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Abstract—In this work, we model context in terms of a set of
concepts grounded in a robot’s sensorimotor interactions with
the environment. For this end, we treat context as a latent
variable in Latent Dirichlet Allocation, which is widely used
in computational linguistics for modeling topics in texts. The
flexibility of our approach allows many-to-many relationships
between objects and contexts, as well as between scenes and
contexts. We use a concept web representation of the perceptions
of the robot as a basis for context analysis. The detected contexts
of the scene can be used for several cognitive problems. Our
results demonstrate that the robot can use learned contexts to
improve object recognition and planning.

I. INTRODUCTION

Context is the totality of the information characterising the
situation of a cognitive system; e.g. it can include objects,
persons, places, and temporally extended information related
to ongoing tasks, but also information not directly related
to these tasks. In natural cognitive systems, behaviour is a
response to not only a given stimulus, but also the stimulus
in the context of other stimuli. It is known that the way in
which an organism responds to one stimulus depends also on
other, apparently irrelevant, stimuli which constitute what we
call context. In fact natural systems not only consider these
“apparently irrelevant” stimuli, but they also use them to their
advantage. Yeh & Barsalou [1] show how humans tested on a
variety of cognitive tasks get a significant performance boost
by taking account of contextual information. This applies to
tasks that are highly relevant for cognitive robots, such as
recognising objects and events, categorisation, retrieval of rel-
evant information and skills, language understanding, problem
solving and reasoning. In artificial cognitive systems, unfortu-
nately, extraneous stimuli tend to be viewed as something to
be avoided or factored out. This is partly a legacy from the
closed world assumptions of classical Artificial Intelligence.

Rather than viewing context as inconvenient, we believe
that we can use it to our advantage. This advantage accrues
because contextual information promotes relevant information
and behaviours, while it suppresses irrelevant ones. This can
be explained by an example from Yeh & Barsalou [1] using the
notion of situated concepts. Situated concepts are concepts that
are associated (in memory) with contextual information de-
rived from the situations in which the concept was previously
experienced. For example, the concept of chair is linked to
the situations where it has occurred (including locations such
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Fig. 1. (a) Existing cognitive systems have concepts which have links to
perceptual features and motor actions which were programmed by a designer
or trained in context-free environments. (b) We propose a system that learns
links between concepts and sensorimotor primitives that are based on the
statistics of its interactions in real-life environments (i.e. in context). For
clarity, only a few links and concepts are shown.

as offices, living rooms, classrooms, and associated actions
such as reclining), as illustrated in Figure 1(b). Activating the
concept of chair then allows us to draw immediate inferences
about where to find one, and likely adjacent objects, e.g.
tables and lamps, which may be useful in planning. Irrelevant
inferences are suppressed: in a living room context a chair
can be expected to be large and soft, not small and hard.
Possible actions are also activated and instantiated in a context
dependent fashion (e.g. reclining on a living room chair);
unlikely actions (lifting) are suppressed. All of this is based on
likelihood, but it works, because the statistics of the associated
contextual knowledge have been built up through extensive
experience in real-life scenarios.

For developmental roboticists it is not a new idea to think
that abstract symbolic representations must be linked to the
perceptual states of the robot (some people call this “ground-
ing” [2]). In this article, we propose to extend that by linking
the interpretation and the processing of an object or an event
by also using the sensorimotor data from the other entities
in the environment. The robot first builds a web of concepts
that get activated by the multi-modal data coming from the
scene. We define and model context as related to a set of
active concepts in this web using Latent Dirichlet Allocation
[3].

