Analysis: Problem sheet 1

Assignment 1 consists of questions 2, 5, 7, 9, 15, 18(b,c,f), 19, 21, 22(c,e,h,j,l), 23; it is due in on 10 November 2011 [marks are indicated in square brackets]

- 1. In each case, decide whether the set A has an upper bound and whether it has a lower bound. If it has an upper bound determine the least upper bound and whether this is the greatest element of A, Likewise if it has a lower bound, determine the greatest lower bound and whether this is the least element of A:
 - (a) $A = \{x \in \mathbf{R} : -1 < x \le 1\};$
 - (b) $A = \{(-1)^n/n : n \in \mathbf{N}\};$
 - (c) $A = \{n + (-1)^n / n : n \in \mathbf{N}\};$
 - (d) $A = \{x \in \mathbf{R} : x^2 4x + 3 < 0\}.$
- 2. Prove that if x^2 is irrational, then x is irrational. Hence prove that $\sqrt{3} + \sqrt{5}$ is irrational. (You may assume that if $n \in \mathbb{N}$ isn't a square then \sqrt{n} is irrational).
- 3. Is it always true that if x and y are irrational then x+y is also irrational? What about xy?
- 4. Let A and B be two sets of real numbers, and suppose that A has least upper bound α and B has least upper bound β . Prove that the set A+B defined by

$$A + B = \{a + b : a \in A, b \in B\}$$

has least upper bound $\alpha + \beta$. (Hint: first show that $\alpha + \beta$ is an upper bound of A + B, and then show that if $\gamma < \alpha + \beta$ then there are $a \in A$ and $b \in B$ with $\gamma < a + b$.)

But if we define

$$AB = \{ab : a \in A, b \in B\}$$

show, by example, that AB need not have an upper bound, and even if it does, its least upper bound might not equal $\alpha\beta$.

5. Let A be a non-empty set of **positive** real numbers. Defining

$$A^{-1} = \{a^{-1} : a \in A\}$$

prove that if A has least upper bound α then A^{-1} has greatest lower bound α^{-1} . [5]

- 6. Let us define a sequence of numbers a_1, a_2, \ldots by $a_1 = 3$, $a_2 = 3$ and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Prove, by induction, that $a_n = 2^n (-1)^n$.
- 7. Prove, by induction, that

$$\sum_{k=1}^{n} kx^{k} = x + 2x^{2} + 3x^{3} + \dots + nx^{n} = \frac{x - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^{2}}$$

(as long as $x \neq 1$). [5]

- 8. Prove, by induction, that if 0 < x < y then $x^n < y^n$ for all $n \in \mathbf{N}$.
- 9. Prove, by induction, that if 0 < x < 1 then $(1-x)^n \ge 1 nx$ for all $n \in \mathbb{N}$.
- 10. The triangle inequality states that

$$|x+y| \le |x| + |y|$$

for all real numbers x and y. Prove it.

Using the triangle inequality, prove, by induction, that

$$|x_1 + \dots + x_n| \le |x_1| + \dots + |x_n|$$

for all real numbers x_1, \ldots, x_n .

Also, prove that

$$|x+y| > |x| - |y|.$$

- 11. Prove that if x and y are real numbers with x < y then there is an **irrational** number α with $x < \alpha < y$. (Hint: I think it's easier to exploit the corresponding result for rationals then to prove from scratch.)
- 12. In the lectures, in the proof that $\sqrt{2}$ exists, I used the fact that if $\alpha^2 > 2$ and $\alpha > 0$ then $\beta = \frac{1}{2}(\alpha + 2/\alpha)$ satisfied $0 < \beta < \alpha$ and $\beta^2 > 2$. Suppose I wanted to prove the existence of $\sqrt{3}$ instead. How should I define β to ensure that if $\alpha^2 > 3$ and $\alpha > 0$ then $0 < \beta < \alpha$ and $\beta^2 > 3$: as (a) $\beta = \frac{1}{2}(\alpha + 2/\alpha)$, (b) $\beta = \frac{1}{3}(\alpha + 3/\alpha)$ or (c) $\beta = \frac{1}{2}(\alpha + 3/\alpha)$? Hence give a proof that there is a positive real solution of $x^2 = 3$.
- 13. Let (a_n) be a sequence of nonzero real numbers. Prove that if $a_n \to \infty$ (or if $a_n \to -\infty$) then the sequence $(1/a_n)$ converges to 0.

If (b_n) is a sequence of nonzero real numbers converging to 0, it is necessarily true that $1/b_n \to \infty$ or that $1/b_n \to -\infty$?

