MAS1006

UNIVERSITY OF EXETER

SCHOOL OF MATHEMATICAL SCIENCES

ADVANCED CALCULUS

4 June 1999 2:15 p.m. – 5:15 p.m. Duration: 3 hours

Examiner: Dr J. Brodzki

The marks from Section A (40%) and the best THREE questions in Section B (20% for each) will be recorded.

Marks shown in questions are merely a guideline.

Approved calculators of the following type may be used Casio fx82 series, Sharp EL521 or EL531 Series and Texas TI-30X or TI-36X.

SECTION A

1. (a) Find the general solution of each of the following ordinary differential equations:

$$(i) \frac{dy}{dx} - xy = xe^{x^2}; (6)$$

(ii)
$$x^2 + y^2 = 2xy\frac{dy}{dx};$$
 (6)

(ii)
$$x^{2} + y^{2} = 2xy \frac{dy}{dx};$$
 (6)
(iii)
$$\frac{y}{x} \frac{dy}{dx} = \frac{1+x}{1+y}.$$
 (5)

(b) Evaluate the limit

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{\ln x} \right) . \tag{5}$$

- (c) Evaluate the gradient, ∇f , of the function $f(x,y) = y^2 \ln x$. Find its directional derivative at the point (1,4) in the direction of the vector $\mathbf{a} = -3\mathbf{i} + 3\mathbf{j}$. (5)
- (d) Find the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{5^n n} \,. \tag{4}$$

(e) Find dz/dx given that

$$z = \int_0^{\sqrt{x}} \sin t^2 dt \ . \tag{4}$$

(f) Using the binomial series, or otherwise, obtain the Maclaurin series for f(x) = $1/(1+x^2)$. Use this series to obtain the Maclaurin series for $\tan^{-1} x$. (5)

[40]

SECTION B

(a) Find the general solution of each of the following ordinary differential equations:

(i)
$$y'' - 3y' + 2y = xe^{3x}$$
; (5)

(ii)
$$y'' + 9y = \sin 3x$$
. (6)

(b) Test each of the following series for convergence. State clearly which tests you

(i)
$$\sum_{n=2}^{\infty} \frac{(\ln n)^2}{n^{3/2}}$$
;

(ii)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$
;

(iii)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^3 2^n}$$
 . (9)

(a) Does the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/2}}$$

converge? Does it converge absolutely? Justify your answers.

(6)(b) Show that if z = x + f(u), where u = xy, then

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = x.$$

(4)

(c) Given that w = f(u, v), where $u = (x^2 - y^2)/2$ and v = xy, obtain expressions for the operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$. Show that

$$w_{xx} + w_{yy} = (x^2 + y^2)(f_{uu} + f_{vv}).$$

(10)

[20]

4. (a) Find and classify the critical points of the function

$$f(x,y) = 4xy - x^4 - y^4.$$

(8)

(b) Evaluate the integral

$$\int_0^1 \int_0^{2-x} \int_0^{2-x-y} dz dy dx \ .$$

(5)

(c) Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the triangle in the (x, y)-plane enclosed by the lines y = x, x = 0, x + y = 2.

(7) [**20**]

- 5. (a) Find the maximal and minimal values of the function $f(x,y) = x^2 + y^2$ on the curve $x^2 + xy + y^2 = 1$. (8)
 - (b) Reverse the order of integration to evaluate the integral

$$\int_0^1 \int_y^1 x^2 e^{xy} \, dx dy \; .$$

(5)

(c) Change the cartesian coordinates to polar coordinates to evaluate the integral

$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \ln(x^2 + y^2 + 1) dx dy.$$

(7) [**20**]