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Abstract

The use of evolutionary algorithms for topological design of structures has been investigated for many years. The methods have disadvantages
in that they have slow convergence rate and a complete lack of consistency. In this paper, a number of well-established evolutionary methods
including genetic algorithm, stud-genetic algorithm, population-based incremental learning and simulated annealing are reviewed in terms of
their philosophical bases. The effective means to deal with topological design problems and prevent checkerboards on a topology are briefly
detailed. A new set of design variables employing a numerical technique named approximate density distribution is proposed. The new technique
and the classical 1–0 binary variables are applied to the various evolutionary methods and they are implemented on a number of structural
topology optimisation problems. The results obtained from the various design strategies are compared, illustrated and discussed. Numerical
experiment shows that using the present technique can improve both convergence rate and consistency of the evolutionary algorithms.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Structural optimisation is a design problem posed to find
structural physical parameters that give the optimum value of
design objective whilst fulfilling design constraints. The design
parameters or design variables can be mainly categorised as
topological, shape and sizing variables. Based upon the types
of the design variables the optimum design problems can thus
be topology, shape and sizing optimisation respectively. Tradi-
tionally, topological design is a structural design problem to be
performed in the early stage of the design process. The problem
is to find the best material distribution on a given design do-
main so that design merits are minimised or maximised, while
meeting predefined constraints. Practically, such a design pro-
cess can be carried out by using finite element analysis and
optimisation solvers. It is pre-processed by discretising a given
design domain into a number of finite elements. The densities
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or thickness of the elements determine a structural topology in
such a way that the elements with near-zero thickness represent
holes in the structure while the other elements have material
existence as shown in Fig. 1. The topology or material distri-
bution obtained at the optimum point is then taken as the initial
configuration for the designed structure.

The classical topological design problem is global stiffness
maximisation which is equivalent to compliance minimisation
[1]. Another classical design problem is eigenfrequency or
dynamic stiffness maximisation [2]. One of the most prefer-
able and popular optimisers for a problem of this kind is the
optimality criteria method (OCM) [3] which is arguably the
most powerful optimisation technique for the task. The other
gradient-based methods such as the method of moving asymp-
totes (MMA) and sequential linear programming (SLP) are
also employed to this design problem successfully [1]. Some
research work on the use of evolutionary or population-based
optimisation methods like genetic algorithms for topological
design has been conducted e.g. in [4–7]. The obtained outcomes
indicate that evolutionary algorithms, although said to be suc-
cessful, are inferior to gradient-based methods in terms of both
convergence rate and consistency. This is mainly due to a great
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Fig. 1. Sample of topology optimisation.

many topology design variables (approximately as many as the
number of structural elements). The gradient-based methods
may not be affected by the large number of design variables but
the evolutionary methods do suffer because their search mech-
anisms rely heavily on randomisation. We should not, however,
ignore the use of evolutionary methods for topology design
since some of their advantages remain attractive to designers.
For example, the methods are universal and simple to use, are
capable of global optimisation and are derivative-free optimi-
sation methods. Moreover, when applying 1–0 binary bits for
representing structural topologies in evolutionary search, the
problems of intermediate density or thickness on the topologies
can be easily avoided.

In the past, most articles relating to topology optimisation
using evolutionary algorithms tended to present only their
convergence rate whereas their convergence consistency seems
to have been overlooked. Basically, the search consistency of
evolutionary algorithms can be measured by performing the
method several times and comparing the obtained optimum re-
sults. Numerical experiments towards evolutionary algorithms’
search consistency for topology design are illustrated in [8,9].
The results show that all the presented evolutionary algorithms
have poor convergence consistency, which is clearly the effect
of the large number of design variables and random search. The
work in this paper is aimed at developing a new technique to
enhance the convergence consistency of evolutionary optimi-
sation methods. The selected evolutionary methods reviewed
include simulated annealing (SA), genetic algorithm (GA),
stud-genetic algorithm (Stud-GA) and population-based incre-
mental learning (PBIL). An approximate density distribution
(ADD) technique, which is the applications of surface spline
interpolation for approximating the density on structural ele-
ments, is presented. The optimisation methods are implemented
on four structural compliance minimisation problems with the
use of ADD and classical 1–0 binary design variables. The
results obtained from the various evolutionary methods are
compared, illustrated and discussed. It is shown that the nu-

merical strategy presented can improve the performance of the
evolutionary methods in terms of both convergence rate and
consistency.