A. Context in Cognitive Science and Robotics

It is a matter of consensus across fields that context process-
ing is an essential part of embodied cognition (e.g., psychology



[1], language [4]–[6], AI [7], robotics [8], [9] and computer
vision [10]. Shank and Abelson [7], for example, argued that
reasoning about situations in daily life relies on “scripts”
that inform reasoners about the prototypical features of these
situations. A restaurant, for example, tends to come with a
menu, dishes, a waiter, a chef, and so on. This work has gone
on to influence today’s formal ontologies. Probably the earliest
research on context focused on linguistic phenomena, studying
how the understanding of an expression (e.g. a personal
pronoun like “it”) is affected by the rest of the sentence or
text [5]. Later research applied these ideas to other aspects
of communication, including speech (e.g. pitch accent) and
body language (e.g. [11]). Even more drastically, the notion
of a context has been extended to all symbolic systems (e.g.,
[12]). Perhaps most notably, McCarthy [9] and his colleagues
proposed the rectification of context in classical (logical) AI,
arguing that Artificial Intelligence needs to put the notion of a
context centre stage. In McCarthy’s view, intelligent machines
“must construct or choose a limited context containing a
suitable theory whose predicates and functions connect to the
machine’s inputs and outputs in an appropriate way” [13]. This
work gave rise to a wave of theoretical work focusing on issues
like the problem of “lifting” information about one knowledge
base to another (e.g., if a universally quantified proposition is
known to be true in context X then what is the strongest
proposition known to be true in a context Y that is related to
X in some well- understood way).

Work in all these traditions continues to inspire Cognitive
Science and AI. But times have changed: the rise of embodied
cognition theories in the 90’s, for instance, has offered a differ-
ent perspective on context, based on a perceptual and action-
based rather than symbolic approach [8]. This perceptual
perspective is particularly relevant for robotics, where contexts
typically need to be acquired from perception (i.e., they
cannot be programmed in advance). Barsalou, for example,
has advocated the necessity for concepts to be situated [1],
[14]; in other words, for an abstract concept to be related
to concrete contexts. Coventry et al. [6] studied the difference
between geometric and functional contexts in the use of spatial
prepositions (“over” vs. “above”) and of linguistic quantifiers
(“few” vs. “many” vs. “several”).

Robotic science has achieved significant success in terms of
both theory and applications in the past five decades; however,
research involving context has focused on the environmental
aspect only, i.e., situation awareness, which involves perceiv-
ing and interpreting what is happening in the environment.
Robotic studies have investigated situation awareness in urban
search for rescue tasks [15], home security [16] and elderly
people’s living environments [17], object recognition in daily
activities [18]. LDA has already been used in robotics; e.g., for
learning concepts and their labels [19], or autonomous drive
annotation [20]. In computer vision, the notion of context has
grown in prominence over the last decade, both explicitly and
implicitly. Explicitly, the study of visual gist [21] showed
that holistic encodings of the visual input could carry a
large amount of information for intelligent systems allowing

(a) The iCub humanoid robot (b) Used objects

Fig. 2. (a) The iCub humanoid robot platform. (b) The objects we use in
our experiments. [Best viewed in color]

scene identification [21], [22], urban scene detection [23], and
autonomous navigation [24]. Also, the importance of context
in visual detection and recognition tasks has become prevalent
in recent years: action recognition [25], object categorisation
[26], and detection [10]. Implicitly, the now popular data-
driven, machine learning-based approach to vision led to
algorithms that efficiently extract all predictive information
from the visual data, effectively making heavy use of context
to reach high performance (see [27] for a criticism).

In summary we see in existing works various piecemeal
efforts to tackle particular facets of context in particular
application domains. In contrast, and following the intuitions
of Yeh & Barsalou [1], we argue that a principled approach is
needed to learn, represent and process context in a developing
cognitive system. If such can be achieved then the benefit will
not be for just one task, but across all areas of cognition.
However, such a computational or robotic implementation has
not been attempted yet. In this study, we make an initial
attempt at such a formalization.

