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Abstract

In this work, we make use of 3D contours and relations between them (namely, coplanarity, cocolority, distance and angle) for
four different applications in the area of computer vision and vision-based robotics. Our multi-modal contour representation covers
both geometric and appearance information. We show the potential of reasoning with global entities in the context of visual scene
analysis for driver assistance, depth prediction, robotic grasping and grasp learning. We argue that such 3D global reasoning
processes complement widely-used 2D local approaches such as bag-of-features since 3D relations are invariant under camera
transformations and 3D information can be directly linked to actions. We therefore stress the necessity of including both global and
local features with different spatial dimensions within a representation. We also discuss the importance of an efficient use of the

uncertainty associated with the features, relations, and their applicability in a given context.
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1. Introduction

Global entities such as visual contours and their relations
have a substantial importance in computer vision and robotics
(see, e.g., [1, 2, 3, 4]) since they a) provide a semi-global
overview of a scene, b) give more information than local fea-
tures about the shape of an object [5] and c¢) are flexible enough
for tasks such as classification and recognition [1, 2, 6]. Their
potential for different vision-based tasks has been studied espe-
cially in 2D. In this work, we make use of a 3D contour rep-
resentation that is multi-modal in the sense that it covers geo-
metric as well as appearance information. We argue that such
global reasoning processes complement widely-used local ap-
proaches and provide reliable geometric information for tasks
that require 3D information (e.g., grasping).

Depending on the perceptual context, local and global as-
pects of visual entities play complementary roles. 2D local fea-
tures such as SIFT [7] are known to be very robust in certain
contexts such as object identification. However, they heavily
rely on texture and do not give information about the shape of
the object (see, e.g., [7, 8, 9]). These approaches also face two
fundamental problems when they want to make use of relations
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(such as coplanarity or distance) between features (see, e.g.,
[10]). First, since a large number of local features is usually
required to code an object or a scene, the number of second-
order relations between these features grows exponentially and
so does the resource requirements in terms of memory and com-
puting time. Second, they do not provide explicit and inter-
pretable information which is required for semantic interpre-
tation of a scene. Also, the reliability of local 2D features is
limited when objects need to be manipulated since they are dif-
ficult to relate with geometrical properties such as 3D shape.
This limitation is mitigated when using 3D features (see, e.g.,
[11, 12, 13]) since 3D information can be directly related to
actions.

As discussed in, e.g., [5, 6], global entities complement the
local approaches by providing a more global overview of the
scene. By combining local entities (in our case, local edge de-
scriptors) into global entities (in our case, contours) the number
of relations is reduced and hence the reasoning about the ge-
ometry and shape becomes easier. Also, global reasoning pro-
cesses that take place in 3D are independent from view-point
transformations, allowing for a significant reduction of com-
plexity in any further analysis.

The importance of contours in human vision has been studied
extensively (see, e.g., [14, 15, 16, 17]), revealing the fact that
perceptual organization is a very important cue in human vision.
What makes contours important for vision is not only the way
the local features are grouped together but also the spatial re-
lations between these contours. For example, certain relations
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between groups of features (such as parallelism) are found to
be more salient [3] than others and shown to be non-accidental
(see, e.g., [5]). Also, in [18, 19] it has been shown that scram-
bled objects are difficult to recognize since the spatial organi-
zation of the contours is lost. Note that most of the studies on
contours focus on the 2D aspects. Recently, Masayuki et al.
showed in [20] the importance of 3D contours in human visual
processing by demonstrating that, collinear line elements in 3D
space are more salient than non-collinear elements.

2D visual contours and their relations have been used in com-
puter vision and robotics in various contexts: In [21], con-
tour relations are used as features for object recognition. Sim-
ilarly, Henricsson [22] makes use of geometrical relations like
proximity, curvilinearity and symmetry between contours to de-
scribe objects by combinations of these relations. These non-
accidental contour relations have also been used by Dickinson
et al. [23] to create aspect hierarchies, which are then used for
recovery and recognition of 3D objects from a single 2D image.

For part-based representations, such as geons [24], the basic-
level representation is composed of parts and their interrela-
tions, and these parts are created by using non-accidental con-
tour relations such as parallelism and symmetry. Similarly,
Shapiro et al. [25] uses a relational model for describing 3D ob-
jects in terms of relations between simple parts such as sticks,
plates and blobs. In more recent studies such as [1, 4], similar
ideas have been applied to recognition and classification. Also,
Fidler et al. [26, 27, 28] proposed a system to learn a contour-
based hierarchy of parts for the representation and categoriza-
tion of objects. A review of contour-based methods for classi-
fication can be found in [2]—note that all these approaches are
in 2D.

In the context of robotics, contours have been used to in-
fer grasping hypotheses for unknown objects. For example:
[29, 30] approached the problem using 2D contours; more re-
cently, [31] used 3D contours. The essential difference between
our work and [31] is that we create 3D contours from local 3D
features whereas 3D contours in [31] are inferred from 2D con-
tours.

The advantages of using 3D contours and their relations can
be summarized as follows:

View-Point Invariance: Many 3D relations (such as distance
between entities) and properties (such as curvature) are view-
point invariant: for example, if two 3D contours are parallel in
one view, they will be parallel in any other view.

Reliability: For tasks such as grasping, the semi-global nature
of contours makes 3D information more reliable than local 3D
information in terms of geometry since global geometrical com-
putations (e.g., slope or curvature calculation) are more robust
to noise.

Saliency: Combinations of 3D features can create very rare and
specific structures that are more salient than individual compo-
nents. These constellations can reduce the search space when
searching for relevant entities (e.g., finding cocolor and copla-
nar entities that can be grasped). An extended discussion on
saliency can be found in [5].

Semantic Interpretation: Visual entities are expressed by ex-
plicit and interpretable parameters which themselves are em-

bedded in a rich structural context. In this work, contours have
well defined properties with clear geometrical and appearance
interpretation. These parameters are then used to define re-
lations between contours that are explicit and interpretable as
well. This allows in particular for a direct link to actions.

Despite its advantages, the use of 3D contours and their rela-
tions faces some fundamental problems and these issues should
be taken care of for an effective use of 3D contours.
Cardinality: When relations between contours are used as fea-
tures, the number of features representing the object increases
proportional to the number of combinations of contours that
create the relations. For n visual features we need to calculate
n(n — 1)/2 relations. Note that cardinality is more problematic
for local features and the usage of contours reduces the effect
of this problem.

Early Commitment: Grouping local features into bigger
groups with respect to certain criteria implies making some de-
cision at an early stage of visual processing. Such an early com-
mitment is brittle, due to ambiguity and noise in low level vi-
sion, and may adversely affect higher level reasoning.

