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Variational Bayesian object tracking and
smoothing

BMVC 2011 Submission # 193

Abstract
Probabilistic models for visual tracking of objects often involve likelihoods that lead to
intractable integrals in Bayesian inference. Vermaak et al. (2003) introduced an approx-
imation algorithm that combines variational Bayesian approximation with importance
sampling in an EM-like algorithm. Their diffusion model is a linear dynamical system
and the algorithm is an efficient approximation to the Kalman filter. In this paper we
show that their model does not lead to an effective Kalman smoother and propose a new
velocity model using a similar Kalman filter and a new Kalman smoother algorithm. This
is shown to produce a smoother track for an object in a real video example.

1 Introduction
The aim of video tracking is to identify one or more objects in a video sequence and then
to trace their movement through successive frames to identify the path taken and perhaps to
identify behaviour or interactions. Our interest lies in tracking crickets (Gryllus campestris)
in their natural habitat (see figure 2) [11]. In these videos the camera is static, though the
background is subject to small variations due to changing light conditions and the effect of
natural forces such as wind.

Probabilistic state space models have become popular for video tracking and Bayesian in-
ference may be used to determine posterior distributions for the state of the tracked object xt
in frame t given the observations yt (the video frames) up to t, as the filtered state, p(x |y1:t).
The integrals involved in the Bayesian formulation are often analytically intractable, requir-
ing an approximation scheme to be used. One popular scheme is particle filtering [5, 6, 8].
It is simple to implement, but quickly becomes computationally expensive as the number
of dimensions increases and it is not robust where the likelihood is very sharply peaked, as
it is in this video tracking problem. An attractive alternative, introduced by Vermaak et al.
[2003], is a variational Bayesian approximation, in which the posterior densities are approx-
imated by a product of simpler parametrized densities, as briefly reviewed in section 1.1.
Vermaak et al. model the uncertainty around the central state by a Gaussian density whose
mean diffuses from timestep to timestep. The linear-Gaussian formulation means that the
expectations required for the variational approximation associated with the state evolution
are equivalent to the efficient Kalman filter recursions. These are combined with a novel
importance sampling method to evaluate expectations associated with the highly nonlinear
likelihood term.

In a retrospective analysis information from observations after yt can be incorporated to
estimate the smoothed state by p(xt |y1:T ). However, we find straightforward extension of the
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Vermaak et al. scheme is ineffective because the diffusion variance necessary to capture the
changes in the tracked object’s state is so large that the future observations make negligible
contribution to the estimate of the current state. In this paper we (a) show how the diffusive
model may be replaced with a ‘constant velocity’ model for the state evolution accounting
separately for the uncertainty in the state and its dynamics and (b) describe a variational
approximation scheme that combines past and future observations in an even-handed manner
to permit effective smoothing.

We start by giving a very brief summary of the variational Bayes method. In section 2,
we summarise the diffusion model described by Vermaak et al. [2003] and show why the
straightforward Kalman smoothing recursions are not effective here. In section 3 the new
velocity model is introduced, including the new approximate Kalman smoother. Section
4 illustrates the effect of the new algorithm on the tracking of crickets in real videos and
conclusions are drawn in section 5.

1.1 Variational Bayes
Very briefly, variational Bayes (for tutorials see [7, 10] and [4, chapter 10]) seeks approxi-
mate posterior distributions q(Ωi)≈ p(Ωi |y1:T ) (where Ωi ∈Ω represents one of the model’s
parameter variables) that minimise the Kullback-Leibler (KL) divergence [9] between q and
p, where

KL(q ‖ p) =
∫

q(Ω) log
(

q(Ω)

p(Ω |y1:T )

)
dΩ (1)

The KL divergence is non-negative, and only zero when q and p are equal. An elegant method
provided by Waterhouse et al. [13] (see also [1, 2, 3]) exploits the assumed factorisation of
the approximate posterior and leads to

log(q(Ωi)) = E j 6=i [log(p(y1:T ,Ω))] (2)

where the expectation on the right-hand side is with respect to all variables other than Ωi.
When conjugate priors are chosen for the variables Ωi the resulting posterior distributions
are of the same family and their parameters are expressed in terms of the expectations of the
other variables in the problem. Suitable posterior parameter values are found by iteratively
calculating each of the q(Ωi) in terms of the others until convergence.

