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A b s t r a c t  This paper deals with topology optimization of con- 
tinuous structures in static linea~ elasticity. The problem consists 
in distributing a given amount of material in a specified domain 
modelled by a fixed finite element mesh in order to minimize the 
compliance. As the design variables can only take two values in- 
dicating the presence or absence of material (1 and 0), this prob- 
lem is intrinsically discrete. Here, it is solved by a mathemati- 
cal programming method working in the dual space and specially 
designed to handle discrete variables. This method is very well- 
suited to topology optimization, because it is particularly efficient 
for problems with a large number of variables and a small number 
of constraints. To ensure the existence of a solution, the perime- 
ter of the solid parts is bounded. A computer program including 
analysis and optimization has been developed. As it is specialized 
for regular meshes, the computational time is drastically reduced. 
Some classical 2-D and new 3-D problems are solved, with up to 
30,000 design variables. Extensions to multiple load cases and to 
gravity loads are also examined. 

1 I n t r o d u c t i o n  

Let us consider a domain S2 whose boundary conditions are 
specified (Fig. 1). The aim of topology optimization is to find 
the suhdomain S2m filled with material (or the subdomain 
S2v occupied by the void) in order to satisfy a given criteria, 
without any a priori decision on its connectivity. 

The determination of the areas with or without material 
implies the discretization of the design space. If x describes 
the spatial position of a point of 12, the function It(x) indi- 
cares the presence or the absence of material in the following 
w a y :  

�9 #(x) = 1 corresponds to material (x E I2m), 

�9 It(x) = 0 corresponds to void (x E ~2v). 

Every integral on the volume of material Qm of any function 
g(x) can be written as an integral on the total volume Y2 by 
multiplying dS2 by It(x) 

f g(x)dO = fg(x>(x)d . (1) 
Orn ~2 

The material is assumed to be isotropic and homogeneous. 
In linear elasticity and for a single load case, the standard 
formulation consists of maximizing the global stiffness of the 

fl y 

Fig. 1. Design domain (after Bends0e 1995) 

structure, that is equivalent to minimize the compliance, i.e. 
the work of the external loads. A bound on the volume is a 
natural cost function. The compliance is written 

g ( u ) =  J f T u d l 2 +  f f t T u d F t - -  - 

f fTuit(x)d~ + f tTud&, (2) 
f2 G 

where f is the vector of the body forces, u is the vector of 
the displacements that must satisfy equilibrium, compatibil- 
ity and constitutive equations, t is the vector of the boundary 
tractions and Ft is the part of the boundary where they are 
imposed. Here, we consider that the boundary conditions im- 
posed on the displacements (boundary Fu) are homogeneous. 

The volume is given by 

V =  J dg2= f i t ( x ) d ~ .  (3) 

tgm J2 

The problem is written as 

.(x)e{0,l} 
f i t (x )  d a  _< V max . (4) 

with (2 
u solution of the linear elasticity problem 

In order to solve it numerically, the design domain is dis- 
cretized by the finite element method. The discretization of 
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#(x) is naturally performed on the elements; the number n 
of design variables #i, i = 1,n is equal to the number of ele- 
ments. With cinematically admissible models, the equations 
of elasticity reduce to the equilibrium equations. 

The problem (4) presents two main difficulties. 

�9 It is ill-conditioned and the existence of the solution is 
not ensured (see e.g. Murat 1977 or Strang and Kohn 
1986). Therefore, the computational results are sensitive 
to the discretization; the more refined the mesh, the more 
frequent the spatial oscillations of the indicator function. 
This phenomenon is characterized by alternated void and 
solid zones, called checkerboards. To avoid this difficulty, 
a first possibility is to relax the design space by the intro- 
duction of perforated microstructures before computing 
the effective material properties by using homogenization 
techniques (Bendsee and Kikuchi 1988). However, the 
obtained solutions contain some intermediate density ar- 
eas and are not easy to interpret. A second alternative 
is to restrict the design space by the imposition of geo- 
metrical constraints in order to exclude chattering designs 
(Buttazzo 1996). ttaber et al. (1994), as proposed first by 
Ambrosio and Buttazzo (1993), solve some applications 
with a bound on the perimeter of the boundary separat- 
ing material and void, whereas Sigmund (1994) adapts 
filtering techniques used in digital image processing. 