Local Uncertainty: Reconstruction uncertainties of local fea-
tures propagate to the contour they generate, and this uncer-
tainty can degrade the performance of analytical estimates of
3D entities critically. For this reason, uncertainty needs to be
estimated and to be taken in consideration in all processes.
Global Uncertainty: When dealing with 3D entities with
strongly anisotropic uncertainty distributions (e.g., when ex-
tracted by stereo), there is a need to also code the limits until
when 3D contours and their relations can be applied. For exam-
ple, in an outdoor scene it does not make sense to talk about the
distance of objects that are far away since stereo fails to give
reliable information.

Note that, although 3D features suffer from higher uncer-
tainty than 2D features, this comes with the benefit of high
invariance to pose changes. As discussed in this article, this
greater uncertainty needs to be properly modeled and handled
to allow for reasoning in 3D. We argue that qualities of 2D and
3D representations are complementary, and both are required
for the design of a robust vision system. Such a system should
make decisions on weighting the use of 2D and 3D informa-
tion according to the reliability of the 3D information which is
modeled as the feature uncertainty.

The aim of this article is to exemplify the potential of 3D con-
tours and second-order 3D contour relations on four different
tasks and describe the particular requirements for the represen-
tation of the contours and their relations when using them for
these tasks. We make use of four relations, namely, coplanarity,
cocolority, distance and angle, which are important in the con-
texts of robotics and scene interpretation. Note that more rela-
tions can be defined for different contexts, however the aim of
this article is not to give a complete set of relations but to show
the importance of 3D contours and their relations in different
domains. We discuss, in particular, how uncertainty of visual
data can be handled in a geometrical reasoning processes.

The main aspects of our approach can be summarized as fol-
lows:
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Figure 1: An overview of the hierarchical visual representation. (a) Stereo image pair, (b) Filter results, (¢) 2D primitives, (d) 2D contours, (e) 3D primitives (shown

in our 3D displaying software), (f) A 2D edge primitive, (g) A 2D line primitive.

e We make use of a representation of 3D contours and their
relations which allows for parallel use of multiple levels
of abstraction, namely accessing the original 2D informa-
tion from which the 3D information is calculated as well
as the local entities from which the global contours are
computed.

e We address the Local Uncertainty problem by systematic
use of the local uncertainty for making estimates on global
levels. In addition, to address the Global Uncertainty
problem, we generalize a measure for the uncertainty of
the extracted 3D information from the local information to
contours which gives an indication about the usability of
the contour for 3D reasoning.

e 3D contours and their relations lead to a semantic descrip-
tion of a scene.

We demonstrate the potential of our approach in four dif-
ferent applications. In the context of road lane detection, we
first show how attributes and relations of contours can be used
to learn a Bayesian representation for lane markers in outdoor
scenes and how it can be applied to lane marker detection. We
demonstrate that such road structures can be characterized ef-
ficiently by contour relations. We then show how 3D contours
can be used for depth prediction. In the robotic domain, we
demonstrate how relations between contours can be linked to
grasping actions that allow grasping of unknown objects with
high success rate. Moreover, we show that through learning
relevant aspects in the space of contour relations the success
rate can be enhanced more, indicating (as in the lane detection
case) that contours and their relations span a relevant space for
learning.

The rest of the article is organized as follows. In Section
2, the early cognitive vision system that has been used for this
work is introduced briefly. Then we describe the representation
of the multi-modal 3D contours and their relations in Section
3, 5 and 6. Section 4 is in particular dedicated to the problem
of uncertainty representation and handling. We demonstrate the
relevance of our approach in four different tasks in Section 7.

We conclude with a discussion in Section 8.

2. Primitives: Local Edge Descriptors

In this work, we make use of a hierarchical representation
based on the early cognitive vision system presented in [32].
A calibrated stereo camera setup is used to extract along im-
age contours sparse 2D and 3D features, called multi-modal
primitives. A 2D primitive represents a small image patch (Fig-
ure 1) in terms of multiple visual modalities such as position
X, orientation 6, phase ¢ and color (¢, ¢y, ¢;). This results in
a feature vector m; = (X, 6, ¢, (¢}, ¢m, ¢r)). There are three col-
ors associated with a primitive (left, middle and right colors
respectively), since a primitive covers a patch larger than one
pixel. The size of a 2D primitives’ patch is derived from the
bandwidth of the local filters that were used to extract them (for
details see [33]). For a 3D primitive, the patch size depends on
the size of the 2D primitives, propagated geometrically during
during stereo reconstruction. This leads to a largely anisotropic
variation in patch size, depending on the primitives’ position
in space (primitives close to the camera are smaller and get in-
creasingly large with increasing distance from the camera), see
[33] for a formal discussion. Note that the color information
depends on whether a primitive represents a step-edge or a line
structure [32] (see Figure(f-g)). As discussed in [32], this dis-
tinction can be made from phase information. For step-edges,
only left and right colors are coded; for line structures, the color
of the middle strip is also coded, and denoted as the ‘middle’
color.

2D primitives are matched across two stereo views, and pairs
of corresponding 2D-primitives afford the reconstruction of a 3-
dimensional equivalent called a 3D primitive, which is encoded
by the vector II; = (X, ®, @, (C}, Cy,, C;)), where X is the posi-
tion, O is the orientation, ® is the phase and (Cj, Cy,, C;) is the
color of the 3D primitive.

Collinear and similar (in terms of color and phase) primi-
tives are linked together to form structures denoted as groups.
Groups are sets of unsorted primitives and give rise to contours



as discussed in Section 3. The resulting representation is hi-
erarchical, with pixels at the bottom and contours at the top.
Richness and reliability differ between the levels of the hierar-
chy: information at lower levels is more reliable; it is seman-
tically richer at the upper levels. Therefore, different levels of
the hierarchy can be used for reasoning and verification.

In Figure 1, an overview of the visual representation is pre-
sented. One stereo image pair (Figure 1(a)) is used to create
the 2D features (Figure 1(c)) by using the filtering results (Fig-
ure 1(b)). These features are linked together to create 2D con-
tours (Figure 1(d)). Two-dimensional primitives and contours
are then used to find correspondences between left and right
views to reconstruct 3D primitives (Figure 1(e)). Finally, 2D
contours and 3D primitives are used to create 3D contours.