II. THE EXPERIMENTAL SETUP

We use the iCub humanoid robot platform in this work. iCub
operates on a tabletop environment (Figure 2(a)), observing
and exploring objects. It collects visual information through
a Kinect sensor. Audio, haptic and proprioceptive information
are collected by applying previously learned actions on the
objects. Its repertoire of objects consists of 60 real-life or
hand-made objects (Figure 2(b)-(g)). The performed behaviors
are grasping and shaking for collecting audio information, and
checking coating material, knocking them over if they are
of convenient height, and pushing them forwards, backwards,
leftwards, and rightwards. Eventually, ten sets of features are
extracted for each object, before and after each action.

For processing the visual data from the Kinect, we use
the Point Cloud Library [28], to extract 60 raw features of
shape (surface normal and shape index features), as well as
the position and the size of the object. Haptic information
comes from iCub’s tactile sensors, proprioceptive information
from the finger joints. Audio information is collected from a
microphone. In total we use a feature vector of length 92 [29].



III. METHODS

We relate context to a set of concepts that are active in a
web of concepts that the robot learns. Context is extracted as a
latent topic variable using Latent Dirichlet Allocation (LDA),
a state-of-the-art method used widely in natural language
processing for modeling topic in text documents. First, we
allow the robot to acquire information about its surrounding,
by performing exploratory movements in the environment.
At the end of this open-ended learning, the robot gathers
information about the current scene, represented in the form of
a concept web. The connections in the web carry information
about commonly co-occurring concepts. For instance, the
activation of the cup concept can activate the related grasping
concept. Then, given the scenes that the robot has encountered,
it analyzes its perceptions with LDA, leading to the emergence
of hidden contexts in the scene. The detected contexts in
turn provide feedback to the concept web in order to affect
currently active concepts on the spot.

A. Latent Dirichlet Allocation (LDA)

LDA [3] is a generative probabilistic model for inference
of hidden (latent) variables, called topics, from documents. A
natural application is inferring the topics of text documents.
Each document d ∈ D is composed of a set of words
w1, ..., wN (wi ∈ W), and is assumed to be a finite mixture
over a (known) set of topics t1, ..., tM (ti ∈ T ). Therefore,
a document can be represented by its topic probability dis-
tribution p(t|d). Each topic has a probability distribution of
generating various words in the document, p(w|t). However,
the memberships between the words and the topics are not
strongly defined: A word can be generated by multiple topics.

LDA assumes that a collection of documents (called a
corpus) is defined by a Dirichlet prior α, and each topic
has an a priori fixed word distribution β. A document d
is “generated” by choosing θd ∼ Dir(α) to be the topic
distribution for document, then for each word position n
choosing a topic zn ∼ Multinomial(θi), and then a word wn
from the probability p(wn|zn, β). A graphical visualization is
provided in Figure 3(a).

(a) (b)

Fig. 3. (a) Plate notation of LDA. The outer plate represents documents, the
inner plate represents each word position. The parameters α and β are corpus-
level, meaning they need to be sampled only once when generating a corpus.
θi is document level, therefore needs to be sampled once for each document.
The variables zin and win are word-level and should be sampled once for
every word position in every document. (b) The variational distribution used
to approximate LDA. Free variational parameters γ and φ are introduced to
remove the coupling between θ and β. Both figures based on [3].
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Fig. 4. A sample concept web. Concepts connect together perceptions,
actions, and language. Frequently co-occurring concepts have stronger links.
‘Contexts’ as detected by LDA are connected to the web as a set of higher-
level nodes. Only a subset of concepts and connections are shown for clarity.

Given a corpus, LDA tries to find the parameters α and β
that maximize the log likelihood of the data. Once we estimate
them, we can make various inferences, such as the probability
of a given document, the probability distribution of topics of a
document, or the likely topic of each word given its document.

