Analysis: Problem sheet 1

Assignment 1 consists of questions 2, 5, 7, 9, 15, 18(b, c,f), 19, 21, 22(c, e, h, j, l), 23; it is due in on 10 November 2011 [marks are indicated in square brackets]

1. In each case, decide whether the set A has an upper bound and whether it has a lower bound. If it has an upper bound determine the least upper bound and whether this is the greatest element of A, Likewise if it has a lower bound, determine the greatest lower bound and whether this is the least element of A :
(a) $A=\{x \in \mathbf{R}:-1<x \leq 1\}$;
(b) $A=\left\{(-1)^{n} / n: n \in \mathbf{N}\right\}$;
(c) $A=\left\{n+(-1)^{n} / n: n \in \mathbf{N}\right\}$;
(d) $A=\left\{x \in \mathbf{R}: x^{2}-4 x+3<0\right\}$.
2. Prove that if x^{2} is irrational, then x is irrational. Hence prove that $\sqrt{3}+\sqrt{5}$ is irrational. (You may assume that if $n \in \mathbf{N}$ isn't a square then \sqrt{n} is irrational).
3. Is it always true that if x and y are irrational then $x+y$ is also irrational? What about $x y$?
4. Let A and B be two sets of real numbers, and suppose that A has least upper bound α and B has least upper bound β. Prove that the set $A+B$ defined by

$$
A+B=\{a+b: a \in A, b \in B\}
$$

has least upper bound $\alpha+\beta$. (Hint: first show that $\alpha+\beta$ is an upper bound of $A+B$, and then show that if $\gamma<\alpha+\beta$ then there are $a \in A$ and $b \in B$ with $\gamma<a+b$.)
But if we define

$$
A B=\{a b: a \in A, b \in B\}
$$

show, by example, that $A B$ need not have an upper bound, and even if it does, its least upper bound might not equal $\alpha \beta$.
5. Let A be a non-empty set of positive real numbers. Defining

$$
A^{-1}=\left\{a^{-1}: a \in A\right\}
$$

prove that if A has least upper bound α then A^{-1} has greatest lower bound α^{-1}.
6. Let us define a sequence of numbers a_{1}, a_{2}, \ldots by $a_{1}=3, a_{2}=3$ and $a_{n}=a_{n-1}+2 a_{n-2}$ for $n \geq 3$. Prove, by induction, that $a_{n}=2^{n}-(-1)^{n}$.
7. Prove, by induction, that

$$
\sum_{k=1}^{n} k x^{k}=x+2 x^{2}+3 x^{3}+\cdots+n x^{n}=\frac{x-(n+1) x^{n+1}+n x^{n+2}}{(1-x)^{2}}
$$

(as long as $x \neq 1$).
8. Prove, by induction, that if $0<x<y$ then $x^{n}<y^{n}$ for all $n \in \mathbf{N}$.
9. Prove, by induction, that if $0<x<1$ then $(1-x)^{n} \geq 1-n x$ for all $n \in \mathbf{N}$.
10. The triangle inequality states that

$$
|x+y| \leq|x|+|y|
$$

for all real numbers x and y. Prove it.
Using the triangle inequality, prove, by induction, that