As discussed in [34], during the reconstruction of 3D visual
entities from 2D stereo data, the uncertainty of 2D data propa-
gates via the operations that are used for reconstruction. This
uncertainty can be modeled as a covariance matrix. The un-
certainty calculation of the multi-modal primitives discussed
above was elaborated by Pugeault et al. [35]. For a 3D primi-
tive II;, the position uncertainty of X is modeled as a 3 X 3 ma-
trix denoted as A;. Geometrically, A; can be interpreted as an
ellipsoid (Figure 2(a)) where the orthogonal axes are the eigen-
vectors of A;, and their lengths are given by the correspond-
ing eigenvalues. The fact that primitives are line descriptors
leads to an additional complexity in uncertainty model since
the 2D edges’ orientation can have a big impact on the recon-
struction. This effect becomes critical when a 2D primitive’s
orientation approaches the epipolar line’s orientation. As has
been shown in [35], A; is affected significantly by the right 2D-
primitive’s orientation (Figure 2(b)) leading to large uncertain-
ties when the orientation gets close to /2, the orientation of the
rectified epipolar line. Moreover, the primitive’s position uncer-
tainty also vary depending on the primitive’s position relatively
to the cameras, in the same way as for point reconstruction (Fig-
ure 2(c-d)). Note that we do not describe the uncertainty of the
orientation 8 since it is not used in this paper.

3. Contours: Global Edge Descriptors

As discussed in [5], global entities such as contours provide
a global overview of the scene, which makes reasoning about
geometry and shape easier. In this section, we discuss 2D and
3D global entities that are built upon the multi-modal primitives
presented in Section 2.

Image contours are encoded as collinear chains of primitives:
if two primitives are both collinear and similar (in terms of
color and phase) in an image, they are grouped together [36].
To create contours from these groups, the primitives inside the
groups are sorted by their position, and the global attributes dis-
cussed in Section 5 are calculated. In the case of stereo, if the
collinear and similar primitives in the left image have corre-
sponding primitives that are collinear and similar on the right
image, the reconstructed primitives are added to the same 3D
group. Once the primitives contained within these groups are
ordered according to their position and the attributes are calcu-
lated, they form 3D contours.

(c)

Figure 2: Position uncertainty of a 3D primitive (from [35]) (a) Illustration of
position and orientation uncertainty. (b) Effect of 2D-primitives’ orientations
on the trace of A. (c) Traces of the covariance matrix A, for different locations
(x,y,100)T on the xy-plane. (d) Traces of the covariance matrix A, for different
locations (x,0,z)" on the xz-plane.

Linking the multi-modal primitives creates multi-modal con-
tours that contain not only geometrical but also appearance in-
formation. Similar to primitives, contours also carry informa-
tion about position, orientation and color. The details of these
attributes are discussed in Section 5. These attributes together
with the geometrical and visual smoothness of contours give
rise to relations between contours (see Section 6) which can be
used within the context of different reasoning processes.

Before we go into further details of contours and their re-
lations, we present the notation used in this article. Most of
the definitions are similar for 2D and 3D contours; therefore,
the notation for 3D will be given in parentheses right after the
2D definition. We represent the i 2D contour as ¢; (C;). Ev-
ery contour is composed of visual primitives, and the position,
orientation and color attributes of the jh primitive of the i"h con-
tour are represented as 7c; (PC/), °c] (°C/) and (“*¢/,“¥¢],*¢))
((CLC{ ,CMC{ ,CRC{ )) respectively. Note that the indexes i and
j are arbitrary numbers in the scope of their context and for
any scene, ¢; is not always the projection of C; (Because of the
matching problem during the 3D reconstruction, a 2D contour
can contain the projection of more than one 3D contour).

3.1. Contour Parametrization Using NURBS

Although good continuation in terms of geometry and color
provides the features that belong to the same contour as a sorted
point list, having an analytical description of the contour has
various advantages, including robust geometrical calculations.
We make use of such an analytical description in the context of
grasping (Section 7.3) where robust analytical calculations, like
the tangent vector at a specific position on a curve, are neces-
sary. In this work, we chose NURBS (Non-Uniform Rational
B-Splines) [37] as a suitable mathematical framework since it
is invariant under affine as well as perspective transformations,
it can be handled efficiently in terms of memory and compu-
tational requirements, and it offers one common mathematical



form for both standard analytical shapes and free-form shapes.
In Section 7.3, the use of NURBS in the context of grasping is
presented where the orientation of a grasp is calculated as the
tangent to a contour. A NURBS curve is defined as [37]

im0 Nip(OW;P;

C(f) =
== N om

ey

where p is the order, N; , are the B-spline basis functions, P; are
control points, w; is the weight of P;, n is the number of control
points, and ¢ is a continuous variable between 0 and 1.

Note that, because of the noisy nature of 3D data, approx-
imating the curve gives a smoother representation than inter-
polation. In this work, we used a scheme similar to the one
discussed in [38] to determine the 3D points that are used in
approximation. For a set of points S, a random point p is cho-
sen. Let S; be a subset of S that contains the points that are at
a distance less than r to p. After computing a regression line
[ for the points in §;, the two points on / that have a distance
of r to p are stored to be used in approximation and the proce-
dure is repeated with these two points until every point on the
contour is covered. We end up with a set of points that repre-
sent the curve as line segments (Figure 3(b)). We then use these
points to apply a least-squares NURBS approximation (see [39]
for details on approximation). A sample approximated curve is
shown in Figure 3(c). In the rest of this work, we use C;(¢) to de-
note the NURBS approximation of C;. Note that the advantage
of this approach is the reduction of the approximation points
to a smaller set which is defining the skeleton of the whole
set. We can than use this set to decide the number of control
points in the approximation and the degree of the approximat-
ing NURBS.

s =
s =

mwﬁw Q

Figure 3: NURBS parametrization of a sample contour. (a) 3D primitives of a
contour. (b) The line segment representation of the contour is shown with black
line segments. (c) The approximated NURBS is shown as a green curve.

4. Handling the Data Uncertainty

As discussed in Section 2, the uncertainty of 2D data prop-
agates to 3D via reconstruction and leads to geometrical noise.
In Figure 4, a sample 3D contour of a scene is illustrated where
local 3D entities are connected with line segments. Note that
the contour shown in Figure 4(d) is the contour in Figure 4(c)
from a different view-point—the noise originates from stereo
reconstruction. In Figure 4(e), the dominant uncertainty axes
for the primitives that are contained by the contour are shown
with dashed lines where the dominant uncertainty axis is the
axis of the uncertainty ellipsoid discussed in Section 2 with the
highest eigenvalue.

Fed URM
O )
.

e

Figure 4: A sample 3D contour (a) 3D primitives. (b) 3D primitives of a se-
lected part. (c) The 3D contour that contains the primitives in (b). (d) The
contour in (c) from a different view point. (¢) Dominant uncertainty directions.