However, due to the coupling between the parameters θ
and β, this distribution is intractable to compute. Blei et
al. [3] offer alternative approximate solutions, among which
we follow the variational inference method. The idea is to
introduce free variational parameters γ and φ, which allow us
to get rid of the coupled parameters (Figure 3(b)). Minimizing
the Kullback-Liebler divergence (D) between the actual and
variational distributions gives the optimal values for γ and φ:

(γ∗, φ∗) = argmin
(γ,φ)

D (p(θ, ~z|γ, φ) || p(θ, ~z|~w, α, β)) . (1)

The minimization problem can be solved iteratively by using
Expectation-Maximization. We have used the LDA source
code package provided as companion to [3].

B. Building a Web of Concepts

We model the robot’s perceptions of the world in a concept
web. Basically a concept web is a convenient representation
of what we are momentarily perceiving over what we already
know about the semantic relations in the world. The robot
connects what it sees, be it entities, properties, or applied
actions, to previously deduced concepts c ∈ C using the
prototype approach developed in previous work [29], [30].
A concept can be a noun (c ∈ N ), adjective (c ∈ A), or
verb (c ∈ V), with C = N ∪ A ∪ V . The concepts that
are highlighted by the immediate perceptions are regarded
activated (c ∈ Cact), which in turn proceed to activate other
related concepts (Algorithm 1). Relatedness of concepts is
determined by neighborhood relations, and is denoted by a
set of links l ∈ L. The activation spreads over the web until
convergence. Eventually, the converged activation map of the
concept web forms an informed representation of the scene,
and is used as input to the LDA algorithm.

1) Mapping Perception to Concepts: We represent concepts
with a condensed prototype-based representation [29], [30],
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concept web formed by this scene. The active concepts are indicated by dark
blue (for nouns) and yellow (for adjectives). [Best viewed in color]

and check membership by a simple comparison against the
prototype of a concept. Instead of the prototype-approach, one
could use any classifier to predict the labels (N ,A,V) from
observations; however, we use the prototype-based approach
since it performs better [29]. For the sake of concision, the
details and example prototypes are provided in Appendix I.

The raw perception vector from each object is matched
against prototype vectors of each concept, learned a priori.
We use 6 noun concepts (N ={ball, box, cup, cylinder,
plate, tool}), 10 adjective concepts (A ={hard, soft, tall,
short, thin, thick, round, edgy, noisy, silent}) and 6 verb
concepts (V ={moving left, moving right, moving forward,
moving backward, knocking down, making noise}). These verb
concepts are abstractions over the behaviors (B={push left,
grasp and move left, push forward, grasp and move forward,
push right, grasp and move right, knock down, push backward,
grasp and move backward}) based on their effects [30]. (The
behaviors are hard-coded for our setup.)

2) Learning the Concept Web: For utilizing a priori dis-
covered semantic information about the world, we organize
known concepts in a concept web (Figure 4). Nodes in the web
denote concepts, The links between the web depends on the
relatedness of the concepts. Concepts that co-occur frequently
have stronger connections to each other. Co-occurrence is
calculated during training by the conditional probabilities, thus
the strength of the link lBA from concept A to B is:

lBA ∝ p(B|A), (2)

where p(B|A) is the conditional probability of B given A
(determined statistically from the training set, with p(B|A)

Algorithm 1 Spreading of Activation in Concept Web.
1: Cact: list of active nodes (initially perceptually activated with an activation of 1.0)
2: procedure ACTIVATENEIGHBORS(cact)
3: // cact: active concept
4: for all cn ∈ neighborhood{cact} do
5: activation(cn)← activation(cact)× p(cn|cact)× 2(1−hop)

