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We describe a process in which the segmentation of objects as well as the extraction of

the object shape becomes realized through active exploration of a robot vision system.
In the exploration process, two behavioral modules that link robot actions to the visual

and haptic perception of objects interact. First, by making use of an object independent

grasping mechanism, physical control over potential objects can be gained. Having eval-
uated the initial grasping mechanism as being successful, a second behavior extracts the

object shape by making use of prediction based on the motion induced by the robot.
This also leads to the concept of an ’object’ as a set of features that change predictably
over different frames.

The system is equipped with a certain degree of generic prior knowledge about the

world in terms of a sophisticated visual feature extraction process in an early cognitive vi-
sion system, knowledge about its own embodiment as well as knowledge about geometric

relationships such as rigid body motion. This prior knowledge allows for the extraction
of representations that are semantically richer compared to many other approaches.
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1. Introduction

According to Gibson1 an object is characterized by three properties: It

O1 has a certain minimal and maximal size related to the body of an agent,
O2 shows temporal stability, and
O3 is manipulatable by the agent.

Note that all these three properties are defined in relation to the agent (even tem-
poral stability (O2) is relative to the agents lifetime span). Hence, no general agent
independent criterion can be given. For an adult, a sofa certainly fulfills all three
properties but for a fly, a sofa is more a surface than an object.

The detection of ‘objectness’ according to the three properties described above
is not a trivial task. When observing a scene, usually in a visual system, a number
of local features become extracted for which it is unclear whether and to which
object they correspond to. Actually, property O3 can only be tested by acting on
the scene in case that no prior object knowledge is available.

In many artificial systems, in particular in the context of robotics, the object
shape is given by a CAD representation a priori and is then used for object identifi-
cation and pose estimation (see, e.g., Lowe2). However, CAD representations are not
available in a general context and hence for any cognitive system, it is an important
prerequisite that it is able to learn object representations from experience.

In this paper, we address both problems: We introduce a procedure in which the
objectness becomes detected based on the three Gibsonian criteria mentioned above.
In addition, the object shape becomes extracted by making use of the coherence of
motion induced by the agent after having achieved physical control over something
that might turn out to become an object.

Our approach is making use of the concept of Object Action Complexes (OACs)
where we assume that objects and actions (here the ‘grasping action’ and controlled
object movement) are inseparably intertwined. Hence, the intention of performing
a grasp, the actual attempt to grasp and the evaluation of its success as well as a
controlled movement of the object in case of a successful grasp will let the ‘object-
ness’ as well as a representation of the object’s shape emerge as the consequence of
the actions of the cognitive agenta.

It is worth noting that both aspects, achieving physical control over a thingb

as well as the extraction of object shape is based on a significant amount of prior
knowledge, which however is much more generic than a CAD model of an object.
More specifically, this prior consists of the system’s knowledge about

aWe note that this extends the notion of ‘affordances’ by Gibson. According to Gibson: Objects
afford actions. While this remains true, it is also — in our hands — the case that an action defines

an object. For example the action of drinking defines a cup, where the action of ‘placing on top’
makes the same (!) thing a pedestal (an upside down cup).
bWe denote with ‘thing’ something that causes the extraction of a visual feature but which is not

yet characterized as an object since it could be for example also something fixed in the workspace
of the robot and hence does not fulfill condition O3.
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1) its own body in terms of the shape, the degrees of freedom and the current
joint configuration of the robot arm as well as the relative position of the stereo
camera system and the robot co-ordinate system,

2) a developed early cognitive system3,4 that extracts local multi-modal symbolic
descriptors (see Fig. 1(a–e)), in the following called primitives, and relations
defined upon these primitives expressing statistical and deterministic properties
of visual information (see Fig. 2).

3) two behavior modules in terms of two OACs:

B1 An object independent ‘grasping reflex’ leads in some cases to successful
grasping of potential objects (Fig. 1e shows the end-effector’s pose for
one successful grasp). Note that here it is less important to have a high
success-rate of grasping attempts but that is is more important that a
success is actually measurable and that it then triggers a second exploration
mechanism (see B2).
The ‘grasping reflex’ is based on three semantic relations defined within
the early cognitive vision system: First, co-planarity of descriptors indicate
surfaces and by that possible grasping options. The co-planarity relation
is enhanced by a co-linearity and co-colority relation to further enhance
the success rate of the ‘grasping reflex’.