2. Topology optimisation

The standard form of constrained optimisation problem can
be written as

min
x

f (x) (1)

subject to
gi(x)�0,

hi(x) = 0,

x ∈ �,

where x is the vector of design variables, gi are inequality con-
straints, hi are equality constraints and x ∈ � are box con-
straints.

As previously stated the topological design problem has a
large number of design variables and since it is normally im-
plemented at the conceptual design stage, some complicated
structural design constraints may be removed. The optimisation
problem is simplified to a simple constrained problem which,
for a typical compliance minimisation, can be written as

min
�

=c(�) = UTKU (2)

subject to
V (�) − rV 0 �0,

0 < �l ����u,

where � is the elements’ density, c is the structural compliance,
U is the vector of structural displacement, K is a structural
stiffness matrix, V is structural volume, V0 = V (�u), r ∈ (0, 1)

is the volume reduction ratio and �l and �u are the lower and
upper bounds.

Note that the lower bounds are usually set to be slightly
higher than zero so as to prevent singularity in the structural
global stiffness matrix. The problem (2) is set for the gradient-
based optimisers rather than the evolutionary algorithms. For
compliance minimisation using evolutionary algorithms, it is
better to alter the problem to be an optimisation problem where
the objective is the weighted sum of compliance and volume
[8]. The bounds can be dealt with in such a way that each de-
sign variable has the value of either ‘0’ or ‘1’ where a ‘0’ de-
sign variable is decoded to be the lower bound and a ‘1’ design
variable is decoded to be the upper bound of the corresponding
variable. This idea is advantageous in that the resulting topol-
ogy is free from having intermediate densities. Another prob-
lem often encountered is having checkerboard patterns on the
resulting optimum topologies, which is found to be the cause
of numerical instability [1]. A simple way to deal with such
a problem is the introduction of a checkerboard penalty func-
tion to the optimisation problem [10]. The modified objective
function, therefore, is of the form

f (�) = w1c(�) + w2V (�) + w3P(�), (3)
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Fig. 2. Internal nodes.

Case #1 Case #2

1 0

0 1

0 1

1 0

Fig. 3. Patterns to be penalised.

where P is a checkerboard penalty value computed from

P =
m×n∑
i=1

pi . (4)

Fig. 2 shows a rectangular design domain being meshed
to have (m + 1) × (n + 1) elements and, thus, m × n inter-
nal nodes. At an ith internal node, with four surrounding el-
ements, if the element densities (or thickness for plate struc-
tures) match any pattern shown in Fig. 3, pi = 1, otherwise
pi = 0. It has been proven that this simple technique can
effectively prevent the checkerboard problem in topological
design [10].

The value of w3 can be defined as high as desired since a
checkerboard pattern is unwanted. The values of w1 and w2
are set based upon the principle that a higher w1 value leads to
a topology being rather stiff and heavy whereas a higher value
of w2 results in the topology having more or bigger voids and
less global stiffness.

3. Evolutionary algorithms

Evolutionary algorithms are sometimes called population-
based or random-directed optimisation methods. The optimi-
sation method categorised as an evolutionary method starts its
search with a group of initial design solutions which is called
a population. The population is then evolved in some manner,
mostly relying on randomisation and a selection mechanism,
until the optimum solution is reached [11]. The evolutionary
methods employed in this paper include GA, Stud-GA, PBIL
and SA. The methods will be briefly detailed as follows:

100011100|1010001 parent #1
111000101|0110101 parent #2

cutting point

100011100|0110101 offspring #1
111000101|1010001 offspring #2

Fig. 4. Illustration of GA crossover.