6: if activation(cn) > τ then
7: activate(cn)
8: Cact ← Cact ∪ {cn}
9: end if

10: end for
11: end procedure
12: procedure SPREADACTIVATION( )
13: while Cact 6= ∅ do
14: cact ← Cact.pop()
15: ActivateNeighbors(cact)
16: end while
17: end procedure

not necessarily equal to p(A|B)).
3) Spreading of Activation over the Concept Web: Operat-

ing on a previously learned concept web, current perceptions
of the robot are mapped to the web to invoke related concepts.
The perceptually activated concepts also spread their activation
to their neighbors, depending on the strength of the connection
in between. A previously inactive node cn that is located hop
steps away from an already active node cact is activated if

activation(cact)× p(cn|cact)× 2(1−hop) > τ, (3)

where activation(·) is the activation of a node, and τ is the
threshold value for activation. The algorithm is provided in
Algorithm 1. Spreading continues on the web until conver-
gence. Fully converged web is used as the input for deciding
on the context. A sample concept web for a specific scene,
after the convergence of activations, is depicted in Figure 5.

C. Formalizing and Learning Context

In the robot’s environment, the sensory input it collects
comes from a “scene” at a time. This scene gives rise to
the perceived context, effectively facilitating and optimizing
the robot’s actions on the spot. A given scene, populated by a
variety of objects, might be comprised of one or more contexts,
which are in turn semantically connected to the objects in the
scene.

Therefore, in this paper, we model a scene as equivalent of
an LDA document d ∈ D, whereas the concepts evoked by
the objects in the scene correspond to words, wi ∈ W . Any
scene will have an associated topic probability distribution,
with each topic (ti ∈ T ) corresponding to a specific context. A
context will then have a probability distribution of generating
each concept (c ∈ C), which can be a noun, adjective, or verb
C = N ∪ A ∪ V . The collection of all the scenes the robot
encounters will constitute the corpus. The relations between
LDA terms and ours are summarized in Table I for clarity.

We model the scene, i.e, the document, as a concept
web, described above. Our scenes conform the bag-of-words
assumption of LDA, the order of the objects in the scene is not
important, only their existence counts. This assumption carries
over to the concept web, the existence of activation, but not
its particular order, is important.

When the robot encounters a scene, it infers a new concept
web, and uses it as an LDA document. LDA estimates the
context distribution for the overall scene, as well as the likely
contexts of each individual active concept node. The estimated
contexts are then imposed on the concept web, as separate
active nodes higher in the hierarchy. (Note than since we do
not have an attentional mechanism, we focus on the objects
one by one, and collect all the perceived concepts in one
concept web.)

One of the important points is that the contexts of each
scene is determined by the system in an unsupervised manner,
through the implicit detection of co-occurrences of concepts
by LDA via approximating the variational parameters. The
training phase does not include any supervised labeling of the
scenes in term of expected contexts. LDA only requires the



TABLE I
THE CORRESPONDENCE BETWEEN THE LDA TERMS AND OUR NOTATION.

LDA Our Notation
document d ∈ D a single scene (represented as a concept web)
corpus D all scenes encountered during training phase
word wi ∈ W an active concept cact in the concept web

(can be a noun, adjective, or verb: cact ∈ C = N ∪A ∪ V)
topic ti ∈ T a ‘context’, either Kitchen, Playroom, or Workshop

TABLE II
USED CONTEXTS AND THEIR PREVALENT CONCEPTS. NOTE THAT THERE

IS NO STRICT ONE-TO-ONE MEMBERSHIPS.

Kitchen Playroom Workshop
cup short thin ball edgy silent tool edgy tall
plate hard thick box soft thick cylinder hard thin
round silent round noisy round silent thick

number of contexts to be detected as input. Then assigns each
scene with its likely contexts in an unsupervised way. The
detected contexts are not named but are given arbitrary ids,
therefore the assignment of their names is done afterwards
via human inspection, for ease of discussion. The contexts the
robot detected in this work, as later named by us, are presented
in Table II. Figure 4 demonstrates how detected contexts are
afterwards joined to the concept web.

D. Using Context

Once the context is determined, the robot can make use
of this high-level knowledge for several tasks, such as object
recognition, scene understanding, planning etc. In our particu-
lar implementation, we model ‘context’ as a higher-level node
in the concept web, which can be connected to any other node
of the concept web, as if a regular node (Figure 4). Therefore,
an activated context node can spread its activation to other
nodes, effectively guiding reasoning of the robot further.