Noise can be significant, especially for entities that are far
away from the camera—as in Figure 4. When noise increases,
geometrical reasoning about 3D entities becomes less stable,
and 3D data becomes unusable. Although it entails extra com-
putation, proper handling of the uncertainty leads to more sta-
ble geometrical reasoning. In this article, definitions for geo-
metrical operations will be given with and without handling of
uncertainty. In this section, a general methodology for fitting
a model to a set of data points by taking the data uncertainty
into account is presented (see [40, 41] for details). For such
calculations, uncertainty values of the contours’ primitives can
be used. As discussed in Section 2, position uncertainty of a
3D primitive is modeled as a covariance matrix which defines
an ellipsoid in 3D, where the eigenvectors of the matrix repre-
sent the directions of the orthogonal axes and the eigenvalues
of the matrix represent the length of each axis. The parameters
of a model (e.g., the parameters of a plane) are be calculated by
minimizing the Mahalanobis distance between each primitive
and the closest point on the model. Given a set of 3D primitives
{I1y...IL,}, the error to be minimized for I1; is given by:

& = (Xi— &) AT (X - &) @



where X; is the position of II;, Xi is the closest point on the
model, and A; is uncertainty matrix of Il;. As discussed in [41],
since the uncertainty matrices of the data are unrelated, the min-
imization problem cannot be solved in closed form. Also, X; is
not the closest point on the model in Euclidean sense but it is the
point that minimizes Eq. 2. Therefore, X; is determined as the
closest point on the model after a whitening transform [42, 40]
is applied to both X; and the model. Note that the transforma-
tion that is required to transform an arbitrary point Y into the
whitened space defined by (X, A) is

Y= WE®{Y -X) 3)

where E is the matrix that is defined by the eigenvectors of A,
and W is the diagonal matrix defined by 1/ +/e; for the eigen-
values e; of A. Once the model is whitened, the closest point in
the model is found and unwhitened with the following formula

Y=E'UV+X 4)

where U is the diagonal matrix defined by +/e;. The minimiza-
tion of Eq. 2 is done by the Levenberg-Marquardt method. Note
that to fit a model with M parameters to N data points, an NxM
Jacobian matrix (J) is required, where

(96,'

Ji=—
7 Bh;

&)
Here, ¢; is the error calculated with Eq. 2 for the parameter set
h. This partial derivative can be calculated numerically as

dei _ eilh) = ei(h) ©

oh j €
where /1 ;i = hj + € and € is a small positive real number. A
detailed explanation of the procedure for plane fitting can be
found in [40].

Uncertainty information is necessary not only for geometri-
cal calculations but also to obtain an overall uncertainty value
for the whole contour, which then can be used to judge the us-
ability of the contour for reasoning. In this work, the uncer-
tainty of a contour is calculated as the mean of the traces of
the uncertainty matrices of the primitives that are part of the
contour, and is denoted as

1 N
AC = N Ztr(Ak) 7)
k=0

where A; is the uncertainty matrix of the &y, primitive in AI.C
and the trace is equal to the sum of eigenvalues of the matrix,
which corresponds in our case to the sum of the lengths of the
uncertainty axes of a primitive. Note that this measure is used
for determining the usability of 3D contours for reasoning but
does not model the contour’s uncertainty geometrically. There-
fore, all geometrical computations use the local features’ full
covariance matrices rather than the contours’ uncertainties.

In this section, we discussed an iterative method for model
fitting to data with uncertainty. Note that for time-critical ap-
plications, an iterative solution may put a big overhead on the

system. One can neglect the effect of data uncertainty in Eq. 2
by setting A[‘1 to the identity and reducing the problem to mini-
mization of the Euclidean distance between primitives and their
closest point in the model. In this case, a whitening operation
is not necessary, and specific models like planes and lines can
be fitted with closed-form solutions. Therefore, for the geo-
metrical definitions in Section 5 and 6 where a plane or a line
fitting is necessary without data uncertainty handling, Principal
Component Analysis (PCA) is used for model fitting. For plane
fitting, the eigenvector of the smallest eigenvalue in PCA pro-
vides the normal of the plane. For line fitting, the eigenvector
of the highest eigenvalue in PCA provides the orientation of the
line.

5. Contour Attributes

Since contours are created from multi-modal primitives
based on good continuation in terms of geometry and color,
they also carry geometrical and appearance information. The
contours’ multi-modality originates in the local entities they are
computed from. Therefore, every contour has some attributes
such as mean color (with left, middle and right components),
position and orientation. While mean color encodes a contour’s
appearance, position and orientation describe its geometrical
properties.

Orientation:. The orientation of a contour (both in 2D and 3D)
is defined as the dominant direction of the contour, and is rep-
resented as A°(c;) (A°(C;)). In 2D, this direction can be defined
as the first principal component of the contour. In 3D, if the
uncertainty of the data is not taken into account, the principal
components of the contour can also be used as the dominant
direction. To take the uncertainty into account, this definition
can be extended to the orientation of the line that minimizes Eq.
2. The general procedure that was discussed in Section 4 can
be used to solve the minimization problem, and initializing the
model with the principal components of the contour reduces the
amount of iterations needed for convergence. In Figure 5(a), the
orientation of a sample contour is illustrated.

Position:. The position of a contour (A”(c;), AP(C})) is defined
as the projection of the contour primitives’ centroid onto the
best-fitting line (see Figure 5(a)). As discussed for the orienta-
tion, the calculation of the best-fitting line may change, and the
position of a contour depends on this calculation.

Mean Color:. The good continuation criterion applied to the
color modality implies that all primitives that create the contour
share a similar color. Since primitives have left, right and mid-
dle colors, every contour has mean left (A% (c;)), right (A%(c;))
and middle (A" (c;)) colors as well. Also, since color is an ap-
pearance attribute, it is calculated in 2D for both 2D and 3D
contours. For 3D contours, the 2D contours can be obtained by
projecting the 3D contours on to the image plane.

The left and right sides of a primitive with position x and
orientation 6 is determined according to the vector that passes
through x with orientation 6. In some cases, this assignment
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Figure 5: Illustration of contour attributes. (a) Orientation and position of a
sample contour. (b) Calculation of mean color for a contour. (¢) Mean left and
mean right colors of two 3D sample contours.

may be ambiguous since edges with orientations 6 and 6 + &
have the same primitive orientation. In computing mean color,
this ambiguity is resolved by the following algorithm:

Given a 2D primitive 7r; with orientation (n;, n;), the left color
is defined as the color of the patch which is in the direction of
(=nj,n;). We use this fact to calculate the mean left and right
colors. For the first primitive in the contour, we calculate a point
in the left-perpendicular direction of the primitive (-n;, n;) and
check whether the movement from this point to the primitive
itself and the next primitive (e.g., the movement from Py to Il
and II; in Figure 5(b)) is counterclockwise or clockwise. For
the rest of the primitives in the contour, the same procedure
is applied and for the movements in the same direction of the
first movement (e.g., P1I1;I1,), the left color of the primitive is
used for the mean left color of the contour. The algorithm is
illustrated in Figure 5(b) for a sample contour. The mean color
is defined in the CLab color space because of the statistically
less correlated behavior [43] of the CLab space. Also, CLab
is more appropriate for defining numerical differences between
two colors, since the perceived difference between two colors
and their Euclidean distance has a low correlation in RGB space
[43]. In Figure 5(c), left and right mean colors of two sample
contours are illustrated.