10100011010010101010 parent

randomly selected bit

10100011000010101010 mutated parent

Fig. 5. Illustration of GA mutation.

3.1. Genetic algorithm

GA is probably the best known and most popular evolution-
ary method [12]. The method, like its name, can be best thought
of as imitating Darwinian natural selection in that offspring or
children are created by mating pairs of their parents. The pairs
of parents are chosen at random where their probabilities of
being selected are based upon their merit. Some of the popu-
lation’s elite, both parents and children, are then carried on to
the next generation (or iteration). This process is repeated iter-
atively until the optimum point is achieved. The conventional
GA operators used to create offspring are crossover and mu-
tation, which are allowed to occur by predefined probabilities.
The simple crossover and mutation operators are illustrated in
Figs. 4 and 5, respectively. There have been numerous research
articles relating to the development of new GA techniques for a
variety of engineering and scientific applications, which mostly
claim to be better than the original. The simplest form of GA
(with crossover, mutation and selection) is, however, still con-
sidered as one of the most widely used GAs.

3.2. Stud-genetic algorithm

Stud-GA is a slight modification of GA search which is
claimed to be as powerful as the original version [13]. Rather
than generating an initial population the search starts with an
initial solution or ‘stud’. The stud is then mutated to produce a
current population. An individual solution in the population is
also allowed to be changed by shuffling its bit positions with
a given probability. Afterwards, the best individual is selected
as the new stud. The procedure carries on until the optimum is
achieved.
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1 0  0 1
0 1  0 0
1 1  1 0
0 0  1 1
Corresponding
population

Probability
Vector #1
0.5 0.5 0.5 0.5

1 1  0 0
1 0  0 1
0 1  1 0
0 0  1 1
Corresponding
population

Probability
Vector #2
0.5 0.5 0.5 0.5

1 1  0 0
1 0  1 0
1 1  0 0
0 0  1 1
Corresponding
population

Probability
Vector #3
0.75 0.5 0.5 0.25

Fig. 6. Probability vectors and their corresponding populations in PBIL.

3.3. Population-based incremental learning

PBIL is an evolutionary method that has a completely differ-
ent basis from any evolutionary algorithm using binary codes.
Rather than memorising a set of design solutions and passing
them on to the next generation, the PBIL uses a so-called prob-
ability vector representing a population. The probability vector
is the vector having the same size as the number of bits of an
individual binary solution. The ith element of the probability
vector represents the probability of having ‘1’ on the ith bit of
the set of solutions. Fig. 6 depicts the sample of probability
vectors and their corresponding populations. Each row of the
population denotes a binary design solution. It is shown that
one probability vector can lead to various populations.

Starting with an initial probability vector whose elements
are full of ‘0.5’, a corresponding population is then created
and function evaluation is performed. The probability vector
is then updated based upon the learning rate and the strings
of the best individual. The vector can also be mutated with a
predefined probability to prevent premature convergence. The
vector is updated iteratively until reaching the optimum. For
more details, see [14].

3.4. Simulated annealing

SA can sometimes be classified as an evolutionary algorithm.
The method can be seen as mimicking the random behaviour
of molecules during an annealing process, which involves slow
cooling from a high temperature. As the temperature cools,
the atoms line themselves up and form a crystal, which is the
state of minimum energy in the system. As it is a universal
optimisation method, 1–0 binary coding can be applied. The
search procedure of SA is somewhat similar to the stud-GA
procedure in that it starts with an initial solution, which will be
called the parent. The parent is then mutated in some manner
leading to a set of children or offspring. The best offspring is
said to be a candidate to challenge its parent. For minimisation,
if the candidate has a lower objective value than that of the
parent, the parent is replaced by the candidate. In cases that
the candidate has a higher objective function value than its
parent, it still has a chance to replace the parent if accepted by
Boltzmann probability, and this makes SA different from the
stud-GA. Since on each loop the worse candidate may replace
its parent, the best solution and the parent may not be the same

solution. Therefore, the best individual on each loop should be
kept along with a parent ensuring that the best solution of the
search is not lost. One of the key factors of SA search is the
way to create children on each iteration. For more details of
SA, see [9,11,15,16].