IV. RESULTS

We present two different scenarios to demonstrate how
context can be used by a robot. In the first, we show the
effect of context on categorizing objects and their properties.
We also present the quantitative results of our context detection
mechanism in a number of pure and mixed contexts. In the
second scenario, we show how including context might be
beneficial in a typical planning scenario.

For learning to detect the context, the robot is trained with
50 scenes, each of which is selected randomly from one of
3 contexts. Each scene is filled with objects belonging to
the noun category of its designated contexts. The adjective
categories related to the contexts follow as a natural result of
choosing objects from these noun categories. The LDA module
is given the 50 scenes without explicitly specifying any a priori
information about their expected contexts. As mentioned in
Section III-C, the detected contexts therefore are decided in
an unsupervised manner.

A. Scenario 1: Using Context for Scene and Object Catego-
rization

The first scenario shows how context can be used, for
understanding the scenes and using this for improving ob-

ject categorization. Figure 6 depicts the RGB-colored depth
images for 6 objects, one for each category, as seen by the
Kinect sensor. The second column shows the predicted related
noun and adjective concepts and their confidence values.
The predictions are generally correct, however they have low
confidence values, and unrelated concepts are also always
predicted with non-negligible confidences. There are also two
wrong predictions (adjectives).

After putting objects in a context and including the con-
textual information with LDA, contextual activation inhibits
the prediction of unrelated categories. For instance, the noun
category probabilities of ball, box, plate and tool are zeroed
out, as well as the probability of edginess, for the first object
(a cup). Moreover, wrong adjective predictions are corrected
using context.

For evaluation, Figure 7 also presents the quantitative per-
formance of our framework in correctly deducing the context
in pure and mixed scenes. 3 pure scenes (one for each of
the Kitchen, Playroom, and Workshop contexts), as well as 3
mixed scenes are presented to the robot, after its training with
50 pure scenes. As we see, the robot can correctly predict
the context in the pure scenes and mixed scenes with high
confidence.

B. Scenario 2: Using Context in Planning
The second scenario demonstrates how context can facilitate

action planning in real-time. The robot is given an initial state
of an object, and is told to bring it to an expected final state. It
is expected to find a viable action plan via forward planning.
However, planning trees have large branching factors, being
often too large for real-time processing. We argue that context
may help in simultaneous pruning of the tree in order to enable
efficient processing. The robot first predicts the context of the
given object, and then uses only the relevant behaviors in that
context.

Two sample scenarios are presented in Figure 8. The robot
is expected to move objects to target positions on the table.
It follows a breadth-first forward planning scheme. At each
node, the action’s predicted effect feature vector is compared
against the goal state (similar to [30]). If the goal state is not
yet reached, 9 child nodes are expanded for the current node.

The pruning of the nodes is done simultaneously during the
expansion phase. For instance, for an object that belongs to
the Kitchen context, it is decided (by a human user) that the
actions knock down and push x are not feasible, since they can
result in spilling of liquids in containers. On the other hand,
for an item of the Playroom context, which is a ball with 50%
probability, pushing will cause it to roll down from the table,
and again should not be attempted. Therefore, these nodes
are eliminated in these contexts as soon as they are added to
the planning tree, and not expanded any further. The resulting
planning trees are shown to have 43 and 53 nodes instead of
93, with a reduction of 665 and 604 nodes respectively.