2 Vermaak et al.’s diffusion model
With yt representing the observation and xt the state at time t, the prior for xt is defined as

p(xt |µ t ,λ t) = N (xt |µ t ,λ
−1
t ) (3)

where the precision variable, λ t , represents the uncertainty of the estimate of the state and is
assigned a Wishart prior (the conjugate prior for a Gaussian precision):

p(λ t) = W (λ t | Ȳ, n̄) (4)

The evolution of the expectation of the state is modelled as a diffusive process:

p(µ t |µ t−1, λ̄ ) = N (µ t |µ t−1, λ̄
−1
) (5)
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Ȳ
n̄

zt

Diffusion model
yt

xt

µ t

vt

λ̄

κ t

λ t
Ȳ
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Figure 1 Graphical representation of the priors for (left) Vermaak et al.’s [12] diffusion model and
(right) the velocity model.

where λ̄ is a (fixed) parameter that defines the magnitude of the diffusion, i.e. the range of
change in the state that is probable between frames. Note that the precisions in λ t and λ̄ are
full matrices. A graphical representation of the model is shown in figure 1. For notational
convenience the full state at time t is collected into zt = {xt ,µ t ,λ t}.

Given a possible state and different probability distributions for the colours of back-
ground and foreground pixels, the likelihood, p(yt |xt), may be calculated.

2.1 Filtering

Posterior probabilities for the state variables may be calculated using the forward recursions
as follows (we define a further prior, p(µ0), to express beliefs about the initial state):

p(zt |y1:t) ∝

∫
p(yt |zt)p(zt |zt−1)p(zt−1 |y1:t−1)dzt−1 (6)

This is not tractable, mainly because p(yt |xt) cannot be expressed in terms of xt , but also
because of the interactions between the variables in zt . So Vermaak et al. use the factorised
variational Bayesian method [1, 3, 13] to calculate approximate posterior distributions (de-
noted by q(·)) and make the following assumption regarding factorisation of the posterior:

p(zt |y1:T ) = p(xt ,µ t ,λ t |y1:T )≈ q(xt)q(µ t)q(λ t) (7)

Following through the factorised variational Bayesian method for each variable results in
the following approximate posterior distributions. In the forward sweep, with t = 1, . . . ,T ,
the variables associated with µ are updated according to the standard Kalman filter update:
qα(µ t)≈ p(µ t |y1:t) is the Gaussian distribution N (µ t |mα

t ,Sα
t ), where

Sα
t =

(
〈λ t〉+ λ̄

)−1
mα

t = Sα
t

(
〈λ t〉〈xt〉+ λ̄ 〈µ t−1〉

)
(8)
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Figure 2 Three example frames from
a cricket video sequence.
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Figure 3 Graphical representations of (top) the tradi-
tional and (bottom) the new forward and backward
sweeps for filtering and smoothing.

Here 〈 f (a)〉 denotes the expectation of f (a) with respect to the posterior distribution of a.
For the posterior of the state precision, q(λ t), the Wishart W (λ t |Yt ,nt) is obtained, with

nt = n̄+1 Yt =
(

Ȳ−1 + 〈xtxT
t 〉+ 〈µ t µ

T
t 〉−〈xt〉〈µ t〉T−〈µ t〉〈xt〉T

)−1
(9)

Standard derivations for Gaussian and Wishart distributions give the expectations

〈µ t〉= mα
t 〈µ t µ

T
t 〉= Sα

t +mα
t mαT

t 〈λ t〉= ntYt (10)

Due to the intractable form of the likelihood, this method cannot be used to calculate q(xt).
Instead it is simplified to

q(xt) ∝ p(yt |xt)N (xt | 〈µ t〉,〈λ t〉−1) (11)

and importance sampling for xt is used to give a Monte Carlo approximation for q(xt). With

x(i)t ∼N (xt | 〈µ t〉,〈λ t〉−1) w(i)
t =

p(yt |x(i)t )

∑
N
j=1 p(yt |x( j)

t )
(12)

the result is the following approximate expectations with respect to q(xt):

〈xt〉 ≈
N

∑
i=1

w(i)
t x(i)t 〈xtxT

t 〉 ≈
N

∑
i=1

w(i)
t x(i)t x(i)T

t (13)

where N is the number of samples.