4. Approximate density distribution

The numerical technique termed Approximate Density Dis-
tribution (ADD) aims to reduce the number of topological de-
sign variables without changing the number of finite elements
used. ADD exploits an application of surface spline interpo-
lation for approximating the finite element densities from the
given densities at some sampling points [17]. Fig. 7 shows
what are called sampling points (‘+’ sign) and the centres of
the rectangular elements (‘o’ sign).

From the rectangular design domain being meshed into n
elements as shown, let r0

j be the position vectors of m sampling
points and re

k be the position vectors of the centre points of the
n elements. The vector of densities at the centre points of the
elements are denoted by �e and the vector of densities at the
sampling points are denoted by �0. Density value at a particular

Fig. 7. Position vectors of sampling points and element centre points.

Fig. 8. Sampling points and element centre points.
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Fig. 9. Mapping of �0 and �e: Example 1.

Fig. 10. Mapping of �0 and �e: Example 2.

point r on the design domain can be estimated by using the
relation

�(r) =
m∑

j=1

bjf (d(r, r0
j )), (5)

where bj is the coefficient vector to be determined, f (d) is

called a radial basis function and d(r, r0
j )=

√
(r − r0

j )
T(r − r0

j )

is the distance between r and r0
j .

By using (5), densities at sampling points �0 can be computed
as

�0 = Ab, (6)

where A = [aij ]m×m = [f (d(r0
i , r0

j ))] and b = [bi]m×1.
Thus, the densities at the element centre points are

�e = Cb, (7)

where C = [ckj ]n×m = [f (d(re
k, r0

j ))].

Fig. 11. Mapping of �0 and �e: Example 3.

Solving (6) and (7) leads to the relation

�e = CA−1�0 = T�0. (8)

The radial basis function used in this work is

f (dij ) = 1 + dij + d2
ij + d3

ij . (9)

Eq. (8) is the transformation between �0 and �e. When used
with evolutionary algorithms, it is possible that the vector �e

calculated from (5) would still have intermediate density values,
which are undesirable. Thus, to prevent this, the computed �e

will be filtered by

�e
k =

{
�u

k; �e
k > 0.5,

�l
k otherwise.

(10)

By using the transformations (8) and (10), the new design
variables �0 can be treated to have a smaller size than the num-
ber of element densities. Fig. 8 displays a plot of 9×3 sampling
points (‘+’ sign) and 30 × 10 centre points of elements (‘o’
sign). Examples of mapping between �0 and �e are illustrated
in Figs. 9–12. In Fig. 9, it is shown that the density distribution
on the �e domain can form a connected structure even if den-
sity distribution on the �0 domain is disconnected. However,
there is no guarantee that the disconnected structures on the �0

domain will always result in one connected structure on the �e

domain. Figs. 10 and 11 demonstrate that different configura-
tions on the �0 domain can lead to similar structural config-
urations on the �e domain and this is an important feature in
improving the convergence consistency in randomising-based
methods. Fig. 12 shows a particular density distribution on the
9 × 5 sampling points and the transformed distribution on the
30×10 centre points. It is shown that the ADD technique helps
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Fig. 12. Mapping of �0 and �e: Example 4.

suppressing checkerboard patterns but cannot completely pre-
vent them. Nevertheless, the checkerboard penalty function can
be used to cope with this problem.