�9 The design variables #i, i = 1,n are binary. Moreover, 
a high quality solution requirement can only be achieved 
with many elements, usually several thousands. Gener- 

ally, the unavailability of discrete algorithms dealing with 
such a large number of variables requires to approximate 
the binary problem by a continuous one, either by con- 
sidering continuous #6 i -- 1, n and by penalizing values 
between 0 and 1 (Bendsce 1989) or by relaxing the design 
space with the introduction of porous materials. 

2 New a p p r o a c h  

Here, we propose to solve directly the binary problem (4) 
by a discrete mathematical programming method working 
in the dual space, based on the algorithms of Schmit and 
Fleury (1980) and of Sepfilveda and Cassis (1986). A detailed 
description of this method and of its application field is given 
by Beckers (1997). This approach is able to overcome the two 
difficulties above, because it can handle efficiently a large 
number of binary variables and because the addition of an 
upper bound constraint on the perimeter guarantees that the 
design problem is well-posed. A variant that uses the filter 
method has also been studied; it has also been combined with 
the perimeter method. The problem is written 

minimiiation of the compliance 
bound on the volume 

with bound on the perimeter (5) 
large number of 0-1 variables 

The equilibrium equations are taken into account when com- 
puting the displacements. The dual approach is very well- 
suited to topology optimization because of the particular 
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Fig. 3. Possible values of the perimeter of the central element 

form of the problem - for a single load case, one or two 
constraints and a very large number of variables - which in- 
duces the consequence that  the dual space is only one or 
two-dimensional. 

The compliance cannot be expressed explicitly in terms of 
the design variables. Therefore, it is necessary to use approx- 
imation schemes in order to avoid performing a prohibitive 
number of analyses during the optimization. Therefore, the 
process becomes iterative, each loop including the structural 
and sensitivity (see Section 2.4) analyses, the generation of an 
explicit subproblem and its solution with the discrete dual al- 
gorithm. According to Fleury (1993), it is very advantageous 
to resort to convex and separable approximation schemes. 
The convexity ensures equivalence between primal and dual 
solutions, and the separability leads to simple primal-dual 
relations. The initial problem is then replaced by a sequence 
of binary explicit, "convex" and separable subproblems. As 
a discrete problem is not convex because the primal space 
is composed of a disjoint set of points, we put "convex" in 
quotation marks to describe a problem that  would be con- 
vex if the design variables were continuous, for example the 
minimization of a convex function under a convex set of con- 
straints but with discrete variables. 

tice executed at least 50 times. Since the sensitivity analysis 
can be performed by simple algebraic formulae and because 
the optimization problem is very small (two variables), more 
than 95% of the CPU time is spent on the faetorization of 
the global stiffness matrix, that  is performed by a skyline 
method, particularly efficient for long thin 2-D structures. 
So, problems with a very high number of variables can be 
solved. 

2.2 Discre t i za t ion  

A binary design variable #i is associated with each element 
i. It indicates the presence of material. For plane stress 
analysis, Hooke's matr ix is 

1 u 0 ) 
E v 1 0 (6) 

H - (1 - v 2) 0 0 2 
' 

where E is Young's modulus and u Poisson's ratio. The nodal 
displacements q are obtained by solving the equilibrium equa- 
tions 

2.1 Flow chart 

The domain is discretized in n finite elements built on regular 
grids: rectangular 4-node elements for 2-D applications and 
parallelepipedic 8-node elements for 3-D applications. This 
choice is motivated by the high cost of 8-node 2-D elements 
or 20-node 3-D elements for fine meshes. Moreover, the qual- 
ity of the finite element mesh has been a poster ior i  controlled 

.for some applications by means of an error estimation (Dufeu 
1997). A specific program combining analysis and optimiza- 
tion has been developed, divided in four main steps (Fig. 2). 
It is especially well-suited to rectangular or parallelepipedic 
meshes corresponding to the majori ty of topology examples 
available in the literature. The procedure allows one to dras- 
tically reduce the computation time. It avoids a lot of cal- 
culations and of storage. For example, only one elementary 
stiffness matrix Keg is evaluated and stored. A simple mul- 
tiplication by tti leads to all the others [see (8)]. 