B2 After a successful grasp an accumulation module explores the object by
looking at different views of the object (see Fig. 1(f,g)) and accumulating
this information to determine the objectness of the thing as well as to
extract the shape of the object (Fig. 1(h)). This accumulation module
is based on prediction based on a rigid body motion relation between
primitives. Having gained physical control over an object by the grasping
reflex allows for inducing a rigid body motion on the object and by that
the object (its objectness as well as its shape) can be characterized by the
set of visual descriptors changing according to the induced motion.

The idea of taking advantage of active components for vision is in the spirit
of active vision research5,6. The grounding of vision in cognitive agents has been
addressed for example by a number of groups in the context of grasping7,8 as well
as robot navigation9.

The work of Fitzpatrick and Metta7 is the most related one to our approach
since the overall goal as well as the hardware set up is similar: Finding out about
the relations of actions and objects by exploration using a stereo system combined
with a grasping device. We see the main distinguishing feature of this work to our
approach in the amount of pre-structure we use. For example, we assume a much
more sophisticated vision system that covers multiple visual modalities in a con-
densed form as well as visual relations defined upon them. This allows us to operate
in a highly structured feature space where, instead of pixel-wise representations, we
can operate on local symbols for which we can predict changes not only of position
but also other feature attributes such as orientation and color. Furthermore, the use
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Fig. 1. Overview of the system. (a) Image of the scene as viewed by the left camera at the first

frame. (b) Symbolic representation of a primitive wherein (1) shows the orientation, (2) the phase,

(3) the color, (4) the optic flow of the primitive. (c) 2D primitives extracted at one object in the
scene from (a). (d) Illustration of the reconstruction of a 3D primitive from a stereo pair of 2D

primitives. (e) 3D primitives reconstructed from the scene and one grasping hypothesis. (f–g) Two
views of robot rotating the grasped object to build its 3D representation. (h) The learned 3D

representation of the object.

of a very precise industrial robot allows for a precise generation of changes exploited
for the extraction of the 3D shape of the object.

It is not clear what exact prior knowledge can be assumed in the human sys-
tem. However, there exist strong indications for an innate concept of 3D space as
well as for sophisticated feature extraction mechanisms being in place very early
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in visual experience. For a discussion of this issue see for example Kellmann and
Arterberry10. The question of prior knowledge in the context of depth perception
and possible consequences for the design of artificial systems is described in Krüger
and Wörgötter11.

Similar to Fitzpatrick and Metta7, we assume first ‘reflex-like’ actions that trig-
ger exploration. However, since in our system the robot knows about its body and
the 3D geometry of the world and since the arm can be controlled more precisely,
these reflexes can make use of more complex visual events. As a consequence we
can make use of having physical control over the object and therefore extract rather
precise 3D information (in addition to the appearance based information coded in
the primitives).

Modayil and Kuipers9 addressed the problem of detection of objectness and the
extraction of object shape in the context of a mobile robot using laser information.
Here also motion information (in terms of the odometry of the mobile robot) is used
to formulate predictions. In this way, they were able to extract a top-view of the
3D shape of the object however only in terms of geometric information and only in
terms of a 2D projection to the ground floor.

The paper is organized as following: In Section 2 the early cognitive vision system
is briefly described. In Section 3 and 4 we give a description of the two sub-modules,
i.e., the grasping reflex and the accumulation scheme. Sub-aspects of the work have
been presented at two workshops12,13.

2. An Early Cognitive Vision System

In this section, we introduce the visual system in which the detection of ‘objectness’
as well as the acquisition of the object representation is taking place. The system is
characterized by rather structured prior knowledge: First, a scene representation is
computed in terms of local symbolic descriptors (in the following called primitives)
covering different visual modalities as well as 2D and 3D aspects of visual data
(Section 2.1). Second, there are relations defined upon the symbolic descriptors
that cover spatial and temporal dependencies as briefly described in Section 2.2. It
is only the use of this prior knowledge that allows for the formulation of the two
OACs described in Sections 3 and 4.

