
Analysis: Problem sheet 1

Assignment 1 consists of questions 2, 5, 7, 9, 15, 18(b,c,f), 19, 21,
22(c,e,h,j,l), 23; it is due in on 10 November 2011 [marks are indicated in
square brackets]

1. In each case, decide whether the set A has an upper bound and whether
it has a lower bound. If it has an upper bound determine the least upper
bound and whether this is the greatest element of A, Likewise if it has
a lower bound, determine the greatest lower bound and whether this is
the least element of A:

(a) A = {x ∈ R : −1 < x ≤ 1};
(b) A = {(−1)n/n : n ∈ N};
(c) A = {n+ (−1)n/n : n ∈ N};
(d) A = {x ∈ R : x2 − 4x+ 3 < 0}.

2. Prove that if x2 is irrational, then x is irrational. Hence prove that√
3 +
√

5 is irrational. (You may assume that if n ∈ N isn’t a square
then

√
n is irrational). [5]

3. Is it always true that if x and y are irrational then x+y is also irrational?
What about xy?

4. Let A and B be two sets of real numbers, and suppose that A has least
upper bound α and B has least upper bound β. Prove that the set
A+B defined by

A+B = {a+ b : a ∈ A, b ∈ B}

has least upper bound α+ β. (Hint: first show that α+ β is an upper
bound of A+B, and then show that if γ < α+ β then there are a ∈ A
and b ∈ B with γ < a+ b.)

But if we define
AB = {ab : a ∈ A, b ∈ B}

show, by example, that AB need not have an upper bound, and even
if it does, its least upper bound might not equal αβ.

5. Let A be a non-empty set of positive real numbers. Defining

A−1 = {a−1 : a ∈ A}

prove that if A has least upper bound α then A−1 has greatest lower
bound α−1. [5]



6. Let us define a sequence of numbers a1, a2, . . . by a1 = 3, a2 = 3 and
an = an−1+2an−2 for n ≥ 3. Prove, by induction, that an = 2n−(−1)n.

7. Prove, by induction, that

n∑
k=1

kxk = x+ 2x2 + 3x3 + · · ·+ nxn =
x− (n+ 1)xn+1 + nxn+2

(1− x)2

(as long as x 6= 1). [5]

8. Prove, by induction, that if 0 < x < y then xn < yn for all n ∈ N.

9. Prove, by induction, that if 0 < x < 1 then (1 − x)n ≥ 1 − nx for all
n ∈ N. [5]

10. The triangle inequality states that

|x+ y| ≤ |x|+ |y|

for all real numbers x and y. Prove it.

Using the triangle inequality, prove, by induction, that

|x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|

for all real numbers x1, . . . , xn.

Also, prove that
|x+ y| ≥ |x| − |y|.

11. Prove that if x and y are real numbers with x < y then there is an
irrational number α with x < α < y. (Hint: I think it’s easier
to exploit the corresponding result for rationals then to prove from
scratch.)

12. In the lectures, in the proof that
√

2 exists, I used the fact that if
α2 > 2 and α > 0 then β = 1

2
(α+ 2/α) satisfied 0 < β < α and β2 > 2.

Suppose I wanted to prove the existence of
√

3 instead. How should I
define β to ensure that if α2 > 3 and α > 0 then 0 < β < α and β2 > 3:
as (a) β = 1

2
(α + 2/α), (b) β = 1

3
(α + 3/α) or (c) β = 1

2
(α + 3/α)?

Hence give a proof that there is a positive real solution of x2 = 3.

13. Let (an) be a sequence of nonzero real numbers. Prove that if an →∞
(or if an → −∞) then the sequence (1/an) converges to 0.

If (bn) is a sequence of nonzero real numbers converging to 0, it is
necessarily true that 1/bn →∞ or that 1/bn → −∞?



14. Let (an) and (bn) be sequences converging to a and b respectively. Prove
that the sequence (an − bn) converges to a− b.

15. The “squeezing” or “sandwich” principle asserts that if (an), (bn) and
(cn) are three sequences of real numbers satisfying an ≤ bn ≤ cn for all
n and if (an) and (cn) both converge to the same limit L, then (bn) also
converges to L. Prove it. [10]

16. Let (an) be an increasing sequence that is not bounded above. Prove
that an →∞ as n→∞.

17. Prove that a convergent sequence has a unique limit. That is, if (an)
converges both to a and to b, then a = b. (Hint: if not assume that
a 6= b and prove that for each ε > 0 then (an) is eventually ε-close to
both a and b, but that there is a value of ε for which this is impossible.)

18. Determine whether each the following sequences (an) are convergent.
When so, determine their limit, when not determine whether they tend
to ∞ or to −∞:

(a) an =
n3 cos(nπ/4)

n4 + 1
; (b) an =

n3 cos(nπ/4)

n3 + 1
[5];

(c) an =
n− cosn√
n2 + 1

[5]; (d) an = cos(1/n3);

(e) an =
1√

n2 + 1− n
; (f) an =

2n2 + n sinn

n2 + ne−n + cosn
[5].

(You may use the fact that, which I haven’t yet proved in lectures, that
if (bn) is a sequence of positive terms and bn → b then

√
bn →

√
b.)

19. Let us define the sequence (an) by a1 = 3 and an+1 = 1
2
(an + 3/an) for

n ≥ 1. Prove that (an) is decreasing and is bounded below. Also find
limn→∞ an, justifying your answer. [10]

20. Let us define the sequence (an) by a1 = 1 and an+1 =
√

1 + a2n/3 for

n ≥ 1. Prove that a2n < 3/2 and a2n+1 > a2n for all n. Deduce that (an)
is convergent, and find its limit.

21. Let us define the sequence (an) by a1 = 0 and

an+1 =
3an + 1

an + 2

for n ≥ 1. Prove that 0 ≤ an < 3 and that an+1 > an for all n. Deduce
that (an) is convergent, and find its limit. [10]



22. Determine whether each of the following series are convergent:

(a)
∞∑
n=0

2n− 1

n2 + 2
; (b)

∞∑
n=1

2n − 1

3n − 2n
; (c)

∞∑
n=1

log n

n
; [5]

(d)
∞∑
n=0

999nn1000

1000n
; (e)

∞∑
n=0

2nn3 + 3n

3nn+ 2n
[5]; (f)

∞∑
n=2

(−1)n
n

n− 1
;

(g)
∞∑
n=1

(−1)n√
n

; (h)
∞∑
n=1

sin((−1)n/n) [5]; (i)
∞∑
n=1

sin(1/n);

(j)
∞∑
n=0

20n
(n!)3

(3n)!
[5]; (k)

∞∑
n=0

2nn!

nn
; (l)

∞∑
n=0

3nn!

nn
[5].

(You may use the fact, which I haven’t proved yet in lectures, that
limn→∞(1 + n−1)n) = e.

23. Theorems have hypotheses!

Give an example of a divergent alternating series
∑∞
n=1(−1)n−1an

where each an > 0 and (an) is decreasing. [5]

Give an example of a divergent alternating series
∑∞
n=1(−1)n−1bn

where each bn > 0 and bn → 0. [5]

24. The Cauchy condensation test states that:

Let (an) be a decreasing sequence of positive numbers.
Then

∑∞
n=1 an converges if and only if

∑∞
m=1 2ma2m converges.

Use the Cauchy condensation test to determine for which positive real
numbers α is the series ∞∑

n=2

1

n(log n)α

convergent.
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