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Abstract

Autonomous driving is an extremely challenging
problem and existing driverless cars use non-visual
sensing to palliate the limitations of machine vision
approaches. This paper presents a driving school
framework for learning incrementally a fast and ro-
bust steering behaviour from visual gist only. The
framework is based on an autonomous steering pro-
gram interfacing in real time with a racing simula-
tor (TORCS): hence the teacher is a racing program
having perfect insight into its position on the road,
whereas the student learns to steer from visual gist
only. Experiments show that (i) such a framework al-
lows the visual driver to drive around the track suc-
cessfully after a few iterations, demonstrating that
visual gist is sufficient input to drive the car success-
fully; and (ii) the number of training rounds required
to drive around a track reduces when the student
has experienced other tracks, showing that the learnt
model generalises well to unseen tracks.

1 Introduction

Imagine you are driving on a countryside road. You
steer the car keeping it on your side of the road, slow
down in curves, shift gears accordingly. When an-
other car is in front, you adapt your driving to match
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its speed, and if a wide truck comes in front, you cor-
rect your lane position to avoid collision. Now con-
sider that you are crossing a town. In addition of
these, you need to handle intersections, other cars,
cyclists and pedestrians, traffic lights and signs. All
of these tasks are performed routinely and effortlessly
by experienced drivers, even to the point that driver
inattention is named as a major cause for road ac-
cidents. In contrast, and despite significant progress
over the last decades, artificial systems struggle to ap-
proach human performance in any of these tasks, let
alone all of them. Early approaches in autonomous
driving can be traced back to the 70’s (e.g., VITS
[12], ALVINN [7], see [5] for a review) up to state-
of-the-art systems such as the Stanley robot [I1], the
Google carﬂ or Oxford’s RoboCar UKEFfor example
the UK is planning to test them in selected cities as
early as 2015. Yet today, all working systems must
rely on extensive arrays of sensors (LIDAR, GPS,
aerial images, road maps) to palliate the insufficien-
cies of machine vision. Despite the difficulties it en-
tails, vision based driving remains the most promis-
ing way to spread driverless cars outside of city cen-
ters and motorways to rural areas and countryside
roads: first because most of the existing infrastruc-
ture and signalisation in place is visual; second, vision
offers the advantage of a fast, passive sensor that al-
lows for early detection of hazards. Unfortunately,
vision-based autonomous driving is still far from our
reach, and significant progresses in machine vision are
required.

Ihttps://plus.google.com/+GoogleSelfDrivingCars/
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Figure 1: The tracks from the TORCS simulator that were used in this work.

One aspect that sets vision-based driving aside
from other computer vision problems, is the vast
amount of visual information that is continuously
perceived and the high variability of the environment:
driving differs in cities versus countryside or motor-
ways, lane markings can be faded or nonexistent, and
it is impractical to predict a priori all sort of road
users that a car may encounter (cars, motorcyclists
and trucks, but also pedestrians, cyclists in London,
sheep in Scotland, wild poneys in Dartmoor, etc.).
In addition, any driving system is required to anal-
yse visual information swiftly in order to act with
minimal latency—a delayed response when driving
at 60mph can have lethal consequences. The main-
stream of computer vision approaches, for example
running detectors over scanning windows in images,
require high processing power and is ill suited to this
low-latency requirement.

In contrast to these approaches, the recent avail-
ability of large image collections on the internet
has motivated computer vision scientists to look for
faster approaches. Drawing inspiration from the pre-
attentive capabilities of the human visual system,
Oliva & Torralba proposed a holistic image descriptor
based on the low frequency components of images’
Fourier decomposition, to encode the gist of a vi-
sual scene [6]. They demonstrated that such a coarse
holistic encoding was sufficient for classifying images
between categories such as open or closed, indoor or
outdoor... Because such gist descriptors discard all
high frequency components, they are a plausible ap-
proximation of human pre-attentive perception based
on peripheral vision. In addition to this, gist de-
scriptors are computationally attractive because they
only process low-resolution versions of the images,