2.1. Multi-modal primitives as local scene descriptors

In this work we use local, multi-modal contour descriptors hereafter called
primitives3,4 (see Fig. 1). These primitives give a semantically meaningful descrip-
tion of a local image patch in terms of position as well as the visual modalities
orientation, color and phase. The importance of such a semantic grounding of fea-
tures for a general purpose vision front-end, and the relevance of edge-like structures
for this purposes was discussed, e.g., by Elder14.

The primitives are extracted sparsely at locations in the image which are most
likely to contain edges. The sparseness is assured using a classical winner-take-all
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operation, ensuring that the generative patches of the primitives do not overlap.
Each primitive encodes the image information contained by a local image patch.
Multi-modal information is gathered from this image patch, including the position
x of the center of the patch, the orientation θ of the edge, the phase ω of the signal
at this point, the color c sampled over the image patch on both sides of the edge,
the local optical flow f and the size of the patch ρ. Consequently a local image
patch is described by the following multi-modal vector:

π = (x, θ, ω, c,f , ρ)T , (1)

that we will name 2D primitive in the following. The primitive extraction process
is illustrated in Fig. 1.

In a stereo scenario, 3D primitives can be computed from correspondences of
2D primitives (Fig. 1)

Π = (X,Θ,Ω,C)T , (2)

where X is the position in space, Θ is the 3D orientation, Ω is the phase of the
contour, and C is the color on both sides of the contour. For details see Pugeault15.

2.2. Perceptual relations between primitives

The sparseness of the primitives allows for the formulation of four structural re-
lations between primitives that are crucial in our context since they allow us to
relate feature constellations to grasping actions (in the first OAC in Section 3) or
visual percepts in consecutive frames (in the second OAC described in Section 4).
See Kalkan et al.16 for more details.
Co-planarity: Two spatial primitives Πi and Πj are co-planar iff their orientation
vectors lie on the same plane. The co-planarity relation is illustrated in Fig. 2(b). In
the context of the grasping reflex described in Section 3, grasping actions become
associated to the plane spanned by co-planar primitives.
Collinear grouping (i.e., collinearity): Two 3D primitives Πi and Πj are
collinear (i.e., part of the same group) iff they are part of the same contour. Due
to uncertainty in the 3D reconstruction process, in this work, the collinearity of
two spatial primitives Πi and Πj is computed using their 2D projections πi and πj .
Collinearity of two primitives is illustrated in Fig. 2(a).
Co-colority: Two spatial primitives Πi and Πj are co-color iff their parts that
face each other have the same color. In the same way as collinearity, co-colority of
two spatial primitives Πi and Πj is computed using their 2D projections πi and
πj . In Fig. 2(c) a pair of co-color and non co-color primitives are shown. Testing
for collinearity and co-colority help to reduce the number of generated grasping
hypotheses (see Section 3.2).
Rigid body motion: The change of position and orientation induced by a rigid
body motion between two frames at time t and t + 1 (Πt+1 = RBM(Πt)) can be
computed analytically17, phase and color can be approximated to be constant.
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Fig. 2. Illustration of the relations between a pair of primitives. (a) Collinearity of two 2D primitives
πi and πj . (b) Co-planarity of two 3D primitives Πi and Πj . (c) Co-colority of three 2D primitives

πi, πj and πk. In this case, πi and πj are co-color, so are πi and πk; however, πj and πk are not

co-color.

3. Grasping Reflex

In this section, we describe the first OAC that leads to a physical control over
objects. Note that a high success rate is not important in this context, but more
that the success can be evaluated by haptic feedback which then gives indications
to proceed with another OAC described in Section 4.

3.1. Elementary grasping actions associated to co-planar

primitives

Coplanar relationships between visual primitives suggest different graspable planes.
Fig. 3(a) shows a set of spatial primitives on two different contours li and lj with
co-planarity, co-colority and collinearity relations.