5. Test problems

Numerical experiments are conducted so that the effective-
ness of using design variables with ADD technique and the
classical 1–0 binary design variables can be observed and com-
pared. Note that for simplicity the original 1–0 binary design
variables will be called DSV1 whereas the design variables
used by the ADD technique will be called DSV2. The test
design problems are compliance minimisation of a cantilever
plate, Michell-type structure, 2D bridge and square plate with a
hole. Fig. 13 shows a cantilever plate made up of material hav-
ing Young’s modulus E = 200 × 109 N/m2 and Poisson’s ratio
�=0.3. The structure is loaded at the right-hand top corner. The
rectangular plate, discretised to 20×10 elements, has an aspect
ratio of L/H =2. Fig. 14 depicts the positions of r0

j and re
k (rep-

resented by ‘+’ and ‘o’ signs, respectively), which are used to
calculate the transformation between �0 and �e for this design

Design

domain

F

H

L

Fig. 13. Cantilever plate.

Fig. 14. Sampling points and element centre points of the cantilever plate.

Design

domain

F

H

L 

Fig. 15. Michell-type plate.

problem. DSV1 has 20 × 10 elements and DSV2 has 10 × 5
elements. The design problem of the plate is termed CASE1.

A half model of the Michell-type structure which is made
of the same material as the cantilever plate is illustrated
in Fig. 15. The structure has an aspect ratio of L/H = 3.
It is discretised to be 30 × 10 elements and loaded by the
external force at the left-hand top corner. The positions
of r0

j and re
k are displayed in Fig. 16. From the figure,

DSV1 has 30 × 10 elements whereas DSV2 has 15 × 7
elements. The design problem of this plate is called CASE2.
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Fig. 16. Sampling points and element centre points of the Michell-type plate.

Design
domain

F 

H

L

Maintained
region

Fig. 17. 2D bridge.

Fig. 18. Sampling points, element centre points and maintained elements of
the 2D bridge.

CASE3 is the optimisation of a 2D bridge under distributed
load as shown in Fig. 17. The bridge, with an aspect ratio
L/H = 3, is made of the same material as used in CASE1 and
CASE2. Fig. 18 displays the finite element model of the bridge
as well as 270 element centre points that are used as DSV1,
105 sampling points for DSV2 and 30 element centre points to
be unchanged.

Design CASE4 is the topological design of a square plate
with a hole as shown in Fig. 19. The structure is made up of
the same material as the previous structures. Fig. 20 shows the
finite element model and all the points used in design process.
There are 340 finite elements with the thickness of 28 elements
being maintained and the thickness of 312 elements being set
as DSV1. There are 96 sampling points assigned for DSV2 as
shown. It is shown in this case that the sampling points can be
placed outside the design domain.

Linear finite element analysis is applied to these four struc-
tures. Because it is the case of 2-dimentional structures, ele-

Design
domain

Fy

H

H

FxMaintained

region

Hole

Fig. 19. Plate with the hole.

Fig. 20. Sampling points, element centre points and maintained elements of
the plate with the hole.

ment thickness is used instead of element density. As a 4-node
quadrilateral membrane element is used, a checkerboard prob-
lem is expected to occur. Therefore, the checker board penalty
(4) is added to an objective function as in (3) where the weight-
ing factors are [w1, w2, w3]= [0.5, 8, 4]. Note that the weight-
ing factors are intuitively selected for benchmarking the effec-
tiveness of the proposed numerical technique. It is expected
to have some voids on an optimum topology. The functions
c(�) and V (�) are normalised by the values of c(1) and V (1),
respectively. The evolutionary methods employed here are as
follows:

• GA01: Genetic algorithm with 0.95 crossover probability,
0.05 mutation probability, 40 design solutions for a popula-
tion and 50 search iterations.
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Fig. 21. CASE1 design results from GAs and PBILs with DSV1.

Fig. 22. CASE1 design results from GAs and PBILs with DSV2.

• GA02: Genetic algorithm with 0.05 crossover probability,
0.95 mutation probability, 40 design solutions for a popula-
tion and 50 search iterations.

• GA03: Genetic algorithm with 0.95 crossover probability,
0.05 mutation probability, 20 design solutions for a popula-
tion and 100 search iterations.