2.2 Smoothing
In the traditional implementation of the smoothing recursions (see figure 3, top diagram), the
forward recursion p(zt |y1:t) is combined with a backward recursion p(zt |yt+1:T ), to give the
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posterior probability distribution p(zt |y1:T ). The backward recursive sweep is defined, for t
from T −1 (qα(zT ) is conditioned on all the observations and hence is equal to q(zT )) down
to 1, as

p(zt |yt+1:T ) ∝

∫
p(yt+1 |zt+1)p(zt+1 |zt)p(zt+1 |yt+2:T )dzt+1 (14)

The only term involving the current time-step is p(µ t+1 |µ t), hence variationally qβ (µ t) ≈
p(µ t |yt+1:T ) is the Gaussian distribution N (µ t | 〈µ t+1〉, λ̄

−1
). With q(·) denoting the full

approximate posterior distribution to p(zt |y1:T ) (i.e. the result after the forward and back-
ward sweeps), we have q(µ t) = qα(µ t)qβ (µ t), which is the Gaussian N (µ t |mt ,St) where

St =
(
(Sα

t )
−1 + λ̄

)−1
mt = S−1

t

(
(Sα

t )
−1mα

t + λ̄mt+1

)
(15)

The approximate posterior expectation for µ t is a average of contributions from the forward
sweep (mα

t ) and backward sweep (mt+1), weighted according to the expected precision of
each contribution. Unfortunately the backward sweep contribution is weighted by the dif-
fusion precision λ̄ , which is necessarily small as a large covariance is required to model
the magnitude of the state movement between video frames, while the forward sweep is
weighted by an uncertainty precision, which turns out to be the relatively large precision in
(Sα

t )
−1. The result is that the “smoothed” posterior distribution is highly weighted in favour

of the forward (filter) contribution and almost no smoothing occurs. To avoid this problem,
the diffusion precision in this variational model needs to be separated from the state expec-
tation in µ t . This, and the necessity to track multiple objects that come into close proximity,
leads us to the constant velocity model that is described in the next section.

3 Velocity model
In this new model, shown in graphical form on the right in figure 1, a new variable, vt ,
is introduced to represent the change in state between observations. The fixed diffusion
precision in λ̄ is now associated with this velocity variable, while the state expectation in
µ t is assigned the uncertainty precision κ t , for which a posterior distribution is calculated as
part of the variational process. All the state variables are collected together into zt which is
now defined as {xt ,µ t ,λ t ,vt ,κt}.

We define variables associated with the forward and backward evolution as follows:

forward

p(µ t |µα
t−1,v

α
t ,κ

α
t ) = N (µ t |µα

t−1 +vα
t ,(κ

α
t )
−1) (16)

p(vα
t |vα

t−1)) = N (vα
t |vα

t−1, λ̄
−1
) (17)

p(κα
t ) = W (κα

t |W̄, d̄) (18)

backward

p(µ t |µ
β

t+1,v
β

t ,κ
β

t ) = N (µ t |µ
β

t+1−vβ

t ,(κ
β

t )
−1) (19)

p(vβ

t |v
β

t+1) = N (vβ

t |v
β

t+1, λ̄
−1
) (20)

p(κβ

t ) = W (κ
β

t |W̄, d̄) (21)
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Note that while κα
t is the precision of µ t based on µ t−1 and κ

β

t is the precision of µ t based
on µ t+1, the vα

t and vβ

t represent different transitions (vα
t is equivalent to vβ

t−1).

We then calculate variational approximations to p(zt−1 |y1:t−1) and p(zt+1 |yt+1:T ), which
are combined below to yield an approximation for p(zt |y1:T ) (cf. figure 3). The forward ex-
pressions for the approximate posteriors for µ t , vt and κ t are dependent on the forward
expectations of each variable:

qα(µ t) = N (µ t |mα
t ,S

α
t ) (22)

Sα
t =

(
〈λ t〉+ 〈κα

t 〉
)−1 (23)

mα
t = Sα

t
(
〈λ t〉〈xt〉+ 〈κα

t 〉(〈µα
t−1〉+ 〈vα

t 〉)
)

(24)

qα(vt) = N (vt |uα
t ,C

α
t ) (25)

Cα
t =

(
〈λ t〉+ λ̄

)−1
(26)

uα
t = Cα

t
(
〈λ t〉(〈µα

t 〉−〈µα
t−1〉)+ λ̄ 〈vα

t−1〉
)

(27)

qα(κ t) = W (κ t |Wα
t ,d

α
t ) (28)

dα
t = d̄ +1 (29)