which makes them well suited for low-latency appli-
cations such as driving. The first application of vi-
sual gist in robotic domain was by Siagian & Itti [10],
where visual gist was used for robot localisation (but
not steering). Pugeault & Bowden [8] demonstrated
that detectors based on visual gist could predict driv-
ing context such as ‘crossroads’, ‘urban’ versus ‘non-
urban’ and ‘single-lane’ versus ‘motorway’. Addition-
ally, it was shown that the driver’s actions such as
pressing the brake pedal or turning the steering wheel
could also be predicted to a large extent. A later ar-
ticle [9] showed that a human driver’s steering angle
could be predicted accurately using a Random Forest
regression approach on the extracted gist descriptors.
The results were demonstrated on a robotic platform
that could steer itself at moderate speed on a nar-
row track and on driving data recorded in a real car
on a countryside road. These studies demonstrated
that (i) the majority of human driving actions can be
explained from visual gist only, and (ii) such models
have the capacity to adapt to large variations in the
environment: lane markers were learnt as cues when
visible, whereas other cues were learnt otherwise [9].
Both of these works used batch learning approaches
however, where all training examples were provided
at training time. This is a limitation because of the
extensive variability in driving environment and sit-
uations, and missing training examples can cause the
system to steer off the road. To make matters worse,
informative situations, such as taking a narrow curve
or a hairpin bend are uncommon which means that
hundreds of hours of driving may be required before
all informative situations are featured in the training
set. This is impractical both from the perspective of
data storage and training algorithms.



In the following, we overcome this limitation by
devising a driving school in a racing simulation pro-
gram. In this approach, the ‘student’ is the pre-
attentive driving program, and the ‘teacher’ is an-
other program that has perfect knowledge of the track
and how to steer around it—and does not rely on vi-
sion for this.

2 Introducing the virtual driv-
ing school

In order to implement a driving school for an artificial
vision-based program, two main challenges need to
be addressed: safety and training. First, in a real-
life driving school, the risk of giving the wheel to an
untrained driver is alleviated by the assumption that
the learner has enough common sense and caution.
There is no such comfort with an algorithm: assessing
algorithm performance on a racing track at a speed
of 70 mph under varying environmental conditions
would pose significant safety issues—notwithstanding
material damage. Second, a driving school requires
an experienced driver, the teacher, to take over and
correct the student when he does wrong. Although
we could imagine to use a human teacher, it would be
easier and faster for the system to learn from another
program that is known to be a good and safe driver
and using additional sensors beside vision and world
knowledge. For these reasons, we devised our driving
school experiment inside a virtual environment using
an artificial driver as tutor.

2.1 Simulated environment

In this work, we build our driving school on an Open
Source racing simulator, called TORCS [I3]. The
video game engine provides with a convenient per-
ception/action framework as well as performance in-
formation such as the car’s position on the road. Ad-
ditionally, given that we are only using visual gist as
input, the 3D graphics are virtually undistinguishable
from real life videos. Using an Open Source program
allows to easily modify the simulator’s code in order
to (i) transmit visual data and controls to the driv-
ing program, (ii) override the player’s steering control
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Figure 2: Visual gist extraction (HOG) from the car’s
cockpit.

with our program, and (iii) to check for failure cases
by controlling for the position of the car on the road,
and override the student’s controls with the teacher’s
when this happens.

TORCS provides us with realistic car and road
physics and a variety of racing tracks : Figure
shows the selection of 16 tracks that we used in
this experiment, featuring large variations in weather,
landscape, layout, difficulty and markings. Finally,
TORCS also provides automated racing programs (or
‘bots’), that steer the car around the track based on
perfect knowledge of the track shape and position on
the road. In this project we use a bot developped by
Bernhard Wymann, called ‘damned’; as the teacher
for our system [13]. Note that this work only consid-
ers the problem of high speed steering for road fol-
lowing; therefore in all experiments described in this
paper the system was racing on an empty track with
no other cars or obstacles (as would an actual driver
when training). Also, anyone could drive around a
racing track at low speed, as it allows the driver
plenty of time to correct errors and poor steering
choices. In contrast, high speed driving require quick
and accurate steering to remain on the track, chal-
lenging even expert drivers. Hence, we set the car’s
speed at 70mph in all experiments, to ensure that
successful driving around the track is an indicator of
skillful steering, while ensuring that an average hu-
man player could also succeed.



