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Topology optimization using a dual method with discrete

variables
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Abstract  This paper deals with topology optimization of con-
tinuous structures in static linear elasticity. The problem consists
in distributing a given amount of material in a specified domain
modelled by a fixed finite element mesh in order to minimize the
compliance. As the design variables can only take two values in-
dicating the presence or absence of material (1 and 0), this prob-
lem is intrinsically discrete. Here, it is solved by a mathemati-
cal programming method working in the dual space and specially
designed to handle discrete variables. This method is very well-
suited to topology optimization, because it is particularly efficient
for problems with a large number of variables and a small number
of constraints. To ensure the existence of a solution, the perime-
ter of the solid parts is bounded. A computer program including
analysis and optimization has been developed. As it is specialized
for regular meshes, the computational time is drastically reduced.
Some classical 2-D and new 3-D problems are solved, with up to
30,000 design variables. Extensions to multiple load cases and to
gravity loads are also examined.

1 Introduction

Let us consider a domain {2 whose boundary conditions are
specified (Fig. 1). The aim of topology optimization is to find
the subdomain 2y, filled with material (or the subdomain
{2y occupied by the void) in order to satisfy a given criteria,
without any @ prior: decision on its connectivity.

The determination of the areas with or without material
implies the discretization of the design space. If x describes
the spatial position of a point of £2, the function u(x) indi-
cates the presence or the absence of material in the following
way:

o pu(x) = 1 corresponds to material (x € £2p,),
o u(x) = 0 corresponds to void (x € {2y).

Every integral on the volume of material {2y, of any function
¢(x) can be written as an integral on the total volume 2 by
multiplying d£2 by p(x)

9(x)d2 = | g(x)u(x)de. 1
[ sae= |

m 2

The material is assumed to be isotropic and homogeneous.
In linear elasticity and for a single load case, the standard
formulation consists of maximizing the global stiffness of the

Fig. 1. Design domain (after Bendsge 1995)

structure, that is equivalent to minimize the compliance, i.e.
the work of the external loads. A bound on the volume is a
natural cost function. The compliance is written

{u) = / tludo + /tTu aly =
o gl

/ fTup(x)d2 + / tTudry, (2)
0 I3

where f is the vector of the body forces, u is the vector of

the displacements that must satisfy equilibrium, compatibil-

ity and constitutive equations, t is the vector of the boundary

tractions and I} is the part of the boundary where they are

imposed. Here, we consider that the boundary conditions im-

posed on the displacements (boundary I',) are homogeneous.
The volume is given by

V= / d():/u(x)dﬂ. 3)
2m n

The problem is written as

min _ 4(u)

#(x)e{0,1}
[ u(x) d2 < ymax (4)
with e}

u solution of the linear elasticity problem

In order to solve it numerically, the design domain is dis-
cretized by the finite element method. The discretization of
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Fig. 2. Flow chart of the program

p(x) is naturally performed on the elements; the number n
of design variables y;, i = 1,7n is equal to the number of ele-
ments. With cinematically admissible models, the equations
of elasticity reduce to the equilibrium equations.

The problem (4) presents two main difficulties.

e It is ill-conditioned and the existence of the solution is
not ensured (see e.g. Murat 1977 or Strang and Kohn
1986). Therefore, the computational results are sensitive
to the discretization; the more refined the mesh, the more
frequent the spatial oscillations of the indicator function.
This phenomenon is characterized by alternated void and
solid zones, called checkerboards. To avoid this difficulty,
a first possibility is to relax the design space by the intro-
duction of perforated microstructures before computing
the effective material properties by using homogenization
techniques (Bendsge and Kikuchi 1988). However, the
obtained solutions contain some intermediate density ar-
eas and are not easy to interpret. A second alternative
is to restrict the design space by the imposition of geo-
metrical constraints in order to exclude chattering designs
(Buttazzo 1996). Haber et al. (1994), as proposed first by
Ambrosio and Buttazzo (1993), solve some applications
with a bound on the perimeter of the boundary separat-
ing material and void, whereas Sigmund (1994) adapts
filtering techniques used in digital image processing.

e The design variables p;, ¢ = 1,7 are binary. Moreover,
a high quality solution requirement can only be achieved
with many elements, usually several thousands. Gener-
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ally, the unavailability of discrete algorithms dealing with
such a large number of variables requires to approximate
the binary problem by a continuous one, either by con-
sidering continuous y;, ¢ = 1,n and by penalizing values
between 0 and 1 (Bendsge 1989) or by relaxing the design
space with the introduction of porous materials.