- 14. Let (a_n) and (b_n) be sequences converging to a and b respectively. Prove that the sequence $(a_n b_n)$ converges to a b.
- 15. The "squeezing" or "sandwich" principle asserts that if (a_n) , (b_n) and (c_n) are three sequences of real numbers satisfying $a_n \leq b_n \leq c_n$ for all n and if (a_n) and (c_n) both converge to the same limit L, then (b_n) also converges to L. Prove it.
- 16. Let (a_n) be an increasing sequence that is not bounded above. Prove that $a_n \to \infty$ as $n \to \infty$.
- 17. Prove that a convergent sequence has a **unique** limit. That is, if (a_n) converges both to a and to b, then a = b. (Hint: if not assume that $a \neq b$ and prove that for each $\varepsilon > 0$ then (a_n) is eventually ε -close to both a and b, but that there is a value of ε for which this is impossible.)
- 18. Determine whether each the following sequences (a_n) are convergent. When so, determine their limit, when not determine whether they tend to ∞ or to $-\infty$:

(a)
$$a_n = \frac{n^3 \cos(n\pi/4)}{n^4 + 1}$$
; (b) $a_n = \frac{n^3 \cos(n\pi/4)}{n^3 + 1}$ [5];

(c)
$$a_n = \frac{n - \cos n}{\sqrt{n^2 + 1}}$$
 [5]; (d) $a_n = \cos(1/n^3)$;

(e)
$$a_n = \frac{1}{\sqrt{n^2 + 1} - n}$$
; (f) $a_n = \frac{2n^2 + n\sin n}{n^2 + ne^{-n} + \cos n}$ [5].

(You may use the fact that, which I haven't yet proved in lectures, that if (b_n) is a sequence of positive terms and $b_n \to b$ then $\sqrt{b_n} \to \sqrt{b}$.)

- 19. Let us define the sequence (a_n) by $a_1 = 3$ and $a_{n+1} = \frac{1}{2}(a_n + 3/a_n)$ for $n \ge 1$. Prove that (a_n) is decreasing and is bounded below. Also find $\lim_{n\to\infty} a_n$, justifying your answer. [10]
- 20. Let us define the sequence (a_n) by $a_1 = 1$ and $a_{n+1} = \sqrt{1 + a_n^2/3}$ for $n \ge 1$. Prove that $a_n^2 < 3/2$ and $a_{n+1}^2 > a_n^2$ for all n. Deduce that (a_n) is convergent, and find its limit.
- 21. Let us define the sequence (a_n) by $a_1 = 0$ and

$$a_{n+1} = \frac{3a_n + 1}{a_n + 2}$$

for $n \ge 1$. Prove that $0 \le a_n < 3$ and that $a_{n+1} > a_n$ for all n. Deduce that (a_n) is convergent, and find its limit. [10]

22. Determine whether each of the following series are convergent:

(a)
$$\sum_{n=0}^{\infty} \frac{2n-1}{n^2+2}$$
; (b) $\sum_{n=1}^{\infty} \frac{2^n-1}{3^n-2^n}$; (c) $\sum_{n=1}^{\infty} \frac{\log n}{n}$; [5]

(d)
$$\sum_{n=0}^{\infty} \frac{999^n n^{1000}}{1000^n}$$
; (e) $\sum_{n=0}^{\infty} \frac{2^n n^3 + 3^n}{3^n n + 2^n}$ [5]; (f) $\sum_{n=2}^{\infty} (-1)^n \frac{n}{n-1}$;

(g)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
; (h) $\sum_{n=1}^{\infty} \sin((-1)^n/n)$ [5]; (i) $\sum_{n=1}^{\infty} \sin(1/n)$;

(j)
$$\sum_{n=0}^{\infty} 20^n \frac{(n!)^3}{(3n)!}$$
 [5]; (k) $\sum_{n=0}^{\infty} \frac{2^n n!}{n^n}$; (l) $\sum_{n=0}^{\infty} \frac{3^n n!}{n^n}$ [5].

(You may use the fact, which I haven't proved yet in lectures, that $\lim_{n\to\infty}(1+n^{-1})^n)=e$.

23. Theorems have hypotheses!

Give an example of a **divergent** alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ where each $a_n > 0$ and (a_n) is decreasing. [5]

Give an example of a **divergent** alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ where each $b_n > 0$ and $b_n \to 0$. [5]

24. The Cauchy condensation test states that:

Let (a_n) be a decreasing sequence of positive numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{m=1}^{\infty} 2^m a_{2^m}$ converges.

Use the Cauchy condensation test to determine for which positive real numbers α is the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}}$$

convergent.

RJC 30/9/2011