V. CONCLUSION

We have presented a framework for robots to learn and
use the context(s) of a given scene. Our formulation builds



TABLE III
SAMPLE PROTOTYPES FOR NOUNS (N ), ADJECTIVES (A) AND VERBS (V )

Concepts Visual Audio Haptic Proprioceptive
Features Features Features Features

N Box +-+++-++---++--------------++--+--------**--------------------+---- -**+**-++-*+* ------ -+**--
Ball --+-+-+----++---------------+++++-----------------------------+---- *******-**+-+ *-**** -+++--

A Hard +-+*+++++++++--------------+*++*+--------*--------------------+++++ ******+**+++* *+**+* -+**--
Noisy --+++*+---*++*-------------++++*+*-****-----------------------++--- +++++++++++++ *-**-* -+**--

V Move Left 0-0*++*0-0+0++-------------0---00-0--+00-000000---------------+++++ None
Knock Down 0+0++++00++00+-------------0-0-+0-0--+0000000-*---------------+++++ None

Object
Predicted Nouns Predicted Adjectives

In a Context Predicted Context
Predicted Nouns Predicted Adjectives

w/o Context w/o Context w/ Context w/ Context
(% confidence) (% confidence) (% confidence) (% confidence)

ball (9%) edgy (42%) round (58%)
hard (60%) soft (40%)
noisy (38%) silent(62%)
short (54%) tall (46%)
thick (48%) thin (52 %)

ball (0%) edgy (0%) round (100%)
hard (60%) soft (25%)
noisy (38%) silent(62%)
short (54%) tall (46%)
thick (48%) thin (52 %)

box (14%) box (0%)
cup (34%) Kitchen (100%) cup (85%)

cylinder (21%) Playroom (0%) cylinder (0%)
plate (6%) Workshop (0%) plate (15%)
tool (13%) tool (0%)
ball (25%) edgy (43%) round (57%)

hard (45%) soft (55%)
noisy (51%) silent(49%)
short (55%) tall (45%)
thick (57%) thin (43%)

ball (64%) edgy (43%) round (57%)
hard (0%) soft (100%)

noisy (51%) silent(49%)
short (100%) tall (0%)
thick (100%) thin (0%)

box (14%) box (36%)
cup (14%) Kitchen (0%) cup (0%)

cylinder (16%) Playroom (100%) cylinder (0%)
plate(11%) Workshop (0%) plate (0%)
tool (15%) tool (0%)
ball (11%) edgy (39%) round (61%)

hard (61%) soft (39%)
noisy (39%) silent (61%)
short (48%) tall (52%)
thick (41%) thin (59%)

ball (0%) edgy (0%) round (100%)
hard (100%) soft (0%)
noisy (34%) silent (66%)
short (0%) tall (100%)

thick (41%) thin (59%)

box (15%) box (0%)
cup (22%) Kitchen (0%) cup (0%)

cylinder (29%) Playroom (0%) cylinder (67%)
plate (7%) Workshop (100%) plate (0%)
tool (14%) tool (32%)
ball (13%) edgy (58%) round (42%)

hard (42%) soft (58%)
noisy (43%) silent (57%)
short (56%) tall (44%)
thick (57%) thin (43%)

ball (%32) edgy (58%) round (42%)
hard (0%) soft (100%)

noisy (43%) silent (57%)
short (100%) tall (0%)
thick (100%) thin (0%)

box (28%) box (68%)
cup (15%) Kitchen (0%) cup (0%)

cylinder (16%) Playroom (100%) cylinder (0%)
plate (9%) Workshop (0%) plate (0%)
tool (15%) tool (0%)
ball (10%) edgy (45%) round (55%)

hard (53%) soft (47%)
noisy (54%) silent (46%)
short (41%) tall (58%)
thick (52%) thin (48%)

ball (0%) edgy (0%) round (100%)
hard (100%) soft (0%)
noisy (49%) silent (51%)
short (0%) tall (100%)

thick (52%) thin (48%)

box (17%) box (0%)
cup (16%) Kitchen (0%) cup (0%)

cylinder (19%) Playroom (0%) cylinder (41%)
plate (8%) Workshop (100%) plate (0%)
tool (27%) tool (59%)
ball (13%) edgy (47%) round (53%)

hard (49%) soft (51%)
noisy (46%) silent (53%)
short (49%) tall (51%)
thick (53%) thin (47%)

ball (0%) edgy (0%) round (100%)
hard (66%) soft (34%)
noisy (46%) silent (53%)
short (49%) tall (51%)
thick (53%) thin (47%)

box (12%) box (0%)
cup (12%) Kitchen (100%) cup (29%)

cylinder (14%) Playroom (0%) cylinder (0%)
plate (29%) Workshop (0%) plate (71%)
tool (16%) tool (0%)