Wα
t =

(
W̄−1 + 〈µα

t µ
αT
t 〉+ 〈µα

t−1µ
αT
t−1〉+ 〈vα

t vαT
t 〉−〈µα

t 〉(〈µα
t−1〉+ 〈vα

t 〉)T

−(〈µα
t−1〉+ 〈vα

t 〉)〈µα
t 〉T + 〈µα

t−1〉〈vα
t 〉T + 〈vα

t 〉〈µα
t−1〉T

)−1
(30)

while backward expressions are dependent on the backward expectations of each variable:

qβ (µ t) = N (µ t |m
β

t ,S
β

t ) (31)

Sβ

t =
(
〈λ t〉+ 〈κβ

t 〉
)−1

(32)

mβ

t = Sβ

t

(
〈λ t〉〈xt〉+ 〈κβ

t 〉(〈µ
β

t+1〉−〈v
β

t 〉)
)

(33)

qβ (vt) = N (vt |uβ

t ,C
β

t ) (34)

Cβ

t =
(
〈κβ

t 〉+ λ̄

)−1
(35)

uβ

t = Cβ

t

(
〈κβ

t 〉(〈µ
β

t+1〉−〈µ
β

t 〉)+ λ̄ 〈vβ

t+1〉
)

(36)

qβ (κ t) = W (κ t |Wβ

t ,d
β

t ) (37)

dβ

t = d̄ +1 (38)

Wβ

t =
(

W̄−1 + 〈µβ

t µ
β T
t 〉+ 〈µ

β

t+1µ
β T

t+1〉+ 〈v
β

t vβ T
t 〉−〈µ

β

t 〉(〈µ
β

t+1〉−〈v
β

t 〉)T

−(〈µβ

t+1〉−〈vt〉β )〈µβ

t 〉T−〈µ
β

t+1〉〈v
β

t 〉T−〈v
β

t 〉〈µ
β

t+1〉
T
)−1

(39)

These may be combined to give a smoothed approximate posterior distribution for the state
expectation, q(µ t) ≈ p(µ t |y1:T ), using the transition probabilities to zt from the previous



276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

AUTHOR(S): VARIATIONAL BAYESIAN OBJECT TRACKING & SMOOTHING 7

and following steps (cf. figure 3).

q(µ t) =
∫

p(yt |xt) p(xt |µ t ,λ t) qα(µ t−1) p(µ t |µα
t−1,v

α
t ,κ

α
t ) qα(vt) qα(κ t)

qβ (µ t+1) p(µ t |µ
β

t+1,v
β

t ,κ
β

t ) qβ (vt) qβ (κ t)q(λ t)

dxt dµ
α
t−1 dvα

t dκ
α
t dµ

β

t+1 dvβ

t dκ
β

t dλ t (40)

This integral is, again, analytically intractable, so we use the variational approximation,
resulting in a Gaussian distribution for the posterior of µ t as follows:

q(µ t) = N (µ t |mt ,St) (41)

St =
(
〈λ t〉+ 〈κα

t 〉+ 〈κ
β

t 〉
)−1

(42)

mt = St

(
〈λ t〉〈xt〉+ 〈κα

t 〉
(
〈µα

t−1〉+ 〈vα
t 〉
)
+ 〈κβ

t 〉
(
〈µβ

t+1〉−〈v
β

t 〉
))

(43)

The approximate posterior expectation of µ t is now a weighted average of contributions
from the past (µα

t−1 +vα
t ), the present (xt ) and the future (µβ

t+1−vβ

t ), with each contribution
weighted according to its expected precision. Note that the expected value of µ t no longer in-
cludes terms in the diffusion precision λ̄ , only in precisions that measure uncertainty, which
are hopefully large. A similar procedure results in posterior distributions for vt and κ t , as
follows:

q(vt) = N (vt |ut ,Ct) (44)

Ct =
(
2λ̄ + 〈κ t〉

)−1
(45)

ut = Ct

(
λ̄ 〈vα

t−1〉− λ̄ 〈vβ

t+1〉+ 〈κ t〉
(
〈µ t〉−〈µ t−1〉

))
(46)

q(κ t) = W (κ t |Wt ,dt) (47)
dt = d̄ +1 (48)

Wt =
(

W̄−1 + 〈µ t µ
T
t 〉+ 〈µ t−1µ

T
t−1〉+ 〈vtvT

t 〉−〈µ t〉
(
〈µ t−1〉+ 〈vt〉

)T

−
(
〈µ t−1〉+ 〈vt〉

)
〈µ t〉T + 〈µ t−1〉〈vt〉T + 〈vt〉〈µ t−1〉T

)−1
(49)

As shown in Algorithm 1, the approximate posterior for λt may be calculated in the forward
and backward sweeps and then, again, in the combining sweep, exactly as for the diffusion
model (9). The combination and backward sweeps may be performed simultaneously.

