MAS1006

UNIVERSITY OF EXETER

SCHOOL OF MATHEMATICAL SCIENCES

ADVANCED CALCULUS

The marks from Section A (40\%) and the best THREE questions in Section B (20\% for each) will be recorded.

Marks shown in questions are merely a guideline. Approved calculators of the following type may be used Casio fx82 series, Sharp EL521 or EL531 Series and Texas TI-30X or TI-36X.

SECTION A

1. (a) Find the general solution of each of the following ordinary differential equations:
(i) $\frac{d y}{d x}-x y=x e^{x^{2}}$;
(ii) $x^{2}+y^{2}=2 x y \frac{d y}{d x}$;
(iii) $\frac{y}{x} \frac{d y}{d x}=\frac{1+x}{1+y}$.
(b) Evaluate the limit

$$
\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)
$$

(c) Evaluate the gradient, ∇f, of the function $f(x, y)=y^{2} \ln x$. Find its directional derivative at the point $(1,4)$ in the direction of the vector $\mathbf{a}=-3 \mathbf{i}+3 \mathbf{j}$.
(d) Find the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{5^{n} n} \tag{4}
\end{equation*}
$$

(e) Find $d z / d x$ given that

$$
\begin{equation*}
z=\int_{0}^{\sqrt{x}} \sin t^{2} d t \tag{4}
\end{equation*}
$$

(f) Using the binomial series, or otherwise, obtain the Maclaurin series for $f(x)=$ $1 /\left(1+x^{2}\right)$. Use this series to obtain the Maclaurin series for $\tan ^{-1} x$.

SECTION B

2. (a) Find the general solution of each of the following ordinary differential equations:
(i) $y^{\prime \prime}-3 y^{\prime}+2 y=x e^{3 x}$;
(ii) $y^{\prime \prime}+9 y=\sin 3 x$.
(b) Test each of the following series for convergence. State clearly which tests you are using.
(i) $\sum_{n=2}^{\infty} \frac{(\ln n)^{2}}{n^{3 / 2}}$;
(ii) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$;
(iii) $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3} 2^{n}}$.
3. (a) Does the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 2}} \tag{6}
\end{equation*}
$$

converge? Does it converge absolutely? Justify your answers.
(b) Show that if $z=x+f(u)$, where $u=x y$, then

$$
\begin{equation*}
x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=x . \tag{4}
\end{equation*}
$$

(c) Given that $w=f(u, v)$, where $u=\left(x^{2}-y^{2}\right) / 2$ and $v=x y$, obtain expressions for the operators $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$. Show that

$$
\begin{equation*}
w_{x x}+w_{y y}=\left(x^{2}+y^{2}\right)\left(f_{u u}+f_{v v}\right) . \tag{10}
\end{equation*}
$$

4. (a) Find and classify the critical points of the function

$$
\begin{equation*}
f(x, y)=4 x y-x^{4}-y^{4} . \tag{8}
\end{equation*}
$$

(b) Evaluate the integral

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} d z d y d x \tag{5}
\end{equation*}
$$

(c) Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the triangle in the (x, y)-plane enclosed by the lines $y=x, x=0, x+y=2$.
5. (a) Find the maximal and minimal values of the function $f(x, y)=x^{2}+y^{2}$ on the curve $x^{2}+x y+y^{2}=1$.
(b) Reverse the order of integration to evaluate the integral

$$
\begin{equation*}
\int_{0}^{1} \int_{y}^{1} x^{2} e^{x y} d x d y \tag{5}
\end{equation*}
$$

(c) Change the cartesian coordinates to polar coordinates to evaluate the integral

$$
\begin{equation*}
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(x^{2}+y^{2}+1\right) d x d y \tag{7}
\end{equation*}
$$