For reasons explained in Section 3.1, the loop is in prac- 

q = K - a g ,  (7) 

where g is the external nodal loads vector. The field of dis- 
placements u is expressed in terms of the nodal values q. The 
global stiffness matrix K is assembled from the elementary 
stiffness matrices K i defined as 

Ki  = f B T H B i # i  dvi = # i K e g ,  (8) 
vi 

where B i is the strain-displacement matr ix and u i is the vol- 
ume of one element. Equation (8) shows that  it is sufficient 
to calculate only one stiffness matr ix Keg , and then, when 
assembling, to multiply it by the indicator variable. After 
obtaining the nodal displacements q by (7), the compliance 
is computed by 

C = qTg .  (9) 
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At the equilibrium, it is twice the deformation energy. 
The problem to be solved is 

/ #ivi <- vmax (10) 
with i=1 

perimeter < pmax 

# E { 0 , 1 } ,  i =  1,n 

It involves a large number n of binary variables but only two 
constraints. To avoid the treatment of singularities during 
the analysis stages, the minimum value of the indicator func- 
tion is chosen as a small but nonzero value: 0.0001 in all the 
applications presented. 

2.3 Perimeter and filter 

The perimeter method introduces a global constraint on the 
structure which acts only on the void-material interfaces. It 
is a simple geometrical entity, easy to calculate. For two- 
dimensional structures, the perimeter is the length of the 
void-solid boundaries. It is computed by adding, for all the 
interfaces k between two elements i and j,  the modulus of 
the difference between the two indicator variables multiplied 
by the interface length gk, 

K 

P = ~ ek[#i - #j[.  (11) 
k=l 

For a border, the same formula is used, where the missing 
neighbour #j  is replaced by 0, except if the boundary is an 
axis of symmetry. In this case, # j  is set to the value #i of the 
other element, in order to work always on the perimeter of the 
whole structure. If the design variables are not binary, (11) 
is still applied but the result is no longer a true perimeter. 

The function (11) is explicit, but it cannot be used in this 
form for the optimization, because an efficient solution with a 
dual method requires separable functions. Then, it is neces- 
sary to build a separable approximation of the perimeter, by 
making the assumption that when the indicator function of 
one element is modified, the neighbours remain unchanged. 

Let us consider the perimeter Pi of an element i. To simplify 
the notations, the elements are assumed to be square and of 
unit length; Pi is a combinatorial function that can take on 
10 different values depending on the state (void or solid) of 
the four neighbours (Fig. 3). Figure 4 shows the five varia- 
tions of Pi that are taken into account when Pi becomes void 
or solid and under the hypothesis that the variables #j  of the 
neighbours are fixed to binary values. As the couplings be- 
tween neighbours are neglected, the perimeter approximation 
is not always precise and it is sometimes difficult to satisfy 
the perimeter bound. This is not so important, because its 
main role is to allow a control on the quality of the solution. 

In the filter method, a lower bound filter is applied to 
avoid checkerboards, by modifying heuristically the first- 
order derivatives of the compliance (see Sigmund 1994). Be- 
low a fixed length r structural variations are highly penal- 
ized, so the thicknesses of structural members are forced to 
be larger than 2r for all meshes. The solutions do not contain 
any more thin members. 

2.4 Sensitivities and approximation schemes 

In structural optimization, the classical approximation 
schemes are based on first-order developments in Taylor se- 
ries. At the current point, they need the value of the func- 
tions and of their derivatives with respect to all the design 
variables. The sensitivity analysis is generally very expensive, 
but here, it is realized by means of simple algebraic formulae. 
After some developments and without body loads, we obtain 
for the compliance 

0C T 
0# i - ---qi  Kegqi,  i =  1,n.  (12) 

The volume is linear, so each of its derivatives is the elemen- 
tary volume v i. As the perimeter given by (11) is not differ- 
entiable at #i = #j ,  Haber et al. (1994) propose to modify 
slightly this formula by introducing a positive real ( close to 
z e r o  1 

K 
P =  

k--1 
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more delicate. If the neighbours of an element remain un- 
changed, the contribution of one variable to the perimeter is 
linear; so we choose such an approximation. Two kinds of 
linear approximation are considered: a local one and a mid- 
dle range one (based on the value of the perimeter at two 
points) (see Beckers 1997). 

2.5 Solution of the dual problem 

Expressed in terms of the Lagrangian multipliers associated 
with the constraints, the dual problem is continuous and 
quasi-unconstrained, but not everywhere differentiable. The 
dual function is a piecewise linear function. Its geometri- 
cal representation is a convex polyhedron. It is maximized 
with a method based on steepest ascent subgradients. The 
main objection that can be raised to the dual method is the 
existence of a duality gap, due to the nonconvexity of the 
primal problem caused by the discrete nature of the design 
variables. However, this gap is proved to be small if the num- 
ber of variables (equal here to the number of finite elements) 
is high and if the number of constraints (2 for a single load 
case) is low (Bertsekas 1982). As the number of elements 
has to be important to obtain realistic solutions, the topol- 
ogy optimization problem fulfils both conditions. Moreover, 
a maximum bound on the duality gap can be calculated and 
was always negligible in the tested applications. 