Four elementary grasping action (EGA) types will be considered as shown in
Fig. 3(b-e). EGA type 1 (EGA1) is a ‘pinch’ grasp on a thin edge like structure
with approach direction along the surface normal of the plane spanned by the
primitives. EGA type 2 (EGA2) is an ‘inverted’ grasp using the inside of two edges
with approach along the surface normal. EGA type 3 (EGA3) is a ‘pinch’ grasp on a
single edge with approach direction perpendicular to the surface normal. EGA type
4 (EGA4) is a wide grasp making contact on two separate edges with approach
direction along the surface normal.

EGAs are parameterized by their final pose (position and orientation) and the
initial gripper configuration. For the simple parallel jaw gripper, an EGA will thus
be defined by seven parameters: EGA(x, y, z, k, l,m, δ) where p = [x, y, z] is the
position of the gripper ‘center’ according to Fig. 3(f); k, l,m are the roll, pitch and
yaw angles of the vector n; and δ is the gripper opening, see Fig. 3(f). Note that
the gripper ‘center’ is placed in the ‘middle’ of the gripper.
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Fig. 3. (a) A set of spatial primitives on two different contours li and lj that have co-planarity, co-
colority and collinearity relations; a plane P defined by the co-planarity of the spatial primitives

and an example grasp suggested by the plane. (b–e) Elementary grasping action types, EGA1,

EGA2, EGA3 and EGA4 respectively. Please note, besides the two primitives (marked as spheres)
defining the concrete EGA only the surfaces touched by the gripper are needed for the grasp to be

successful. The cube form given here is used to illustrate the differences in the different EGA types

and their applicability. (f) Parameterization of EGAs.

These grasp parameters are computed from coplanar pairs of 3D-primitives. Let
Γ = {Π1,Π2} be a primitive pair for which the coplanar relationship is fulfilled.
Let Γi be the i-th pair and p the plane defined by the coplanar relationship of the
primitives of Γi. Let Λ(Π) be the position of Π and Θ(Π) be the orientation of
Π. The parameterization of the EGAs is given with the gripper normal n and the
normal a of the surface between the two fingers as illustrated in Fig. 3(f). From
this, the yaw, pitch and roll angles can be easily computed. For example for EGA1,
there will be two possible parameter sets given the primitive pair Γ = {Π1,Π2}.
The parameterization is as follows:

pgripper = Λ(Πi),

n = ∇(p),

a = perpn(Θ(Πi))/ ‖ perpn(Θ(Πi)) ‖ for i = 1, 2, (3)

where ∇(p) is the normal of the plane p and perpu(a) is the projection of a
perpendicular to u. The details of how the other EGAs are computed can be found
in Aarno et al.12.

The main motivation for choosing these grasps is that they represent the simplest
possible two fingered grasps humans commonly use which can also be simulated
on our robot system. The result of applying the EGAs can be evaluated by the
information given by the gripper (Schunk, PT-AP 70) which gives the distance
between the two jaws at each instance of time.

For EGA1, EGA3 and EGA4, a failed grasp can be detected by the fact that the
gripper is completely closed. For EGA1 and EGA3, the expected grasp is a pinch
type grasp, i.e. narrow. Therefore, they can also ‘fail’ if the gripper comes to a halt
too early. EGA2 fails if the gripper is fully opened, meaning that no contact was
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made with the object. If none of the above situations is encountered the EGA is
considered to be successful.

3.2. Limiting the number of actions

For a typical scene, the number of coplanar pairs of primitives is in the order of
103−104. Given that each coplanar relationship gives rise to six different grasps from
the four different categories, it is obvious that the number of suggested actions must
be further constrained. In addition, there exist many coplanar pairs of primitives
affording similar grasps.

To overcome some of the above problems, we make use of the structural richness
of the primitives. First, their embedding into collinear groups naturally clusters the
grasping hypotheses into sets of redundant grasps from which only one needs to
be tested. Furthermore, co-colority, gives an additional hypothesis for a potential
grasp. Aarno et al.12 quantified the reduction in EGA hypotheses using collinearity
and co-colority in a simulation environment, showing that the number of EGAs can
be reduced systematically.