6. Second-Order Contour Relations

In Section 5, a couple of geometrical and appearance-based
attributes were defined. These attributes together with the geo-
metrical and visual smoothness of contours give rise to relations
between contours that can be used within the context of various
reasoning processes (see Section 7). In the present section, we
describe certain contour relations with and without data uncer-
tainty handling, and evaluate their potential and limits for rea-
soning. Note that the geometrical relations are defined only for
3D contours, since they are not preserved by perspective pro-
jection.

Angle:. The angle between two contours is defined by using
the orientations of the contours as:

A%(C) - A%(C)) )

_— 8
|A°(CI|A(C;) ®)

RA(C,-, Cj)= acos(
Note that the definition of contour orientation may include data
uncertainty handling; this will be reflected automatically in the
definition of an angle. The procedure is illustrated in Fig-
ure 6(a).

Normal Distance:. The normal distance between two contours
is defined by the distance from one contour’s position to to the
line created by the other’s orientation and position (see Fig-
ure 6(b)). Therefore, the distance between the i and j* con-

tours in the scene is defined as:

Iw; — (W; - upu| + [w; — (W, - ujuy|
2 9

where w; is (A”(C;) — AP(Cy)), w; is (AP(C;) — AP(C))), and u;

is the orientation of the i”* contour. Note that both terms of the

sum in Eq. 9 are the formula for the distance of a point to a line.

RP(C,,C)) = )

Coplanarity:. The coplanarity of entities can be measured by
their elongation with a common plane. We define the copla-
narity between two contours as the mean angle between a
common plane and the best-fit lines of the contours (see Fig-
ure 6(c)). Therefore, the coplanarity between the i and j"
contours in the scene is denoted as R”(C;, C;) and defined as

n- A”(Ci)) aeos ( n-A%(C)) ))

1
RP(C,,CH==|n— (
€€ (” 4O inflae(cy) nflA°(C)|
(10)

2

where n is the normal of the common plane ¥(C;, C;) defined
by the primitives inside the contours. Similar to other geomet-
rical definitions, data uncertainty can be handled in the process
of common plane calculation and finding the best fitting line
(see Section 4 for details).

Cocolority:. The cocolority RE(C;, C;) between two contours
is defined as the color difference between the mean colors on
the contours’ sides that face each other. The color difference is
calculated by the CIE 1994 color difference [44]. A mean color
is calculated for the contours’ sides that face each other, and the
color difference is then used to estimate how reliable the mean
color is.
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Figure 6: Illustration of contour relations. (a) Angle (b) Normal distance. (¢) Coplanarity (d) Cocolority.

To find the facing sides of two contours, an algorithm sim-
ilar to the mean color calculation is used. The procedure is
illustrated in Figure 6(d). For 3D contours C; and C;, we first
calculate two points (Pg,P) that are on the left side of the first
primitive (IIy,IT})) of each contour. We then calculate two more
points (PN/z,P;Wz) that are on the same side with Py and Py.
Note that Py/» and P}, /o are calculated from the primitives that
are closest to the contours’ centroid (Ily/, and Il 0. A side test
to Po (P;) with respect to the line defined by the other contour
reveals which side of the contour faces the other one.

Similar relations can be defined for the local features dis-
cussed in Section 2. Within the context of Section 7, relations
between primitives are used for comparison between local and
global reasoning approaches. A brief explanation of these rela-
tions can be found in [45].

6.1. Effect of Contour Uncertainty on Relations

To investigate the effect of uncertainty on the contour rela-
tions defined in Section 6, an artificial dataset was produced
where an isosceles triangle is moved away from the camera in
a direction perpendicular to the image plane. As illustrated in
Figure 7(a-b), as the triangle moves further from the camera,
the uncertainty of the contours becomes higher and the poor
reconstruction makes reasoning more and more difficult.

In the experiment, angle and coplanarity relations were cal-
culated for contours that lie on the isosceles sides of the triangle
in each frame. For every frame, the number of primitives con-
tained within a contour was kept constant. The experiment was
repeated 100 times, adding random white noise on the stereo
image pair. The resulting plots are presented in Figure 7(c-d).
The correct 3D angle is 30 degrees, and the coplanarity value is
zero (since both contours are in the same plane).

Two aspects of these results deserve a detailed explanation.

e Degeneration: The precision of the estimates decreases
with triangle’s distance from the cameras. This degener-
ation process is reduced if using estimates that take the
uncertainties into account; however, it cannot be avoided.
At some point, it does not make sense anymore to do such
3D reasoning processes.

o Systematic errors: Not only the variance of the estimates
increases with distance, there is also a growing systematic

error in these estimates. The reason for this is that isotropic
noise on the orientation of the two contours results in a
bias. It is more likely that these orientations deviate rather
than converge for an angle of 30 degrees.

Any reasoning with 3D contour relations is affected by these
two hindrances.

7. Using 3D Contours in Cognitive Vision and Grasping
Tasks

In this section, we exemplify the use of our multi-modal con-
tours and their relations, with four applications from different
domains. We chose these very different domains—road lane
detection, depth prediction and grasping unknown objects—to
demonstrate the generality of the approach. In Section 7.1, the
contour relations are used in a Bayesian framework for lane
marker detection. In Section 7.2, we show that 3D contours can
be used for depth prediction, even for non-planar homogeneous
surfaces. In Section 7.3, we demonstrate that 3D contours and
their relations can be used to define grasping hypotheses for un-
known objects, and that the very same relational space can be
used as features for grasp learning. Finally, in Section 7.4, we
discuss how the effect of uncertainty can be reduced via accu-
mulation over time.

7.1. Task 1: Road Lane Detection

Relations between contours give rise to both geometrical
and appearance cues. These cues can be combined within a
Bayesian framework to calculate the probability of an event
happening for given cues. In this section, a road lane detec-
tion system based on Bayesian reasoning (see, e.g., [46]) is dis-
cussed to illustrate the relevance of the relational space for rea-
soning. The details of this work can be found in the workshop
publication [45].