Fig. 6. Michell truss, clamped left side, load at the bottom of the 
right side, 8208 elements; volume of material = 37.5%; bounded 
perimeter 

As O#j/~#i = 0 i f j  r i, only the four interfaces of an element 
i contribute to the derivative of the perimeter with respect 
to this variable, 

0P  4 
0,~ = ~ ek , i  - , j  (14) 

k=~ V/(m _ ~j)2  + ~2 

However, the quantity I#i - Pjl is here 0 or 1 because the 
design variables are binary. As ~ is chosen very small beside 
the unity, the derivative can be written 

OP ~ {  +gk if t ~ i > # j O  
- - $ k  if  # i  < # j  (15)  

k=] if #i = #j  

To produce a sequence of good quality approximate sub- 
problems, it is necessary to select an appropriate scheme for 
each of the three functions. The compliance has a behaviour 
similar to a displacement. As all its derivatives are nega- 
tive, it is equivalent to build an explicit approximation by 
a reciprocal scheme or by the convex linearization scheme 
(Fleury and Braibant 1986). The volume is linearized. For 
the perimeter, the choice of a separable approximation is 

3 App l i ca t ions  

3.1 Move limit 

Since local approximations are precise only in the vicinity of 
the approximation point, it is necessary to use move limits 
to maintain their quality and avoid convergence towards lo- 
cal optima. The number of reanalyses, a priori chosen, is 
high; usually, 50 to 150 iterations are performed to reach the 
solution. 

Two distinct move limits are proposed. In the first strat- 
egy, the variables remain always binary. At the beginning, 
the bound on the volume is put to 100% of the total volume 
of the domain. Then, it is gradually decreased until reaching 
the required value. In the second approach, two intermedi- 
ate admissible values are considered at the first iteration (for 
example close to the percentage of imposed volume). During 
the process, these two values are progressively modified from 
their initial value and moved slowly towards 0 and i 

3.2 Nondimensional compliance 

A nondimensional parameter can be defined to compare the 
quality of the solutions. For 2-D problems and for a same 
loading and a same aspect ratio, the optimal topology needs 
only to be computed for one set of values of Young's modu- 
lus E, load modulus ]ig II and domain thickness T. For any 
other values of these variables, optimal values of the compli- 
ance can be derived by a simple scaling. The nondimensional 
compliance is defined as 

ET 
II 2 Cad= ell g (16) 
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Fig. 7. MBB beam; 15000 elements (only half is studied); 50% of the volume is allowed for material 

Fig. 8. Typical solution without bounding the perimeter; perimeter = 49L, Cad = 369.7 

Fig. 9. Typical solution with slightly bounded perimeter; perimeter = 31L, Cad : 379.1 

Fig. 10. Typical solution with bounded perimeter; perimeter = 14L, C~a = 376 

For 3-D problems, for the same loading and aspect ra- 
tio, the compliance is proportional to II g II 2 and inversely 
proportional to E and to the geometric scale L (that is for 
example one dimension of the domain). The nondimensional 
compliance is 

E L  
Cad = C[I g [I 2 . (17) 

3.3 Two-dimensional solutions 

The proposed discrete optimization method has been found 
to be very efficient in test examples. The results exhibit clean 
solutions composed only of two states, the absence or pres- 
ence of material (Figs. 5 and 6). Moreover, the duality gap 
is negligible. Apart  from producing a well-posed problem, 
the bound on the perimeter allows one to control the number 
and the dimension of the perforations in the optimal struc- 
ture (Figs. 8 to 10). For these two applications, we recover 
the analytical solutions proposed by Rozvany (1998) and a 
number of numerical results obtained by optimali ty criteria 

methods (e.g. t{ozvany et al. 1995; Haber et al. 1996). The 
nondimensional compliance shows that  the quality of the so- 
lution is of course increasing when the perimeter is not or 
slightly bounded, except for Fig. 9 for which the process has 
been t rapped in a local optimum�9 

Occasionally, some problems of convergence can be ob- 
served, due to the presence of many local optima and to the 
difficulty of establishing a good separable approximation of 
the perimeter restriction which is highly combinatorial. A 
variant consisting in adding to the problem with bounded 
perimeter an image processing filter has been examined. The 
results show that  this modification helps to guide the solution 
when the bound on the perimeter is small (Fig. 11). 