• GA04: Genetic algorithm with 0.05 crossover probability,
0.95 mutation probability, 20 design solutions for a popula-
tion and 100 search iterations.

• PBIL01: Population-based incremental learning with 0.05
mutation probability, 40 design solutions for a population
and 50 search iterations.

• PBIL02: Population-based incremental learning with 0.05
mutation probability, 20 design solutions for a population
and 100 search iterations.

• Stud-GA01: Stud-genetic algorithm with 0.05 shuffling prob-
ability, 40 design solutions for a population and 50 search
iterations.
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Fig. 23. CASE1 normalised objective values from GAs and PBILs.

Fig. 24. CASE1 design results from stud-GAs and SAs with DSV1.

• Stud-GA02: Stud-genetic algorithm with 0.05 shuffling prob-
ability, 20 design solutions for a population and 100 search
iterations.

• SA01: Simulated annealing with mutation1, 40 cand-
idates being created on one loop and 50 search
iterations.

• SA02: SA01 with 20 candidates being created and 100 search
iterations.

• SA03: Simulated annealing with mutation2, 20 candidates
being created and 100 search iterations.

• SA04: Simulated annealing with mutation3, 20 candidates
created on each iteration and 100 search iterations.
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Fig. 25. CASE1 design results from stud-GAs and SAs with DSV2.

Fig. 26. CASE1 normalised objective values from stud-GAs and SAs.

Three mutation strategies of SAs can be detailed as:
mutation1—all of the children are generated from mutating a
parent, mutation2—most of the children are created by mutat-
ing their parent and a few children are randomly generated and
mutation3—half of the children are created by mutating their
parent while the other half are from mutating on the current

best solution. The initial temperature for SAs is 10 and the
final temperature is 0.001.

With the various evolutionary search strategies, the effective-
ness of crossover and mutation for structural topology optimi-
sation can be compared, the effect of population size and iter-
ation number on the optimum results can be investigated and a
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Fig. 27. Optimum topologies of CASE1 form using OCM.

comparison of the SA mutation strategies can be made. Each
method needs 2000 function evaluations for one operation. The
population size and number of loops are set for measuring the
performance of the methods; therefore, it is not guaranteed that
all the evolutionary methods will reach the real optimum with
those predefined parameters. For each design case, all of the
methods start with the same set of initial solutions, and they
are implemented to solve the design problem using both DSV1
and DSV2 for five attempts. The best solution of the last gen-
eration obtained from a particular method on each run is taken
as the optimum result. The convergence rate is measured by the
mean value of five optimum function values. The search con-
sistency can be measured by the standard deviation of the five
objective values but a more reliable factor is the similarity of
the five topologies.

6. Numerical results

The optimum results of CASE1 obtained from using GAs
and PBILs with DSV1 are displayed in Fig. 21. Fig. 22 shows
the results of CASE1 from using GAs and PBILs with DSV2.
Most of the topologies shown in Fig. 22 are better than the
topologies shown in Fig. 21. Fig. 23 is a bar chart illustra-
tion of the optimum objective values of the topologies in Figs.
21 and 22. Each bar group consists of five optimum objec-
tive values, the average and the standard deviation of the five
objective values. Note that all the objective values are nor-

malised to the range of [0, 1] to ease in illustration and com-
parison. The optimum topologies of CASE1 obtained from us-
ing stud-GAs and SAs with DSV1 and DSV2 are illustrated in
Figs. 24 and 25, respectively. The bar chart of the objective
values of the topologies in Figs. 24 and 25 is displayed in
Fig. 26. With the exception of stud-GA01, the results from us-
ing stud-GA02 and all SAs with DSV1 are better than those
obtained from using their counterparts with DSV2. In terms of
convergence rate, SA04 with DSV1 is the best while the sec-
ond best is SA03 with DSV1. The worst method is GA01 with
DSV1. When considering the similarity of the five plate con-
figurations obtained from each method, SA04 and SA01 with
DSV2 give the best consistency. Fig. 27 shows the optimum
topologies from solving the design problem (2) using the op-
timality criteria method (OCM) where the mass reduction ra-
tio, r, is 40%, 50% and 60%. It is shown that the topologies
from using OCM are similar to some of the topologies from
using DSV2.