2 New approach

Here, we propose to solve directly the binary problem (4)
by a discrete mathematical programming method working
in the dual space, based on the algorithms of Schmit and
Fleury (1980) and of Septlveda and Cassis (1986). A detailed
description of this method and of its application field is given
by Beckers (1997). This approach is able to overcome the two
difficulties above, because it can handle efficiently a large
number of binary variables and because the addition of an
upper bound constraint on the perimeter guarantees that the
design problem is well-posed. A variant that uses the filter
method has also been studied; it has also been combined with
the perimeter method. The problem is written

minimization of the compliance
bound on the volume

with bound on the perimeter
large number of 0-1 variables

()

The equilibrium equations are taken into account when com-
puting the displacements. The dual approach is very well-
suited to topology optimization because of the particular
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Fig. 3. Possible values of the perimeter of the central element

form of the problem - for a single load case, one or two
constraints and a very large number of variables - which in-
duces the consequence that the dual space is only one or
two-dimensional.

The compliance cannot be expressed explicitly in terms of
the design variables. Therefore, it is necessary to use approx-
imation schemes in order to avoid performing a prohibitive
number of analyses during the optimization. Therefore, the
process becomes iterative, each loop including the structural
and sensitivity (see Section 2.4) analyses, the generation of an
explicit subproblem and its solution with the discrete dual al-
gorithm. According to Fleury (1993), it is very advantageous
to resort to convex and separable approximation schemes.
The convexity ensures equivalence between primal and dual
solutions, and the separability leads to simple primal-dual
relations. The initial problem is then replaced by a sequence
of binary explicit, “convex” and separable subproblems. As
a discrete problem is not convex because the primal space
is composed of a disjoint set of points, we put “convex” in
quotation marks to describe a problem that would be con-
vex if the design variables were continuous, for example the
minimization of a convex function under a convex set of con-
straints but with discrete variables.

2.1 Flow chart

The domain is discretized in » finite elements built on regular
grids: rectangular 4-node elements for 2-D applications and
parallelepipedic 8-node elements for 3-D applications. This
choice is motivated by the high cost of 8-node 2-D elements
or 20-node 3-D elements for fine meshes. Moreover, the qual-
ity of the finite element mesh has been a posteriori controlled
.for some applications by means of an error estimation (Dufeu
1997). A specific program combining analysis and optimiza-
tion has been developed, divided in four main steps (Fig. 2).
It is especially well-suited to rectangular or parallelepipedic
meshes corresponding to the majority of topology examples
available in the literature. The procedure allows one to dras-
tically reduce the computation time. It avoids a lot of cal-
culations and of storage. For example, only one elementary
stiffness matrix Ky is evaluated and stored. A simple mul-
tiplication by p; leads to all the others [see (8)].
For reasons explained in Section 3.1, the loop is in prac-

tice executed at least 50 times. Since the sensitivity analysis
can be performed by simple algebraic formulae and because
the optimization problem is very small (two variables), more
than 95% of the CPU time is spent on the factorization of
the global stiffness matrix, that is performed by a skyline
method, particularly efficient for long thin 2-D structures.
So, problems with a very high number of variables can be
solved.

2.2 Discretization

A binary design variable u; is associated with each element
7. It indicates the presence of material. For plane stress
analysis, Hooke’s matrix is

E

e

, (6)

1—v

1
v
0 2

[T

where F is Young’s modulus and v Poisson’s ratio. The nodal
displacements q are obtained by solving the equilibrium equa-
tions

a=Kg, . )

where g is the external nodal loads vector. The field of dis-
placements u is expressed in terms of the nodal values q. The
global stiffness matrix K is assembled from the elementary
stiffness matrices K, defined as

K; = /B,THBZ'M dv; = p;Kep, (8)
143

where B; is the strain-displacement matrix and v; is the vol-
ume of one element. Equation (8) shows that it is sufficient
to calculate only one stiffness matrix K.y, and then, when
assembling, to multiply it by the indicator variable. After
obtaining the nodal displacements q by (7), the compliance
is computed by

C=q'g. (9)
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Fig. 4. Evolution of the perimeter for all possible combinations of p; and when p; changes state

At the equilibrium, it is twice the deformation energy.
The problem to be solved is

in al
min
i S -

n
Z HiVs S Vma«)(
=3 vt (10)
perimeter < pmax
pe{0,1},i=1n

with

It involves a large number n of binary variables but only two
constraints. To avoid the treatment of singularities during
the analysis stages, the minimum value of the indicator func-
tion is chosen as a small but nonzero value: 0.0001 in all the
applications presented.