3.3. Experimental evaluation

To evaluate the grasping reflex we made experiments within the simulation envi-
ronment GraspIt18 and with a real scene. In the GraspIt environment, we evaluated
success rates in scenes of different complexity (see Fig. 4(a–d) for a number of
successful grasps on two scenes). The success rate was dependent on the scene com-
plexity, ranging from appr. 90%c in the case of a simple plane (see Fig. 4(a,b)), to
around 25% for scenes of larger complexity (Fig. 4(c,d)).

We then evaluated the exploration strategy on a real scene (see Fig. 4(e)). After
reconstructing 3D-primitives from stereo images (Fig. 4(h)), 912 EGAs were gener-
ated. However, in a real set-up there are additional constraints such as the definition
of a region of interestd and the fact that not all EGAs are actually performable due
to limited workspacee. In addition, grasps leading to collisions with the floor or the
wall need to be eliminated. Table 1 shows the effects of the reductions.

In a full exploration sequence, the system attempts to perform one of the 50
remaining EGAs. A failure to grasp an object generally causes changes in the scene,
and the whole sequence of capturing images, generating and reducing EGAs would

cA success is counted when one of the six EGAs (two instantiations of each EGA1 and EGA3, one

of EGA2 and EGA4) generated by a primitive pair has been performed successfully
dThe region of interest serves two purposes: 1. It represents a computationally cheap way to
remove EGAs that would be reduced by the later, more expensive reachability check. 2. It prevents

grasping attempts in regions in which no objects should be placed. In our concrete setup, the region

of interest is defined as a cube in front of the robot.
eNote that the workspace needs to be defined in terms of a 6D pose and that even when a 3D
point is reachable, it is not certain that the desired end-effector orientation can be achieved at this
point.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 4. Evaluation of the grasping reflex in simulation (a–d) and in a real robot environment (e–j).

(a,c) Artificial grasping scenes. (b,d) Selected grasping hypotheses generated for the scenes shown
in (a,c). (e) The view from the left camera for the real environment. Origin and orientation of the

world coordinate frame are illustrated in top left corner. (h) Extracted 3D primitives for the whole
scene (see (e)) displayed in the visualization environment. (f,g) The robot arm executing successful

grasps. (i,j) The grasps from (f,g) shown in the 3D visualization environment (enlarged).

Table 1. The results of applying reductions to the initial set of EGAs.

Reductions: Initial number of EGAs remaining relative reduction

to region of interest 912 228 75.0%

to reachable configurations 123 105 53.9%
collision free (floor) 105 50 52.4%
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be repeated. However, for the purpose of evaluating the whole set of proposed
EGAs for a single scene, the objects in this experiment were placed at their original
position after each attempted grasp.

In the specific scenario shown in Fig. 4(e), three out of the four objects could
be grasped by the reflex. Out of 50 grasps, 7 lead to physical control over objects.
In one case, the contact area was too small, leading to an unstable grip, and the
accumulation module (see Section 4.1) could not be applied.

4. Detection of Objectness and Object Shape

Having achieved physical control over an object, measured by the distance between
the gripper’s jaws after closing or opening (in case of EGA2), a second OAC is trig-
gered that makes use of the additional capability of the agent: actively manipulating
the object.

If the object’s motion within the scene is known, then the relation between
this object’s features in two subsequent frames becomes deterministic (excluding
the usual problems of occlusion, sampling, etc.). This means that a 3D-primitive
that is present in one frame is subject to a transformation that is fully determined
by the object’s motion: generally a change of 3D position and 3D orientation.f If
we assume that the motion between consecutive frames is reasonably small then
a contour will not appear or disappear unpredictably, but will have a life-span in
the representation, between the moment it enters the field of view and the moment
it leaves it. Assuming having a fully calibrated system and having physical control
over the object (as gained by the first OAC described in Section 3), we can compute
the 3D-primitives’ change in camera coordinates.

These predictions are relevant in different contexts:

Establishment of objectness: The objectness of a set of features is charac-
terized by the fact that they all move according to the robot’s motion. This
property is discussed in the context of a grounded AI planning system in Geib
et al.19.
Segmentation: The system segments the object from the rest of the scene
using its predicted motion.
Disambiguation: Erroneous 3D-primitives can be characterized (and elimi-
nated) by inconsistent motion according to the predictions (see also Krüger et
al.20).
Learning the object model: A full 3D model of the object can be extracted
by merging different 2 1

2D views created by the motion of the end effector.

fWe neglect the effects of lighting and reflection, and assume that phase and color stay constant.
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Fig. 5. Example of the accumulation of a primitive (see text).