2.2  Visual gist

As explained before, we want our system to learn a
model of pre-attentive driving, and therefore we en-
sure that it only perceives the visual gist of the view
from the car’s cockpit, as in [8 [@]. In [9], two de-
scriptors were considered for regressing steering: the
GIST descriptor from [6] and the related Histogram
of Oriented Gradients (HOG) descriptor [3]. HOG
is a popular feature descriptor in machine vision for
its efficiency, originally designed for human detection
in images. It consists in calculating the image gra-
dients at all pixel localisation and pooling gradients’
orientations into histograms over a coarse grid. In
this work we make use of HOGs descriptors calcu-
lated on 8 x 8 grids over 160 x 120 images, which
is an efficient approximation of visual gist [9] allow-
ing us to process the simulator’s visual input at 20
frames per second—see Figure[2] Formally, we define
our visual gist extration from images I € 7 as a pro-
cess ¢ : T — X, where X is the space of our HOG
features.

2.3 Steering angle regression

The learning is performed using random regression
forests, as in [9]. Random forests were initially pro-
posed by [II 2], and consist in learning a randomised
collection of decision trees from a dataset. Random
forests can operate regression from large datasets
with high dimensional visual gist observation vectors,
they are efficient to train and can predict steering
values in real-time, and therefore ideally suited for
this study. Formally, a random forest regressor 1 is
a mapping from the space of visual features X to a
steering angle § € R: ¢ : X — R. A steering forest
1¥p will be defined from a training set D composed
of N pairs (z;,0;) where z € X is a HOG feature
extracted at time t; and 6; € R is the correspond-
ing steering value decided at time t; by the teacher
program. In practice, random forest training time
typically increases superlinearly with the number of
training examples N, hence the aim of our approach
is to add example pairs to D parsimoniously. We
refer to [9] for details of the random forest learning
approach.
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Figure 3: Diagram of the driving school framework
built on top of the racing simulator.
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Figure 4: Flow diagram of the incremental learning
approach.

2.4 Incremental learning

This work focuses on incremental re-training by
adding failure cases to the training set after each race.
Incrementally adding failure cases to update a learnt
model is a common approach in visual tracking—see,
e.g., []. The rationale is that the object’s appear-
ance is likely to change over time due to lighting and
viewpoint, and that it is impossible to define a com-
plete set of training examples a priori. Therefore a
more successful approach is to update the model of
the tracked object at each frame with new success
and failure cases. The same rationale is used in this
work: we start by learning a simple random forest
regression for a minimal training sample (one race
around the track demonstrated by the teacher), and
update this training set after each race by adding the
failure cases.

In our experimental set up, the car speed is fixed
at 70mph, and the steering can be controlled either
by the student, using the learnt random forest re-
gressor, or by the teacher using TORC’s bot pro-
gram: the student controls the steering alone until
the car gets off the road, then the control is passed
onto the teacher to correct the car’s position—this is
illustrated in diagram [3] where the ‘student/teacher
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Figure 5: Student learning on a single curve: In
(a) the trajectories followed by the system after one,
two or three rounds of training, on the same curve.
Each time the trajectory touches the road boundary
(denoted as shaded circles on the figure), the teacher
took over the steering and brought the car back on
the road, hence runs 1 and 2 both failed twice, and
run 3 was successful. Panel (b) shows the actual
steering control for runs 2 and 3 on this curve: the
blue curve is the student’s control and the purple one
is the teacher’s correction when the student failed.

override’ signal switches the car’s control from stu-
dent to teacher when the car goes off track. In addi-
tion to correcting the car’s position, the teacher then
provides feedback to the student in terms of correct
steering controls in the 5 second that preceeded the
incident. This duration of 5 seconds is arbitrary and
chosen because at a speed of 70mph, it will include
most, if not all, steering information leading to the
failure (it corresponds to a distance of ~ 155 meters).
The system’s performance is unaffected by small vari-
ations of this parameter, although shorter episodes
will require more retraining while significantly longer
episodes will increase the training set with less rele-
vant examples and slow down each re-training.