2.3 Perimeter and filter

The perimeter method introduces a global constraint on the
structure which acts only on the void-material interfaces. It
is a simple geometrical entity, easy to calculate. For two-
dimensional structures; the perimeter is the length of the
void-solid boundaries. It is computed by adding, for all the
interfaces k& between two elements 7 and j, the modulus of
the difference between the two indicator variables multiplied
by the interface length £},

K

P= tflwi -yl (11)

k=1

For a border, the same formula is used, where the missing
neighbour p; is replaced by 0, except if the boundary is an
axis of symmetry. In this case, y; is set to the value p; of the
other element, in order to work always on the perimeter of the
whole structure. If the design variables are not binary, (11)
is still applied but the result is no longer a true perimeter.

The function (11) is explicit, but it cannot be used in this
form for the optimization, because an efficient solution with a
dual method requires separable functions. Then, it is neces-
sary to build a separable approximation of the perimeter, by
making the assumption that when the indicator function of
one element is modified, the neighbours remain unchanged.

Let us consider the perimeter P; of an element 7. To simplify
the notations, the elements are assumed to be square and of
unit length; P; is a combinatorial function that can take on
10 different values depending on the state (void or solid) of
the four neighbours (Fig. 3). Figure 4 shows the five varia-
tions of P; that are taken into account when p; becomes void
or solid and under the hypothesis that the variables y; of the
neighbours are fixed to binary values. As the couplings be-
tween neighbours are neglected, the perimeter approximation
is not always precise and it is sometimes difficult to satisfy
the perimeter bound. This is not so important, because its
main role is to allow a control on the quality of the solution.

In the filter method, a lower bound filter is applied to
avoid checkerboards, by modifying heuristically the first-
order derivatives of the compliance (see Sigmund 1994). Be-
low a fixed length r structural variations are highly penal-
ized, so the thicknesses of structural members are forced to
be larger than 27 for all meshes. The solutions do not contain
any more thin members.

2.4 Sensitivities and approzimation schemes

In structural optimization, the classical approximation
schemes are based on first-order developments in Taylor se-
ries. At the current point, they need the value of the func-
tions and of their derivatives with respect to all the design
variables. The sensitivity analysis is generally very expensive,
but here, it is realized by means of simple algebraic formulae.
After some developments and without body loads, we obtain
for the compliance

oC ,
%0 lKuas, i=1n 2
2

The volume is linear, so each of its derivatives is the elemen-
tary volume ;. As the perimeter given by (11) is not differ-
entiable at p; = p;, Haber et al. (1994) propose to modify
slightly this formula by introducing a positive real £ close to
zero,

P= ifk (\/(M—ﬂj)2+€—§> : (13)
k=1
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Fig. 5. Michell truss, clamped left side, load at the middle of the
right side, 8064 elements; volume of material = 37.5%; bounded
perimeter
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Fig. 6. Michell truss, clamped left side, load at the bottom of the
right side, 8208 elements; volume of material = 37.5%; bounded
perimeter

As Ouj/0u; = 0if j # 4, only the four interfaces of an element
¢ contribute to the derivative of the perimeter with respect
to this variable,

g_____
e N

However, the quantity |p; — y1;] is here 0 or 1 because the
design variables are binary. As & is chosen very small beside
the unity, the derivative can be written

(14)

4 4 0 p > p
0P noHE>
8——_:E ~b i pp<pyo. (15)
Pz Lo i pi=p;

To produce a sequence of good quality approximate sub-
problems, it is necessary to select an appropriate scheme for
each of the three functions. The compliance has a behaviour
similar to a displacement. As all its derivatives are nega-
tive, it 1s equivalent to build an explicit approximation by
a reciprocal scheme or by the convex linearization scheme
(Fleury and Braibant 1986). The volume is linearized. For
the perimeter, the choice of a separable approximation is

more delicate. If the neighbours of an element remain un-
changed, the contribution of one variable to the perimeter is
linear; so we choose such an approximation. Two kinds of
linear approximation are considered: a local one and a mid-
dle range one (based on the value of the perimeter at two
points) (see Beckers 1997).