The optimum results of CASE2 design problem from us-
ing GAs and PBILs with DSV1 and DSV2 are displayed in
Figs. 28 and 29, respectively. The bar chart of the normalised
objective values of the resulting topologies is illustrated in
Fig. 30. Fig. 31 shows the optimum topologies obtained from
stud-GAs and SAs with DSV1 whereas the optimum topolo-
gies from using the methods with DSV2 are depicted in Fig. 32.
The bar chart of their corresponding normalised objective val-
ues is shown in Fig. 33. For this design case, the results from
all 12 methods with DSV2 are improved compared to their
counterparts that use DSV1. SA04 with DSV2 gives the best
convergence rate while the second best is SA02 with DSV2.
The worst is PBIL02 with DSV1. According to Figs. 28, 29, 31
and 32, the most consistent methods are SA03 and SA04. The
optimum topologies of the beam from solving the constrained
problem (2) using OCM with reduction ratios as 40%, 50% and
60% are displayed in Fig. 34, which are somewhat similar to
some of those shown in Fig. 32.

The optimum topologies of the 2D bridge CASE3 from us-
ing GAs and PBILs with DSV1 and DSV2 are illustrated in
Figs. 35 and 36. The bar chart illustration of the correspond-
ing normalized objective function values is shown in Fig. 37.
The optimum topologies of the bridge obtained from employ-
ing stud-GAs and SAs with the use of DSV1 and DSV2 are
depicted in Figs. 38. and 39. The bar chart of their normalised
objective values is shown in Fig. 40. Similarly to CASE2, the
results from using all of the optimisation methods with DSV2
are better than those from using their counterparts with DSV1.
The method that gives the best convergence rate is SA04 with
DSV2 while the second best is SA02 with DSV2. The method
that gives the worst convergence rate is GA01 with DSV1. The
most consistent method is SA04 with DSV2. Fig. 41 displays
the optimum topologies of the bridge obtained from solving the
design problem (2) using OCM. The topologies are comparable
to most of those shown in Fig. 39.

The topologies shown in Figs. 42 and 43 are from optimising
CASE4 using GAs and PBILs with DSV1 and DSV2 while the
bar chart of the objective values is shown in Fig. 44. Figs. 45
and 46 show the optimum topologies of CASE4 obtained from
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Fig. 28. CASE2 design results from GAs and PBILs with DSV1.

Fig. 29. CASE2 design results from GAs and PBILs with DSV2.

using stud-GAs and SAs with DSV1 and DSV2. In Fig. 47,
the bar chart of the objective values of the topologies is dis-
played. Similarly to CASE2 and CASE3, all the optimisa-
tion methods using DSV2 have better convergence rate than
their counterparts using DSV1. The best method considering
convergence rate is SA03 with DSV2 while the second best
is stud-GA01 with DSV2. The most consistent method, ac-
cording to the similarity of the configurations using five at-
tempts, is SA02 with DSV2. Fig. 48 displays the optimum
topologies of the structure in CASE4 from using OCM. It can
be said that some of the topologies in Fig. 43 and most of
the topologies in Fig. 46 are comparable to those from using
the OCM.

When considering all design cases and conditions, GA with
crossover as the main operator is inferior to one that uses mu-
tation as the main operator. The smaller population size and
larger iteration number lead to better design results when ap-
plied to GAs. The same can be said of SA01 versus SA02 except
for CASE1 with the use of DSV2. For stud-GAs using DSV1,
the smaller population size and greater iteration number result

in better design topologies. In contrast, for PBIL search, the
resulting topologies are worsened when using smaller popula-
tion size and larger iteration number with exception of CASE3
using DSV2.