Lane marker detection usually combines different stages of
processing such as feature extraction, initial estimation, lane
modeling and tracking (see, e.g., [47, 48] for a review). In
this section, we focus on the estimation and modeling steps. In
2D approaches such as [49, 48] perspective properties of paral-
lel lines and appearance properties of lane markers are used to
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Figure 7: Effect of uncertainty on contour relations for the isosceles sides of the triangle in an artificial dataset. (a) Some samples from the dataset as stereo image
pairs and 3D primitives. (b) Change in the contour uncertainty as the triangle moves away from the camera. (c) The angle between the sides of the triangle as it
moves away from the camera. (d) The coplanarity between the sides of the triangle as it moves away from the camera.

model the lanes. 3D approaches such as [50] combine geomet-
rical properties of roads (e.g., the width of the road, estimated
ground plane) and appearance properties in a statistical manner.
In our approach, we start with the observation that lane struc-
tures are defined not only by their local appearance but also by
the relations between them (see Figure 8): lane structures, be-
sides usually being connected to collinear, high-contrast edges,
are usually found close to the ground plane, are mutually copla-
nar, and are part of parallel structures with certain distance
ranges relative to the lane width. None of these different re-
lations is on its own sufficient to describe lane structures; how-
ever, their probabilistic combination in terms of a Bayesian rea-
soning process results in a stable classification. Moreover, we
do not assume a static road model but learn it in terms of prior
and conditional probabilities.

In addition to the angle, normal distance and coplanarity re-
lations discussed in Section 6, we use color difference between
mean left and right colors of a contour and the Euclidean dis-
tance of contours to a roughly estimated ground plane (ground
plane relation). Note that a rough estimation of the ground
plane is possible, once the height of the camera as well as its
orientation is known.

The likelihood of an entity e being part of a lane £ given a
number of visual cues pertaining to the entity n° = {n, ..., 77;,}
can be defined as:

P(e € LIn%). (11)

According to Bayes’ formula, Eq. 11 can be expanded to

P(°le € LYP(e € L)
P(iple € LYP(e € L)+ P(n¥le ¢ LYP(e ¢ L)

Assumming independence between the cues, the denominator
of Eq. 12 can be expanded to

P, ..

and

P(s, ...

Eq. 12 can be solved once the prior and conditional proba-
bilities are known. In the learning phase, a set of hand-labeled
data from a publicly-available sequence (www.mi.auckland.
ac.nz/EISATS, SET 3: Colour stereo sequences Drivsco) was
used to calculate these probabilities for the training set. The
prior probability P(e € L) is calculated by counting the en-
tities that are on and off the lane, for all training images (see
Figure 9(a)). Also, in order to calculate the conditional proba-
bilities P(n°le € L) and P(°le ¢ L) for a specific value of ¢
in the test phase, a conditional probability density is estimated
from the training set for each relation (Figure 9(b-f)). Note that
for a given conditional probability, the non-overlapping area be-
tween two densities can be expressed as an L' —distance, which
can be associated to the relevance of each relation for reason-
ing. As illustrated in Figure 9, the L!-distance is quite high for

12)

Llee Ly=Pilee L)-...- P(filec £) (13)

et L) = P(fle ¢ £)-...-Pale £ L. (14)



Figure 8: Illustration of 3D relational cues. (A selected 3D contour is marked in red in (a)). (a) All contours that have 1500-3500 mm normal distance to the
selected contour. (b) All contours that have 0-200 mm normal distance to the selected contour. (c) All contours that are coplanar to the selected contour. (d) All

contours that have 0—5°angle to the selected contour.

some cues (e.g., the distance to the ground plane), which is an
indication of that particular cue’s relative importance. In this
work, we represent the probability densities with histograms,
and for the densities X and Y with n bins, the L'-distance is
defined as:

n

X =Yl = > 1% - Yil.

i=0

15)

Once the prior probabilities and the densities for the condi-
tional probabilities are calculated from the training data, Eq.
12 can be used to calculate the posterior probabilities—i.e.,
the probability of entities of the test set being on the lane for
the given visual cues. In this work, the Bayesian framework
was applied to three cases where the relational space was based
on (a) relations between primitives, (b) relations between con-
tours, and (c) relations between contours that have an uncer-
tainty value below a certain threshold. In Figure 10, the distri-
bution of the posterior probabilities for all three cases are dis-
played. Note that the L!-distance value is highest for the case
where contours are used after an uncertainty thresholding. In
Figure 11, some samples of extracted lanes are shown.

The evaluation was done by measuring two values for each
case. We calculate the classification success rate (CSR) as the
percentage of true positives (entities that are labeled as part of a
lane and detected as part of a lane) plus true negatives (entities
that are labeled as not part of a lane and detected as not part of a
lane) in the whole set (Eq. 16). We also have a positive success
rate (PSR), which is defined in Eq. 17 as the percentage of true
positives in the set of true positives plus false negatives (entities
that are labeled as part of lane and detected as not part of lane).

true positives + true negatives
CRs = TP & (16)

whole set

true positives
PSR = P

— . (17)
true positives + false negatives

While the classification success rate measures how success-

ful the algorithm is at classifying entities in a scene as lane and

non-lane, the positive success rate measures how successful the

algorithm is for finding lane structures. When the relations be-

tween primitives are used, we obtain a classification success
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rate of 78.4% and a positive success rate of 58%. The use
of contour relations results in a classification success rate of
75.3% and a positive success rate of 74.2%. Once the contour
relations are used after applying an uncertainty threshold, we
obtain a classification success rate and a positive success rate
of 88.3%.

7.2. Task 2: Depth Prediction using Contours

In this subsection, we show that depth information at homo-
geneous image areas can be predicted from the depth informa-
tion available at the contours (an extension of the work orig-
inally presented in [51]). It is not possible to estimate depth
information at homogeneous image areas directly. The statis-
tical investigations using chromatic images with correspond-
ing range data have revealed that it is possible to predict the
depth information at homogeneous image areas from the reli-
able depth information available at the contours of a scene [52].

Similar to an edge primitive, we define a homogeneous prim-
itive in 2D (7™) and in 3D (IT™):

ﬂ_m

Hm

(18)
19)

(x,0),
(X,n,c),

where x and X are the positions in the 2D and the 3D space,
respectively; ¢ is the color representation, and n is the surface
normal of the homogeneous primitive in the 3D space. n™ is
extracted directly from the image (see Figure 12(b)), and I1" is
estimated from the contours that bound 7.

The bounding contours of a homogeneous primitive 7™ are
found by making searches in a set of directions d;, i = 1, ..., Ny
for the edge primitives. In each direction d;, starting from a
minimum distance R,;,, the search is performed up to a distance
of Ryax in discrete steps s;, j = 1,..., N,. If an edge primitive
n is found in direction d; in the neighborhood Q of a step s, &
is added to the list of bounding edges and the search continues
with the next direction d,, .