2.5 Solution of the dual problem

Expressed in terms of the Lagrangian multipliers associated
with the constraints, the dual problem is continuous and
quasi-unconstrained, but not everywhere differentiable, The
dual function is a piecewise linear function. Its geometri-
cal representation is a convex polyhedron. It is maximized
with a method based on steepest ascent subgradients. The
main objection that can be raised to the dual method is the
existence of a duality gap, due to the nonconvexity of the
primal problem caused by the discrete nature of the design
variables. However, this gap is proved to be small if the num-
ber of variables (equal here to the number of finite elements)
is high and if the number of constraints (2 for a single load
case) is low (Bertsekas 1982). As the number of elements
has to be important to obtain realistic solutions, the topol-
ogy optimization problem fulfils both conditions. Moreover,
a maximum bound on the duality gap can be calculated and
was always negligible in the tested applications.

3 Applications

3.1 Move limit

Since local approximations are precise only in the vicinity of
the approximation point, it is necessary to use move limits
to maintain their quality and avoid convergence towards lo-
cal optima. The number of reanalyses, a priori chosen, is
high; usually, 50 to 150 iterations are performed to reach the
solution.

Two distinct move limits are proposed. In the first strat-
egy, the variables remain always binary. At the beginning,
the bound on the volume is put to 100% of the total volume
of the domain. Then, it is gradually decreased until reaching
the required value. In the second approach, two intermedi-
ate admissible values are considered at the first iteration (for
example close to the percentage of imposed volume). During
the process, these two values are progressively modified from
their initial value and moved slowly towards 0 and 1

3.2 Nondimensional compliance

A nondimensional parameter can be defined to compare the
quality of the solutions. For 2-D problems and for a same
loading and a same aspect ratio, the optimal topology needs
only to be computed for one set of values of Young’s modu-
lus E, load modulus || g || and domain thickness T'. For any
other values of these variables, optimal values of the compli-
ance can be derived by a simple scaling. The nondimensional
compliance is defined as

ET
Ca.d' = Cm . (16)
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Fig. 7. MBB beam; 15000 elements (only half is studied); 50% of the volume is allowed for material

Fig. 9. Typical solution with slightly bounded perimeter; perimeter = 31L, C.a = 379.1

Fig. 10. Typical solution with bounded perimeter; perimeter = 14L, C,q = 376

For 3-D problems, for the same loading and aspect ra-
tio, the compliance is proportional to || g [|2 and inversely
proportional to E and to the geometric scale L (that is for
example one dimension of the domain). The nondimensional
compliance is

Coq = Cﬁ%. (17)

3.8 Two-dimensional solutions

The proposed discrete optimization method has been found
to be very efficient in test examples. The results exhibit clean
solutions composed only of two states, the absence or pres-
ence of material (Figs. 5 and 6). Moreover, the duality gap
is negligible. Apart from producing a well-posed problem,
the bound on the perimeter allows one to control the number
and the dimension of the perforations in the optimal struc-
ture (Figs. 8 to 10). For these two applications, we recover
the analytical solutions proposed by Rozvany (1998) and a
number of numerical results obtained by optimality criteria

methods (e.g. Rozvany ef al. 1995; Haber et al. 1996). The
nondimensional compliance shows that the quality of the so-
lution is of course increasing when the perimeter is not or
slightly bounded, except for Fig. 9 for which the process has
been trapped in a local optimum.

Occasionally, some problems of convergence can be ob-
served, due to the presence of many local optima and to the
difficulty of establishing a good separable approximation of
the perimeter restriction which is highly combinatorial. A
variant consisting in adding to the problem with bounded
perimeter an image processing filter has been examined. The
results show that this modification helps to guide the solution
when the bound on the perimeter is small (Fig. 11).

