scheme of relative dimension g. Assume that all
the geometric fibres Xs̄ → Spec k(s̄) of X over S are ordinary abelian varieties.
Then the family X → S is isotrivial.

Appendix B: Families of curves with constant p-rank in characteristic p

Letp > 0 be a prime integer. In this section we want to extend the argument of Oort
in [11] in order to show the existence, for every integer g ≥ 3, of a non-isotrivial
complete family of smooth and proper curves of genus gwith constantp-rank equal
to 0. Before stating the main result we will explain and adopt some notation.

Let g ≥ 2 be an integer and let Mg → Spec Fp be the coarse moduli scheme
of projective smooth and irreducible curves of genus g in characteristic p. The
scheme Mg is a quasi-projective irreducible variety of dimension 3g − 3. Let
Mg → Spec Fp be the Deligne-Mumford compactification of Mg which is a
coarse moduli scheme of projective and stable curves of genus g in characteristic
p. The scheme Mg is an irreducible projective variety which contains Mg as an
open subscheme ([3] for more details). We will also consider M′

g → Spec Fp

which is the coarse moduli scheme of projective and stable curves of genus g in
characteristic p whose jacobian is an abelian variety (these are exactly the projec-
tive and stable curves of genus g whose configuration of irreducible components
is tree like cf. [1], 9, corollary 12).

Let S be a scheme of characteristic p. By a smooth relative (or a family of)
curve(s) f : X → S over S of genus g we mean that f is a proper and smooth
equidimensional morphism with relative dimension 1 whose fibres are curves of
genus g. We say that the relative curve f : X → S is complete if S is a complete and
irreducible variety in characteristic p. The moduli scheme Mg has the following
property: if f : X → S is a smooth relative curve over S of genus g then there is a
natural map S → Mg which is uniquely determined by f . This map sends a point
s ∈ S to the moduli point corresponding to the fibre Xs → Spec k(s) of X above
the point s. We also have the following:
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Proposition B.1. Let k be a field of characteristic p and let S be a subvariety of
Mg ×Fp

k. Then there exists a finite cover h : S ′ → S and a smooth relative
S ′-curve f ′ : X′ → S ′ of genus g such that the natural morphism S ′ → Mg ,
induced by f ′, factorizes S ′ → S → Mg through h.

Proof. Standard by passing to the fine moduli scheme of smooth projective and
irreducible curves of genus g with a symplectic level n-structure. 
�
Definition B.2. Let S be a scheme of characteristic p and let f : X → S be a
smooth relative S-curve of genus g. The curve f : X → S is said to be isotrivial if
the corresponding map S → Mg has an image which consists of a point.

Definition B.3. Let S be a scheme of characteristic p and let f : X → S be a
smooth relative S-curve of genus g. Let 0 ≤ r ≤ g be an integer. We say that
the family f : X → S has constant p-rank, equal to r , if each geometric fibre
Xs̄ → Spec k(s̄) of f has a p-rank equal to r .

In [11] Oort showed, in the proof of theorem 1.1. b), the existence over any
algebraically closed field k of characteristic p of a complete curve contained in
M3 ×Fp

k and which is contained in the locus of curves having p-rank equal to 0.
This indeed corresponds by Proposition B.1 to a non-isotrivial complete family of
smooth curves of genus 3 with constant p-rank equal to 0. Oort’s argument can be
easily extended, using the results in [9], in order to prove the following:

Theorem B.4. Let g ≥ 3 be an integer. Let k be an algebraically closed field of
characteristic p. Then Mg ×Fp

k contains a complete irreducible curve which is
contained in the locus of curves having p-rank equal to 0.

Proof. The proof consists in considering the Torelli map together with a dimension
argument. More precisely let:

t : M′
g ×Fp

k → Ag ×Fp
k

be the Torelli morphism which sends the class of a stable curve whose jacobian is
an abelian variety to the class of its jacobian endowed with its canonical principal
polarization coming from the theta divisor. Torelli’s theorm ([6], 12) says that the
map t is injective on geometric points. In particular the image J ′

g := t (M′
g ×Fp

k)

(resp. Jg := t (Mg ×Fp
k)) of M′

g ×Fp
k (resp, of Mg ×Fp

k), which is called
the jacobian locus (resp. open jacobian locus), is a subvariety of Ag of dimen-
sion 3g − 3. Moreover J ′

g is closed in Ag ([8], lecture IV, p. 74). For each fixed
integer 0 ≤ f ≤ g let Vf be the closed subscheme of Ag ×Fp

k as defined in
B.3. Then every irreducible component of J ′

f,g := J ′
g ∩ Vf has dimension at least

3g − 3 − g + f = 2g − 3 + f ([11], lemma 1.6). Moreover it is well known that
every irreducible component of J ′

0,g = J ′
g ∩ V0 has dimension 2g − 3 ([4] 2.3,

for example). We claim that {J ′
g − Jg} ∩ V0 has codimension at least two in J ′

0,g .
Indeed for a positive integer g′ ≥ 1 let J0,g′ := Jg′ ∩ V0. Then {J ′

g − Jg} ∩ V0
is contained in the images of J0,g1 × · · · × J0,gt for all possible family of positive
integers {g1, . . . , gt } such that g1 + · · · + gt = g, with t ≥ 2, via the natural
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morphism J ′
0,g1

× · · · × J ′
0,gt

→ V0 (here we define M1 � J1 = A1 to be the
j -line over k parametrizing elliptic curves, in particular J ′

0,1 = J0,1 has dimen-
sion 0 in this case). Now counting the dimension of J ′

0,g1
× · · · × J ′

0,gt
which is

∑

i (2gi − 3) ≤ 2g − 5, where the sum is taken over all i ∈ {1, . . . , t} such that
gi > 1 or otherwise this dimension equals 0, we conclude that {J ′

g − Jg} ∩ V0 has
codimension at least two in J ′

0,g = J ′
g ∩ V0. 
�

Finally since V0 is projective we can find a closed immersion V0 → P
N
k into

a projective k-space of suitable dimension. Further we can find a general linear
subspace L of P

N
k , of suitable dimension, such that L∩ J ′

0,g is a (necessarily com-
plete) curve S′ and such that L ∩ {{J ′

g − Jg} ∩ V0} is empty ([2], II, Chapter 3,
1.2). Now the inverse image S := t−1(S′) of S′, via the Torelli map t , is a complete
curve contained in Mg ×Fp

k and which by construction is contained in the locus
of curves having p-rank equal to 0.

Corollary B.5. Let g ≥ 3 be an integer. Let k be an algebraically closed field of
characteristic p. Then there exists a complete and smooth algebraic k-curve S and
a non isotrivial smooth S-curve f : X → S of genus g with constant p-rank equal
to 0.

Remark B.6. It is tempting to try to construct an S-curve X as in 5.5, for special
values of g, by considering a Galois cover f : X → Y with group Z/pZ where
Y is a ruled surface over S and such that f is étale outside an S-section of Y . The
Deuring-Shafarevich formula comparing the p-rank in Galois p-covers would then
imply that all fibres of X over S have p-rank equal to 0. However, by a result of
Pries, all such covers f : X → Y are necessarily isotrivial ([13], Theorem 3.3.4).

Question B.7. Let g ≥ 3 be an integer. Let k be an algebraically closed field of
characteristic p. Let r̃ be the maximum of the integers r such that Mg ×Fp

k con-
tains a complete curve S whose image under the Torelli morphism is contained in
Vr −Vr−1. We have 0 ≤ r̃ < g. What is the value of r̃? Does the value of r̃ depend
only on g? Or does it depend on p as well?
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