The bounding contours of a homogeneous primitive 7’ form
a set of edge primitives, {r;} (fori = 1, ..., Ng). We form pairs
from this set (only from those that are cocolor, coplanar and not
collinear), and each pair gets to cast a vote v for the depth of
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Figure 9: The prior probability distribution (a) and conditional probability densities (b-f) for relations between contours that contain a maximum of 6 primitives.

7™, which is defined as

v =(X,n). (20)

We compute the vote from a pair of edge primitives 7r; and 7; by
first fitting a plane to their corresponding 3D primitives I1; and
IT}, and finding the intersection of this plane with the ray going
through the homogeneous primitive 7™ and the optical center of
the camera. This intersection defines the 3D position X in the
vote v, and the surface normal of the plane at point X is taken
as n.

Each vote has an associated reliability r, which is inversely
proportional to the distance between the homogeneous primi-
tive 7™ and the voting pair of edge primitives ; and 7r;:

1
- min(d(z™, 7;), d(n™", ;)"

ri=1 (21)
where d(.,.) is the Euclidean distance between two features.

The set of votes is combined by, first, clustering the votes
(using a histogram with a fixed number of bins) and averaging
(using the reliability in Eq. 21 as the weights) the votes inside
the most crowded cluster.

The model described above which focuses on local features
can only predict depth for planar surfaces. This limitation can
be relaxed by making use of the global contours. We create a
one-to-one association between the primitives of curved con-
tours that surround a homogeneous area and do the depth pre-
diction based on the paired primitives (see [52] for details). The
model’s applicability to round surfaces is demonstrated on a
simple scene in Figure 12. The figure also shows the results
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from two dense stereo algorithms; namely, dynamic program-
ming and a phase-based stereo algorithm [53]. In addition, the
applicability of the model is presented on an outdoor scene in
Figure 12(j-1). Comparing the results in Figure 12(k) and Fig-
ure 12(1), it is visible that the depth prediction gives reasonable
information for areas sufficiently close to the camera, however
the quality of depth prediction degrades when the reconstruc-
tion quality of contours decreases with increasing distance from
the camera. Here we want to stress that we do not claim that our
method outperforms other stereo methods which are based on
direct correspondences. We want to show however that depth
prediction based on contours provide one additional cue that
can be combined with other depth cues. For example, in [54],
this depth estimate was used to improve dynamic programming
stereo-matching.

7.3. Task 3: Using 3D Contours and Their Relations for Grasp-
ing Unknown Objects

In this section, the use of 3D contours and their relations
in the context of grasping unknown objects is presented. We
demonstrate that 3D contours and their relations can directly
be associated to actions and that they span a relevant space as
features for learning.

In the absence of prior knowledge about the 3D model of an
object, sensory data must be used to calculate grasping hypothe-
ses (see, e.g., [55]). The sensory data is analyzed to identify few
grasping points that are likely to be grasped and the outcome
of the grasping attempts are analyzed further to generalize the
grasping behavior (see, e.g., [56, 57, 58]). For example in [56],
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Figure 11: Results of the Bayesian framework applied on different frames.

Saxena et al. uses multiple images of the object to be grasped
and grasping locations that are identified on these images are
triangulated for gathering 3D information. Similar to our ap-
proach, 3D information coming from different sensors (such as
stereo cameras or range scanners) can be used directly to gen-
erate grasping hypotheses. For example in [58], 3D data points
are clustered into primitive box shapes to approximate unknown
objects and grasping hypotheses are created based on this box
representation. The main difficulty of grasping of unknown ob-
jects is that features extracted from the scene (which in general
are afflicted with a large degree of noise) need to be related to
grasping actions. Here we show that the 3D multi-modal con-
tours can be a powerful trigger for such grasping actions. In
particular, we show that a more global approach based on con-
tours outperforms a local approach based on local primitives in
terms of stability and robustness.

Grasps for a two-finger gripper are defined through a 3D lo-
cation x and two direction vectors r; and r, as shown in Fig-
ure 13(a). Making use of the coplanarity relation as defined in
Section 6, we can associate a number of grasps to two copla-
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nar contours or primitives (see Figure 13(b)). In this way, we
can compute a large variety of grasping hypotheses (see Fig-
ure 13(d)) for any given object.

A grasp at a certain position C;(fy) on a contour C; that is
coplanar and cocolor with a contour C; is defined as:

x=Ci(ty), rmn=n r=nrnx Cl,(l‘()) (22)
where C;(ty) is the 3D position on the NURBS curve of C; (see
Section 3.1), n is the normal of the common plane ¥(C;,C))
that is calculated for coplanarity, Ci(ty) is the first derivative
of C;(ty) which corresponds to the tangent vector of the curve
at that position and X is the cross product operator. An exam-
ple grasp defined by two contours is illustrated in Figure 13(e).
It has been shown that such a straightforward association of
coplanar contours to grasps, without making use of any prior
object knowledge, is already capable of achieving success rates
of about 40% even for scenes with high complexity such as the
one in Figure 14 (for details, see [59]).

In the following, we compare the performance of grasps de-
fined by relations between contours and local features. For the
local approach, the grasping hypotheses are calculated from the
location and orientation of two primitives that are cocolor and
coplanar as described in [55] (see Figure 13(b) for a brief ex-
planation).

For the comparison of the global and local approaches, two
contours from the brim of the can that is shown in Figure 15
were manually selected to make sure that they belong to the
same surface so that the orientation of the brim can be used as
ground truth. After adding random noise to all primitives within
the range of ellipsoids defined by their position uncertainty (see
Section 2), grasp hypotheses were calculated using both the lo-
cal and global approaches for a number of locations on the brim
of the can. For the local approach, every third primitive on one
contour and all other primitives on the other contour were used
to define multiple grasping hypotheses and the hypothesis that
aligns best with the ground truth was chosen. For the global ap-
proach, grasping hypotheses were defined using Eq. 22 for the
locations used for the local approach. As shown in Figure 15
(a) and (b), even though the best grasps were chosen for the lo-
cal approach, the global approach performs significantly better.
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Figure 12: Experiment results on a cylinder. (a) Left image of the a stereo pair. (b) Edge and homogeneous primitives extracted from (a). (¢) Contours. Green
shows the curved contours. (d-f) The predictions of our model shown as snapshots from our 3D displaying software. As surface fitting for curved surfaces in case
of outliers is not trivial, we are unable to provide disparity maps for our results. (g) Disparity map using Dynamic Programing. (h) Disparity map computed using
[53]. (i) Top view of (h). (j) A real outdoor scene, and the result of depth prediction as a disparity map (k). (I) Result of Dynamic Programming on the road scene.

This is because the local approach is based on only two prim-
itives, while the global approach makes use of the geometric
stability of contours.