4.1. Making predictions from the robot motion

If we consider a 3D-primitive Πt
i ∈ St describing an object’s contour at time instant

t, and assume that the object’s motion is known between the two instants t and
t+ ∆t, then we can predict this primitive’s position at time t+ ∆t.

The projection of 3D-primitives to the image domain predicts where 2D-
primitives should be extracted from each camera’s image at time t+ ∆t. It is then
possible to assess the correctness of a reconstructed 3D-primitive by how reliably it
is confirmed by subsequently extracted 2D-primitives.

This prediction/verification process is illustrated in Fig. 5. The left image is
taken from a scene at time t; the right image is taken from the same scene, at
a later time t + δt. Assuming that a primitive π is extracted at time t, and lead
to two distinct, mutually exclusive, putative 3D reconstructions Π′ and Π′′. If the
object that π describes is subjected to a known motion Mt→t+δt, then this motion
knowledge allows for making predictions on where in the image this primitive should
manifest itself at time t+δt. Mutually exclusive putative 3D-primitives (Π′ and Π′′)
will lead to distinct predictions (π′ and π′′). When confronting these predictions
with the new image at time t+ δt, and the primitives extracted from it, it becomes
apparent that π′ is confirmed by the newly available information whereas π′′ is
contradicted, thereby revealing the erroneousness of the hypothesis Π′′. Therefore,
Π′′ is discarded from the representation and thus the ambiguity is reduced.

We then propose to use these predictions to re-evaluate 3D-primitives’ confi-
dence depending on their resilience over time. This is justified by the continuity
assumption, which states that 1) scene’s objects or contours should not appear and
disappear abruptly from the field of view (FoV) but move in and out gracefully ac-
cording to the estimated ego-motion; and 2) a contour’s position and orientation at
any point in time is fully determined by the knowledge of its position at a previous
instant in time and of its motion since.

Consider a primitive Πi, predicting a primitive Π̂t
i at time t. We write the fact
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that this prediction is confirmed by the images at time time t as µt(Π̂i) = 1; and the
fact that it is not confirmed (i.e., there is no 2D-primitive extracted at time t that
is similar to the projection of Π̂t

i on the image plane) as µt(Π̂i) = 0. By extension,
we code the resilience a primitive Πi, from its apparition at time 0 until time t as
the binary vector:

µ(Πi) =
(
µt(Π̂i), µt−1(Π̂i), · · · , µ0(Π̂i)

)T
. (4)

We then apply Bayes formula to evaluate the posterior likelihood that a 3D-
primitive is correct knowing its resilience vector:

p (Πi|µ(Πi)) =
p (µ(Πi)|Π) p (Π)

p (µ(Πi)|Π) p (Π) + p
(
µ(Πi)|Π̄

)
p
(
Π̄
) . (5)

In this formula, Π and Π̄ are correct and erroneous primitives, respectively. The
quantities p (Π) and p

(
Π̄
)

are the prior likelihoods for a 3D-primitive to be cor-

rect and erroneous. The quantity p
(
µ(Π̂i)|Π

)
(resp. p

(
µ(Πi)|Π̄

)
) expresses the

probability of occurrence of a resilience vector µ(Πi) for a correct (resp. erroneous)
primitive Πi.

Furthermore, if we assume independence between the matches µt(Π̂i), then for
a primitive Πi that exists since n iterations and has been matched successfully m

times, we have the following relation:

p
(
µ(Π̂i)|Π

)
=
∏
t p
(
µt(Π̂i)|Π

)
= p

(
µt(Π̂i) = 1|Π

)m
p
(
µt(Π̂i) = 0|Π

)n−m
.