The same problem is solved with three different meshes 
(Figs. 12 to 14). Here, the final topology is mesh indepen- 
dent. However, the addition of a bound on the perimeter 
ensures the existence of the solution, but not its uniqueness 
(Haber et al. 1996). All the solutions with high perimeter are 
eliminated, but a lot of local optima satisfying the perimeter 
bound can appear. 
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Fig. 11. Typical solution with filter and bounded perimeter; perimeter -= 11L, Cad = 387.5 

Fig. 12. 25 x 150 m.esh: 3750 elements 

Fig. 13. 50 x 300 mesh: 15000 elements 

Fig. 14. 100 x 600 mesh: 60000 elements 

3.4 Multiple load cases 

In contrast to the methods using optimafity criteria, the 
mathematical programming approach makes the solution of 
problems with more than one constraint easy. This allows one 
to take into account the bound on the perimeter, but also to 
solve problems with multiple load cases. The general state- 
ment consists in minimizing the maximum of compliances for 
each of the p load cases (Achtziger 1993). If the j - th  load ease 
gives rise to displacements u j  and to the compliance s  
the problem is written 

~(x)e{0,1} j=l,p 
f #(x) d ~  _< V max 
J? 

with perimeter < pmax 

u j  solution of the j - th  linear elasticity problem, 
j = l , p  

(18) 

By introducing an auxiliary continuous variable, the mul- 
tiobjective formulation is transformed into a mixed discrete- 
continuous minimization problem with 2 + p constraints and 
the solution algorithm must be modified. As the number of 

constraints remains low in comparison with the number of 
variables, the dual approach is still very interesting. Figure 
15 (Dfaz and Bendsce 1992) and Fig. 16 show an example 
with 2 load cases (loads P and loads Q). The solution is very 
different to the one obtained if the P and Q loads are working 
simultaneously (Fig. 17). 

3.5 Three-dimensional solutions 

The developed program can handle a high number of ele- 
ments in a eomputationally economical way. Thus it has been 
extended to perform three-dimensional applications (Beck- 
ers 1996). The classical 8-node volume element has been 
included in the program, and a 3-D perimeter has been de- 
fined, equal to the sum of the surfaces between void and solid. 
When possible, symmetry conditions are imposed. Some ex- 
amples are illustrated in Figs. 18 to 25. The visualization is 
obtained with POV-Ray software (1993). 

3.6 Problem statement including self-weight loads 

To obtain more realistic solutions, we take into account the 
weight of the structure. As there are body loads, the deriva- 
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Fig. 16. Solution - multiple load cases 

Fig. 17. Solution - single load case 

rives (12) of the compliance are modified 

OC _ 2qTgeg T K  (19) O# i - q i  egqi ,  i =  1 , n ,  

where geg is the weight of a solid element.  The  convex lin- 
earization scheme is used to obtain an explicit  and convex 
approximation.  An example is presented (Fig. 26), where 
the total  external load equals more or less the weight of the 
bridge. The opt imal  s t ructure  looks like a two-arch bridge. 
With  the introduction of weight, it is more difficult to obtain 
the result: between two iterations,  it can occur that  a lot of 
void elements switch with solid ones. To stabilize the conver- 
gence, it is impor tant  to prevent these variations. One way 
is to add to the objective function a te rm that  penalizes the 

Fig. 19. Bounded perimeter; 17280 elements 

�9 L 

L 

Fig. 20. Embedded beam in torsion 

change of elements state. Another  way is to impose a small 
max imum bound on the per imeter  or a filter, which produces 
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Fig. 21. Bounded perimeter; 5000 elements 

a merge of material and so helps to prevent oscillations. 
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Fig. 22. Bridge 

4 Conc lus ions  

The main advantage of the proposed method is its ability to 
directly solve the problem with 0-1 variables. Therefore, it 
produces realistic solutions composed only of two states, the 
absence or presence of material, particularly interesting in 3- 
D applications. The perimeter bound leads to a well-posed 
problem and provides a good control of the number and the 
sizes of perforations in the optimal structure. Moreover, it 
is a global and easy to calculate constraint. The use of a 
filter, although rather expensive, helps sometimes to over- 
come the problems of convergence. Some applications with 
a large number of elements are solved; the duality gap is al- 
ways negligible: a maximum bound has been computed and 
is about 10 -5  percent of the objective function. With an 
HP PA 8000 workstation, only 6 minutes of CPU time are 
needed to obtain the topology of the MBB beam with 7500 
variables (Figs. 8 to 11). Less than one hour is sufficient for 
the same example with 30000 elements (Fig. 14) and for the 
3-D Michell truss of Fig. 19. 
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