Fig. 6. Object categorization as facilitated by the help of context understanding. Images depict RGB-colored depth images (collected via PCL library from
the Kinect sensor). The use of bold text indicates correct decisions. The striked-through text indicates wrong decisions. [Best viewed in color]

Scene Existing Objects Predicted Context Scene Existing Objects Predicted Context
(% contribution) (% contribution)

Pure Contexts Mixed Contexts

2 cups,2 plates Kitchen (100%) 2 plates, Kitchen (67%), Playroom (33%)
1 cup, 1 box

3 boxes, 3 balls Playroom (100%) 2 plates, 2 cup, Kitchen (58%), Playroom (42%)
1 ball, 1 box

2 tools,3 cylinders Workshop (100%) 1 tool, 2 cylinders, Workshop (55%), Kitchen (45%)
1 plate, 1 cup

Fig. 7. Predicted contexts in pure and mixed topic scenes. Images depict RGB-colored depth images (collected via PCL library from the Kinect sensor).
The use of bold text indicates correct decisions. [Best viewed in color]

on the Latent Dirichlet Allocation approach, in which each
context is modeled as a latent topic variable. The encountered
scenes are represented as concept webs, with frequently co-

occurring concepts sharing stronger links. A number of such
representations for different scenes are examined by the robot
for learning to distinguish the prominent context(s). The



iCub

1 2 3 4
5 6 7 8

(a)

Initial State

PL PR PF PB KD
GL GR GF GB

. . . 

. . . 

. . . GR

GR
GOAL

Initial Position: 5

Final Position: 8

(b)

Initial State

PL PR PF PB
KD GL GR GF GB

. . . 

. . . 

. . . GF

GR

GOAL

. . . 

. . . 

Initial Position: 6

Final Position: 4

(c)

Fig. 8. Pruning of forward planning trees by integrating contextual informa-
tion. (a) iCub’s workspace schematized. (b-c) Two planning scenarios. The
branches that are pruned due to being irrelevant for the current context are
shown with crosses. The behavior abbreviations stand for: PL: Push left, PR:
Push right, PF: Push forward, PB: Push backward, KD: Knock down, GL:
Grasp and move left, GR: Grasp and move right, GF: Grasp and move forward,
GB: Grasp and move backward (b) First planning scenario. iCub is expected
to move a cup from position 5 to position 8. Since pushing and knocking
actions are dangerous in the kitchen context, these nodes are pruned without
further expansion. (c) Second planning scenario. iCub must bring a ball from
position 6 to position 4. This time pushing actions are pruned, since pushing
a ball causes it to roll down from the table.

obtained contextual information is fed back to the concept
web for enhancing the robot’s performance in two tasks. We
have provided preliminary results that the robot can use the
context model to increase its object recognition and planning
performance.
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APPENDIX I

A feature with a low variance and highly positive contribu-
tion is marked with a ‘+’, low variance and highly negative
contribution with ‘-’, negligible contribution with ‘0’, and too
much variance to be consistent with ‘*’. Eventually we obtain
25 prototype strings, one for each concept, formed of +,-,0,*
characters. A number of sample prototypes are depicted in
Table III. The raw feature vector of each observation (extracted
from different modalities and concatenated) is matched against
each prototype to determine concepts for this observation.
Each object belongs to 1 noun category, to several adjective
categories, and if applicable (any action has been performed),
to several verb categories. For details, the reader is referred to
[29], [30].
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