(6)

In this case the probabilities for µt are equiprobable for all t, and therefore if we
define the quantities α = p (Π), β = p

(
µt(Π̂) = 1|Π

)
and γ = p

(
µt(Π̂) = 1|Π̄

)
then we can rewrite Eq. (5) as follows:

p
(

Πi|µ̄(Π̂i)
)

=
βm(1− β)n−mα

βm(1− β)n−mα+ γm(1− γ)n−m(1− α)
. (7)

We measured these prior and conditional probabilities using a video sequence
with known motion and depth ground truth obtained via range scanner. We found
values of α = 0.46, β = 0.83 and γ = 0.41. This means that, in these examples,
the prior likelihood for a stereo hypothesis to be correct is 46%, the likelihood for
a correct hypothesis to be confirmed is 83% whereas for an erroneous hypothesis it
is of 41%. These probabilities show that Bayesian inference can be used to identify
correct correspondences from erroneous ones. To stabilize the process, we will only
consider the n first frames after the appearance of a new 3D-primitive. After n
frames, the confidence is fixed for good. If the confidence is deemed too low at this
stage, the primitive is forgotten. During our experiments n = 5 proved to be a
suitable value.

The end-effector of the robot follows the same motion as the object. Therefore,
this end-effector becomes extracted as well. Since we know the geometry of this
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(a) (b) (c) (d)

Fig. 6. Birth of an object. (a) top: bounding boxes of grasper body and its fingers used to eliminate
grasper features and grasper coordinate system, bottom: image with eliminated grasper features.

(b)–(c) two steps in the accumulation process. Top: 2D projection of the accumulated 3D rep-

resentation and newly introduced primitives, bottom: accumulated 3D representation. (d) newly
introduced and accumulated primitives in detail. Note that, the primitives that are not updated

are black (dominant on the left side of the image), the ones that have low confidence are grey and
the high confidence ones are white (dominant in the areas close to the cable, the gripper and the

object).

Fig. 7. Objects and their related accumulated representation.

end-effector (Fig. 6(a)top), we can however easily subtract it by eliminating the
3D primitives that are inside the bounding boxes that bounds the body of the
gripper and its fingers. For this operation, three bounding boxes are defined in
the grasper coordinate system. Fig. 6(a)bottom shows the 2D projection of the
remaining primitives after the ones produced by the gripper have been eliminated.
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4.2. Experiments

We applied the accumulation scheme to a variety of scenes where the robot arm
manipulated several objects. The motion was a rotation of 5 degrees per frame.
The accumulation process on one such object is illustrated in Fig. 6. The top im-
ages of Fig. 6(b,c) show the predictions at two frames. The bottom images show
the 3D-primitives that were accumulated. The object representation becomes fuller
over time, whereas the primitives reconstructed from other parts of the scene are
discarded. Fig. 7 shows the accumulated representation for various objects. The
hole in the model corresponds to the part of the object occluded by the gripper.
Accumulating the representation over several distinct grasps of the objects would
yield a complete representation.

5. Conclusion

We introduced a scheme in which two modules in terms of Object Action Complexes
(OACs) become combined to extract world knowledge in terms of the objectness
of a set of local features as well as the object shape. Although this exploration
scheme is completely autonomous, we argued that there is a significant amount of
prior knowledge in terms of generic properties of the world built into the system.
Starting with a rather sophisticated feature extraction process covering common
visual modalities, functional relations defined on those features such as co-planarity,
co-linearity, basic laws about Euclidean geometry and the motion of rigid object has
been exploited. Furthermore and at least of equal importance was the capability to
act on the world that made this process possible. Here the embodiment of the agent
is of high importance. The option to grasp and move the objects in a controlled way
is rather unique to few species and with high likelihood linked to develop higher
cognitive capabilities.

The work described in this paper is part of the EU project PACO-PLUS21

which aims at a system covering different levels of cognitive processing from low-
level processes as described here up to a planning AI level (see Geib et al.19). This
work introduced describes an important module of such a cognitive system which
gives information that higher levels require to start operating. First, it segments the
world in objects which are the basic entities that higher level reasoning is based on.
Moreover, it generates 3D object representations in a procedural way which then
can be used for object identification and pose estimation (see, e.g., Lowe2 for the
use of 3D models for object recognition and Detry and Piater22 for first steps in
directly making use of the extracted representations described in this paper). By
the described exploratory procedure, a natural mechanism is given that enlarges
the internal world model that then can be used by higher levels for reasoning and
planning.
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