In practice, everytime the student drives the car off
the track: (1) the 100 frames (i.e., 5 seconds) prior
to the failure are saved as a new training episode,
along with the steering suggested by the teacher for
these frames; (2) the teacher takes over and brings
the car back on the track; and (3) the student re-
sumes driving around the track—this is illustrated
in diagram [4 When the student finally finishes rac-
ing around the track, all failure cases and associated
teacher’s steering are added to the training set of the
student’s regression model, and the random forest is
re-trained. Both stages of experimenting and training
are performed iteratively on the same track until the
student manages to race 10 consecutive laps without
mistake. Figure [|illustrates the control signal gener-
ated by the student (b), along with the corresponding
trajectories (a) for one curve.

3 Results

The experiment were set the following way: First,
the teacher demonstrates racing one lap around track
#1; then, the student program is given the controls
and attempts to race around the track, acquiring new
training data after each mistake. After the end of the
lap, the student is retrained before attempting again.
When the student succeeds in driving 10 consecutive
laps around the track, it proceeds to the next track.
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3.1 Learning to race on a known track

Figure shows the average number of times the
student went off the track per km, after each training
stage. This graph shows that the incremental retrain-
ing improves steering behaviour quickly and that the
system can drive successfully around the track after
6 re-trainings. Figure [7] provides a more qualitative
insight in the student’s steering improvement due to
re-training. In this figure, the bottom row shows the
trajectories at the first trial, and after four re-training
stages, and the top row shows the intermediate tra-
jectories, after one two and three re-trainings. In
these figures, the student’s trajectory is denoted by
the green line and the failure cases where the teacher
had to intervene are denoted by the purple segments.
The student originally fails in all curves (and even
some straight portions), whereas a single failure oc-
cur after just two re-training steps. After four re-
trainings, the student successfully drive around the
track as shown by the lack of purple segments.

3.2 Generalisation to new tracks

One question is whether the behaviour learnt by the
student generalises to different tracks, surfaces, en-

vironments, lane markings, etc. Figure pro-
vides some evidence that this is the case. This graph
plots the number of retraining stages required be-
fore the student could drive successfully around the
track, against the number of tracks previously en-
countered by the student (the tracks were attempted
in the same order as Figure[I] starting from top-left to
bottom right). This shows that training generally be-
comes faster after the student has already mastered
several tracks, although some more difficult tracks
still require re-training. For example the student
could drive around the third, fifth and sixth track
without re-training, i.e. the training examples col-
lected from the previous tracks were sufficient to in-
form driving on these ones. Overall, six tracks could
be raced without additional training, and three more
with only one additional training round. Conversely,
some of the tracks seem to be intrinsically more dif-
ficult to learn, for example tracks 7 and 8 contain
tighter curves than the previous ones, track 9 is the
only track in a snowy weather, hence the need for
re-training.
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Figure 7: Tllustration of car trajectories across successive trials and re-training stages. The green line is the
trajectory, and the purple sections indicate the student’s failures and the episodes selected for re-training.



4 Conclusions

In this article we have presented some results of a sim-
ulated driving school framework for artificial driving
systems. The studied system used only visual gist as
perceptual input and achieved a good approximation
of an expert program’s driving behaviour, despite the
fact that the program in question benefit from perfect
knowledge of the track and the car’s position on the
road. This is a confirmation of the evidence in [, 0]
that pre-attentive vision accounts for a large share of
driving behaviour.

In addition, we presented an incremental learning
approach that only sparingly increase the training set
with failure episodes and is shown to reach good per-
formance after only a few re-training stages. More-
over, the learnt behaviour is shown to generalise well
to different tracks. The re-training stages could be
improved in future work by implementing a variant
of boosting instead of retraining the whole forest at
each step.

Finally, this experiment showed that simulated
environments can provide convenient test beds for
learning, and especially for active learning ap-
proaches.
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