4 Results
For the cricket tracking problem, the cricket was modelled as an ellipse. The 5-dimensional
state defined the ellipse’s location through the x and y coordinates of its centre, and its size
and orientation through the lengths of its axes and a rotation angle. Each video frame, Yt ,
was segmented into a background and a foreground by projecting it onto the first principal
component calculated across a sliding window of 20 frames and subtracting the projection
(i.e. the background) from the original colour image, resulting in the foreground or move-
ment image, Mt . This procedure helps the algorithm to distinguish between a dark (moving)
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Algorithm 1 Smoothing for the velocity model
Locate the object in the first frame (using the diffusion model) to determine 〈µ0〉.

forward sweep
for t = 1 to T do

Initialise 〈µα
t 〉 and 〈λ t〉 from p(zt |y1:t−1).

for iter = 1 to convergence do
Use importance sampling to estimate 〈xt |y1:t〉 and 〈xtxT

t |y1:t〉.
Calculate qα(µ t), qα(vt), qα(κ t) and q(λ t) dependent on forward expectations.

end for
end for

backward sweep
for t = T −1 down to 1 do

Initialise 〈µβ

t 〉 and 〈λ t〉 from p(zt |yt+1:T ).
for iter = 1 to convergence do

Use importance sampling to estimate 〈xt |yt:T 〉 and 〈xtxT
t |yt:T 〉.

Calculate qβ (µ t), qβ (vt), qβ (κ t) and q(λ t) dependent on backward expectations.
end for

end for
combination sweep

q(µ1) = qβ (µ1).
q(µT ) = qα(µT ).
for t = 2 to T −1 do

Initialise 〈µ t〉 and 〈λ t〉 from p(zt |y1:t−1).
for iter = 1 to convergence do

Use importance sampling to estimate 〈xt |yt〉 and 〈xtxT
t |yt〉.

Calculate q(µ t), q(vt), q(κ t) and q(λ t) dependent on combined expectations.
end for

end for

elliptical cricket and its dark, but stationary, elliptical burrow (cf. top right figure 4). For a
given ellipse, the likelihood of a single pixel, i, is given by

p(i) =

{
N (Y (i)

t |µbg,λ
−1
bg ) N (M(i)

t |0,1/30) i 6∈ ellipse

G (Y (i)
t |µ f g,λ

−1
f g ) N (M(i)

t | −100,1/75) i ∈ ellipse
(50)

where µbg and λbg are calculated by fitting a Gaussian distribution to all the background
pixels in the video sequence, and µ f g and λ f g were determined empirically. The video was
recorded at 2 frames per second; we remark that in 500 ms the crickets can move well over
their own body lengths.

Figure 4 shows the forward, backward and combined tracks produced by each of the
models over 30 frames, overlaid with ellipses representing the state estimated for the frame
shown in the background (which has been lightened for clarity). Notice how for the diffusion
model the combined track is indistinguishable from the forward track, while for the velocity
model it is quite separate.

Figure 5 shows the combined tracks for each algorithm, offset vertically to aid compari-
son, demonstrating the smoother track produced by the velocity model.
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Figure 4 The forward (red circles), backward (blue squares) and combined (black crosses) tracks pro-
duced by (top) the diffusion model and (bottom) the velocity model over 30 frames. The ellipses show
the state estimated for the frame shown in the background, which has been lightened for clarity.
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Figure 5 Two examples of the smoothed tracks for each of the models. In each case the tracks from the
diffusion and velocity models have been offset vertically to aid comparison.
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5 Conclusions
Traditional smoothing recursions are ineffective when the transition between states is mod-
elled as a diffusion which represents both uncertainty in the state and the genuine change
in the state. We have presented a straightforward variational approach to Bayesian smooth-
ing which provides smoother state estimates, by including an effective smoother step, and
explicitly modelling the genuine state change. As a result the new model is more robust to
minor occlusions of the tracked cricket by, for example, blown blades of grass.
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