The same problem is solved with three different meshes
(Figs. 12 to 14). Here, the final topology is mesh indepen-
dent. However, the addition of a bound on the perimeter
ensures the existence of the solution, but not its uniqueness
(Haber et al. 1996). All the solutions with high perimeter are
eliminated, but a lot of local optima satisfying the perimeter
bound can appear.
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Fig. 11. Typical solution with filter and bounded perimeter; perimeter = 11L, C,q = 387.5
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Fig. 13. 50 x 300 mesh: 15000 elements

Fig. 14. 100 x 600 mesh: 60000 elements

3.4 Multiple load cases

In contrast to the methods using optimality criteria, the
mathematical programming approach makes the solution of
problems with more than one constraint easy. This allows one
to take into account the bound on the perimeter, but also to
solve problems with multiple load cases. The general state-
ment consists in minimizing the maximum of compliances for
each of the p load cases (Achtziger 1993). If the j-th load case
gives rise to displacements u; and to the compliance £;(u;),
the problem is written

min max £;(u;
u(x)e{0,1} j=L,p ’ i)
[ p(x)de2 < ymax
52

with { perimeter < pmax
u; solution of the j-th linear elasticity problem,
i=Lp

(18)

By introducing an auxiliary continuous variable, the mul-
tiobjective formulation is transformed into a mixed discrete-
continuous minimization problem with 2 + p constraints and
the solution algorithm must be modified. As the number of

constraints remains low in comparison with the number of
variables, the dual approach is still very interesting. Figure
15 (Diaz and Bendsge 1992) and Fig. 16 show an example
with 2 load cases (loads P and loads @). The solution is very
different to the one obtained if the P and () loads are working
simultaneously {Fig. 17).

3.5 Three-dimensional solutions

The developed program can handle a high number of ele-
ments in a computationally economical way. Thus it has been
extended to perform three-dimensional applications (Beck-
ers 1996). The classical 8-node volume element has been
included in the program, and a 3-D perimeter has been de-
fined, equal to the sum of the surfaces between void and solid.
When possible, symmetry conditions are imposed. Some ex-
amples are illustrated in Figs. 18 to 25. The visualization is
obtained with POV-Ray software (1993).

3.6 Problem statement including self-weight loads

To obtain more realistic solutions, we take into account the
weight of the structure. As there are body loads, the deriva-
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Fig. 15. Boundary conditions

Fig. 16. Solution - multiple load cases

Fig. 17. Solution - single load case

tives (12) of the compliance are modified

g—/—i = Qq;'[‘geé - q:irKefqi H 1= 1: n, (19)
where gy is the weight of a solid element. The convex lin-
earization scheme is used to obtain an explicit and convex
approximation. An example is presented (Fig. 26), where
the total external load equals more or less the weight of the
bridge. The optimal structure looks like a two-arch bridge.
With the introduction of weight, it is more difficult to obtain
the result: between two iterations, it can occur that a lot of
void elements switch with solid ones. To stabilize the conver-
gence, it is important to prevent these variations. One way
is to add to the objective function a term that penalizes the
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Fig. 18, 3-D Michell truss

Fig. 20. Embedded beam in torsion

change of elements state. Another way is to impose a small
maximum bound on the perimeter or a filter, which produces
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Fig. 21. Bounded perimeter; 5000 elements

a merge of material and so helps to prevent oscillations.

variables fixed to 0

variables fixed to 1

Fig. 22. Bridge

4 Conclusions

The main advantage of the proposed method is its ability to
directly solve the problem with 0-1 variables. Therefore, it
produces realistic solutions composed only of two states, the
absence or presence of material, particularly interesting in 3-
D applications. The perimeter bound leads to a well-posed
problem and provides a good control of the number and the
sizes of perforations in the optimal structure. Moreover, it
is a global and easy to calculate constraint. The use of a
filter, although rather expensive, helps sometimes to over-
come the problems of convergence. Some applications with
a large number of elements are solved; the duality gap is al-
ways negligible: a maximum bound has been computed and
is about 103 percent of the objective function. With an
HP PA 8000 workstation, only 6 minutes of CPU time are
needed to obtain the topology of the MBB beam with 7500
variables (Figs. 8 to 11). Less than one hour is sufficient for
the same example with 30000 elements (Fig. 14) and for the
3-D Michell truss of Fig. 19.
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