Besides the fact that using coplanar contours instead of
coplanar pairs of local features increases the robustness and
success rate of grasping unknown objects, it has been shown
that the performance can be further increased by learning [59].
To this end, we constructed an artificial neural net that pre-
dicts a success likelihood for a grasp depending on the rela-
tions of the contours defining the grasp. Three relations be-
tween contours in addition to coplanarity—namely, cocolority,
normal distance, and angle—were used as input features to the
neural network. Each grasp attempt was evaluated haptically
by the robot, which resulted in a set of triplets containing the
performed grasp, the contours defining the grasp as well as a
label for success or failure. From these data, the robot sys-
tem learned a function predicting the success likelihood of the
grasp depending on the values of the four relations. For exam-
ple, from the large number of potential grasps shown in Fig-
ure 13(d), the system picked the one with the highest predicted
success likelihood. We have shown that such a learning based
selection can increase the success rate of the grasping behavior
from about 40% to above 60% (for details, see [59]). Note that
by learning a success likelihood for a grasp that can be associ-
ated to a certain constellation of contours, no prior knowledge
pertaining to specific objects is introduced. Rather, the system
acquires general knowledge about the chance of grasp success
when certain sets of relations occur in the scene.

7.4. Task 4: Disambiguation via Accumulation

As we discussed in Section 6.1, data uncertainty has a nega-
tive effect while reasoning in 3D. One way to reduce the uncer-
tainty is to acquire multiple images of a scene from different
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perspectives to accumulate a full 3D model [60]. This pro-
cess is based on the combination of three components. First,
all primitives are tracked over time and filtered using an Un-
scented Kalman Filter based on the combination of prediction,
observation and update stages. In the prediction stage, the sys-
tem’s knowledge of the motion (e.g., the motion of the robot
arm) or an estimated motion (see, e.g., [61]) is used to calcu-
late the poses of all accumulated primitives at the next time
step. The observation stage matches the predicted primitives
with their newly observed counterparts. The update stage cor-
rects the accumulated primitives according to the associated ob-
servations. This allows the encoding and update of the feature
vector. Secondly, the confidence in each tracked primitive is
updated at each time step according to how precisely the accu-
mulated primitive was matched with a new observation. The
third process takes care of preserving primitives once their con-
fidences exceed a threshold, even if they later become occluded
for a long period of time. It also ensures that primitives are dis-
carded if their confidence falls below a threshold. New primi-
tives that were not associated to any accumulated primitive are
added to the accumulated representation, allowing the progres-
sive construction of a full 3D model.

Temporal consistency is used by several computer vision
methods as well to reduce feature uncertainty, prominently the
Structure From Motion (SFM) and Simultaneous Localization
and Mapping (SLAM) class of methods. SFM methods are
mainly batch methods (e.g., bundle adjustement [62]) that can
achieve very high accuracy by minimizing the projection error
of the 3D features in all images. In the SLAM scenario, in con-
trast to the bundle adjustment case, the maps are built incremen-
tally using Kalman filter variants [63, 64, 65, 66, 67] or, more
recently, particle filters [68, 69]. The Fly algorithm by [70] that
uses genetic algorithms to maintain a population of “flies” on



Figure 13: Grasping with a two-fingered gripper. (a) A grasp is defined by a
location and two directions (r,r2). (b) The direction vectors for local features
are defined as r, = (u3 X uy) + (up X u3) and r; = u3 X r;. (c) A blue pan to be
grasped. (d) A set of grasping hypotheses generated to grasp the blue pan. (e)
An example grasp based on contours.

the environment, that is used to guide a mobile robot. In the
image domain, the CONDENSATION algorithm uses particle
filters to track deformable 2D curves over time [71]. One key
aspect of all these methods is that they only encode and track
a minimal amount of description (position, sometimes motion),
and generally rely on invariance properties from the chosen fea-
tures to provide robust matching. One important difference of
the accumulation method we use is that it transforms and tracks
appearance information for each feature in addition to its posi-
tion in space.

A sample accumulation process is shown in Figure 16(a)
where an object is presented to the camera from different per-
spectives by a robot arm. As shown in Figure 16(b-c), the ac-
cumlation process not only creates a full 3D model but also
reduces the uncertainty of the 3D primitives. There are two im-
portant facts to note in this process. First, the uncertainty of
primitives reduces as long as they can be matched in the ob-
servation stage. Therefore the uncertainty of contours starts
decreasing initially in Figure 16(b) and reaches a stable point
where the primitives inside those contours are not updated any-
more. Second, we observe that the newly added primitives keep
the uncertainty of some contours constant because of their high
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Figure 14: Grasping in a cluttered scene. (a) Objects to be grasped. (b) The
robot grasps an object based on a grasping hypothesis. (c) A set of successful
grasping hypotheses generated to grasp the objects in the scene.

Figure 15: Grasp locations for different approaches. (a) Grasps that are cal-
culated by using local features for different noise levels. (b) Grasps that are
calculated by using contours for different noise levels.

uncertainty. Note that despite the newly added primitives, the
overall uncertainty decreases, as shown in Figure 16(c).

8. Conclusions

We discussed the potential of reasoning with multi-modal
contours in the context of scene analysis for driver assistance,
depth prediction and robot grasping. In the first application,
we have shown the saliency and semantical interpretabilty of
contours and their relations within the context of lane marker
detection. In that application, both appearance and geometrical
properties as well as inter-relations of contours have been eval-
uated statistically and found relevant for extracting road lane
markers. The application on depth prediction revealed the im-
portance of global reasoning in terms of reliability by showing
the fact that contours encode richer information than local fea-
tures in terms of geometry. Similarly, the application on robot
grasping pointed to the reliability (using contours instead of lo-
cal features leads to more stable grasping predictions) as well
as saliency (using coplanar and cocolor contours reduces the
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Figure 16: Disambiguation via accumulation. The toy knife is rotated by a
robot arm with a known motion, 5 degrees in each frame. (a) The accumulation
process of a knife. (b) Uncertainties of contours during an 8 frames of accu-
mulation. (¢) Mean and standard variation of uncertainties of contours in each
frame. (d) An accumulated toy basket.

amount of grasping hypotheses) and semantical interpretabilty
of contours. In the fourth application, we have shown that the
effect of local uncertainty and global uncertainty problems can
be reduced by making use of accumulation over time. Note
that the view-point invariance property of 3D contour relations
plays a crucial role for all four applications since the reasoning
takes place in 3D. Also, within the context of driver assistance
and grasping we have shown that the 3D contour relations cover
a relevant space for learning.

Overall, we observed that the geometrical reasoning in 3D
benefits from the use of contours and the uncertainty of the data.
Also, we observed that reasoning with global entities decreases
computation time of any algorithm making use of relations, and
increases the discriminative power of these relations, in partic-
ular when reasonable limits for the uncertainty are taken into
account.
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