7. Conclusions, discussion and future work

For both DSV1 and DSV2 implementation, SAs are su-
perior to the other evolutionary methods in terms of conver-
gence rate whereas the second best is stud-GAs. The results
obtained from using SAs with DSV2 are said to be com-
parable to those obtained from using the OCM. Among the
SA02, SA03 and SA04, their performances are equally good,
although SA04 is slightly better in most cases. It can be con-
cluded that the mutation operator is superior to the crossover
operator in the topological design of plates as all of the
optimisation methods that use mutation as the main evolu-
tionary operator can search for better topologies than those
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Fig. 30. CASE2 normalised objective values from GAs and PBILs.

Fig. 31. CASE2 design results from stud-GAs and SAs with DSV1.

Fig. 32. CASE2 design results from stud-GAs and SAs with DSV2.
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Fig. 33. CASE2 normalised objective values from stud-GAs and SAs.

obtained from crossover-dominated GAs. Each time that mu-
tation takes place, it can be best thought of as either digging
a plate or filling a hole, and this makes the mutation more
suitable for topological design. The other form of evolution-
ary method, PBIL, has a fairly good convergence rate. The re-
duction of population size can weaken its search performance.
The search performance of GAs and SAs can be enhanced if a
smaller population size and greater iteration number are used.
For the main investigation in this work, using DSV2 or design
variables with the application of the ADD technique can en-
hance both convergence rate and consistency of all of the evo-
lutionary methods with the exception of the convergence rate
of SAs in CASE1. With 200 variables of DSV1, which is not
a really large scale problem, SAs can reach the optimum using
DSV1 with 2000 function evaluations. The optimum objective
value of higher resolution DSV1 is normally better than that
of the lower resolution DSV2, and this causes SAs with DSV1
to have better convergence rate than SAs with DSV2 in the
design CASE1. The advantages of using a mutation-based evo-
lutionary algorithm with the ADD technique are that it can be
applied to all kinds of topology design problem, evaluation of
function derivative is not required, and the optimum topology
without intermediate can be achieved using the method. The
disadvantage is that it still has slow convergence when com-
pared to some classical gradient-based approach.

Some further improvement can be made. As seen from
some of the resulting topologies, there are some floating
bits that cannot be prevented by the checkerboard penalty.
This problem occurs due to using a random-based muta-
tion operator. A new mutation operator could be developed

Fig. 34. Optimum topologies of CASE2 using OCM.

in such a way that floating bits on a mutated solution can be
avoided. Moreover, the weighting factors used in (5) for a par-
ticular design problem will have to be selected based upon
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Fig. 35. CASE3 design results from GAs and PBILs with DSV1.

Fig. 36. CASE3 design results from GAs and PBILs with DSV2.

Fig. 37. CASE3 normalised objective values from GAs and PBILs.



562 S. Bureerat, J. Limtragool / Finite Elements in Analysis and Design 42 (2006) 547–566

Fig. 38. CASE3 design results from stud-GAs and SAs with DSV1.

Fig. 39. CASE3 design results from stud-GAs and SAs with DSV2.

Fig. 40. CASE3 normalised objective values from stud-GAs and SAs.
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Fig. 41. Optimal topologies of CASE3 from using OCM.

Fig. 42. CASE4 design results from GAs and PBILs with DSV1.

Fig. 43. CASE4 design results from GAs and PBILs with DSV2.
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Fig. 44. CASE4 normalised objective values from GAs and PBILs.

Fig. 45. CASE4 design results from stud-GAs and SAs with DSV1.
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Fig. 46. CASE4 design results from stud-GAs and SAs with DSV2.

Fig. 47. CASE4 normalised objective values from stud-GAs and SAs.
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Fig. 48. Optimum topologies of CASE4 from using OCM.

designer experience. The better approach could be to use a
multi-objective evolutionary optimiser (having mutation as the
main operator) so that multiple aspects of topologies can be
obtained within a single run of the method and the problem of
selecting weighting factors would be avoided.
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