MAS1006

UNIVERSITY OF EXETER

SCHOOL OF MATHEMATICAL SCIENCES

ADVANCED CALCULUS

The marks from Section A (40\%) and the best THREE questions in Section B (20\% for each) will be recorded.

Marks shown in questions are merely a guideline. Approved calculators of the following type may be used Casio fx-83wa series, Sharp EL521 or EL531 Series and Texas TI-30X or TI-36X.

SECTION A

1. (a) Find the general solution of each of the following ordinary differential equations:
(i) $e^{y}\left(1+x^{2}\right) \frac{d y}{d x}-2 x\left(1+e^{y}\right)=0$;
(ii) $(x+y) \frac{d y}{d x}-y=0$;
(iii) $\frac{d y}{d x}-2 x y=x-x^{3}$.
(b) Define what it means for a sequence $\left\{a_{n}\right\}$ of real numbers to converge to the limit L.
(c) Find the Maclaurin series for $f(x)=1 /(1+x)$ using the definition of the Maclaurin series. Use your result to obtain the Maclaurin series for $\ln (1+x)$.
(d) Determine whether the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}+1} \tag{3}
\end{equation*}
$$

converges or diverges.
(e) Show that the function $u(x, y)=e^{x} \sin y$ satisfies the partial differential equation:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 . \tag{5}
\end{equation*}
$$

(f) Evaluate the limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{3 x}-3 x-1}{\sin ^{2} 5 x} \tag{4}
\end{equation*}
$$

SECTION B

2. (a) Find the general solution of each of the following ordinary differential equations:
(i) $y^{\prime \prime}-4 y=8 e^{2 x}$;
(ii) $y^{\prime \prime}-2 y^{\prime}+2 y=2 \cos x+\sin x$.
(b) Test each of the following series for convergence. State clearly which tests you are using.
(i) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$;
(ii) $\sum_{n=1}^{\infty} \frac{n \ln n}{2^{n}}$
(c) Does the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \tag{5}
\end{equation*}
$$

converge? Does it converge absolutely?
3. (a) Find the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 x)^{n}}{\sqrt{n+1}} \tag{5}
\end{equation*}
$$

(b) Sketch the level curves of the function $f(x, y)=6-3 x-2 y$.
(c) Find the gradient of the function $f(x, y)=x^{2} y^{3}-4 y$. Find the directional derivative of f at the point $(2,-1)$ in the direction of the vector $\mathbf{v}=2 \mathbf{i}+5 \mathbf{j}$.
(d) Let $u=f(x, y)$ where $x=e^{s} \cos t, y=e^{s} \sin t$. Show that

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=e^{-2 s}\left[\left(\frac{\partial u}{\partial s}\right)^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}\right] \tag{6}
\end{equation*}
$$

4. (a) Find and classify the critical points of the function:

$$
\begin{equation*}
f(x, y)=x y e^{-\left(x^{2}+y^{2}\right) / 2} . \tag{8}
\end{equation*}
$$

(b) Evaluate the integral

$$
\begin{equation*}
\iint_{T}\left(x^{2} y+y^{2}\right) d A \tag{6}
\end{equation*}
$$

over the triangle T with vertices $(0,0),(1,0)$ and $(1,1)$.
(c) Sketch the region of integration in the iterated integral

$$
\begin{equation*}
I=\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x \tag{6}
\end{equation*}
$$

Reverse the order of integration and evaluate the integral I.
5. (a) Find the minimal value of the function $f(x, y)=x^{2}+y^{2}$ on the curve $x^{2} y=16$.
(b) Find the volume of the solid that lies under the plane $z=1+y$ and above the region D in the (x, y)-plane bounded by lines $y=0$ and $y=1-x^{2}$.
(c) Let R be the region in the first quadrant of the (x, y)-plane bounded by the circles $x^{2}+y^{2}=1, x^{2}+y^{2}=4$ and the lines $y=0$ and $y=x$. Evaluate the integral

$$
\begin{equation*}
\iint_{R} \frac{y^{2}}{x^{2}} d A \tag{6}
\end{equation*}
$$

by changing from cartesian coordinates to polar coordinates.