$$
\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|
$$

for all real numbers x_{1}, \ldots, x_{n}.
Also, prove that

$$
|x+y| \geq|x|-|y| .
$$

11. Prove that if x and y are real numbers with $x<y$ then there is an irrational number α with $x<\alpha<y$. (Hint: I think it's easier to exploit the corresponding result for rationals then to prove from scratch.)
12. In the lectures, in the proof that $\sqrt{2}$ exists, I used the fact that if $\alpha^{2}>2$ and $\alpha>0$ then $\beta=\frac{1}{2}(\alpha+2 / \alpha)$ satisfied $0<\beta<\alpha$ and $\beta^{2}>2$. Suppose I wanted to prove the existence of $\sqrt{3}$ instead. How should I define β to ensure that if $\alpha^{2}>3$ and $\alpha>0$ then $0<\beta<\alpha$ and $\beta^{2}>3$: as (a) $\beta=\frac{1}{2}(\alpha+2 / \alpha)$, (b) $\beta=\frac{1}{3}(\alpha+3 / \alpha)$ or (c) $\beta=\frac{1}{2}(\alpha+3 / \alpha)$? Hence give a proof that there is a positive real solution of $x^{2}=3$.
13. Let $\left(a_{n}\right)$ be a sequence of nonzero real numbers. Prove that if $a_{n} \rightarrow \infty$ (or if $a_{n} \rightarrow-\infty$) then the sequence $\left(1 / a_{n}\right)$ converges to 0 .
If $\left(b_{n}\right)$ is a sequence of nonzero real numbers converging to 0 , it is necessarily true that $1 / b_{n} \rightarrow \infty$ or that $1 / b_{n} \rightarrow-\infty$?
14. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences converging to a and b respectively. Prove that the sequence $\left(a_{n}-b_{n}\right)$ converges to $a-b$.
15. The "squeezing" or "sandwich" principle asserts that if $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$ are three sequences of real numbers satisfying $a_{n} \leq b_{n} \leq c_{n}$ for all n and if $\left(a_{n}\right)$ and $\left(c_{n}\right)$ both converge to the same limit L, then $\left(b_{n}\right)$ also converges to L. Prove it.
16. Let $\left(a_{n}\right)$ be an increasing sequence that is not bounded above. Prove that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
17. Prove that a convergent sequence has a unique limit. That is, if $\left(a_{n}\right)$ converges both to a and to b, then $a=b$. (Hint: if not assume that $a \neq b$ and prove that for each $\varepsilon>0$ then $\left(a_{n}\right)$ is eventually ε-close to both a and b, but that there is a value of ε for which this is impossible.)
18. Determine whether each the following sequences $\left(a_{n}\right)$ are convergent. When so, determine their limit, when not determine whether they tend to ∞ or to $-\infty$:
(a) $a_{n}=\frac{n^{3} \cos (n \pi / 4)}{n^{4}+1}$;
(b) $a_{n}=\frac{n^{3} \cos (n \pi / 4)}{n^{3}+1} \quad[5]$;
(c) $\quad a_{n}=\frac{n-\cos n}{\sqrt{n^{2}+1}} \quad[5] ;$
(d) $a_{n}=\cos \left(1 / n^{3}\right)$;
(e) $\quad a_{n}=\frac{1}{\sqrt{n^{2}+1}-n} ;$
(f) $a_{n}=\frac{2 n^{2}+n \sin n}{n^{2}+n e^{-n}+\cos n} \quad[5]$.
(You may use the fact that, which I haven't yet proved in lectures, that if $\left(b_{n}\right)$ is a sequence of positive terms and $b_{n} \rightarrow b$ then $\sqrt{b_{n}} \rightarrow \sqrt{b}$.)
19. Let us define the sequence $\left(a_{n}\right)$ by $a_{1}=3$ and $a_{n+1}=\frac{1}{2}\left(a_{n}+3 / a_{n}\right)$ for $n \geq 1$. Prove that (a_{n}) is decreasing and is bounded below. Also find $\lim _{n \rightarrow \infty} a_{n}$, justifying your answer.
20. Let us define the sequence $\left(a_{n}\right)$ by $a_{1}=1$ and $a_{n+1}=\sqrt{1+a_{n}^{2} / 3}$ for $n \geq 1$. Prove that $a_{n}^{2}<3 / 2$ and $a_{n+1}^{2}>a_{n}^{2}$ for all n. Deduce that $\left(a_{n}\right)$ is convergent, and find its limit.
21. Let us define the sequence (a_{n}) by $a_{1}=0$ and

$$
a_{n+1}=\frac{3 a_{n}+1}{a_{n}+2}
$$

for $n \geq 1$. Prove that $0 \leq a_{n}<3$ and that $a_{n+1}>a_{n}$ for all n. Deduce that $\left(a_{n}\right)$ is convergent, and find its limit.
22. Determine whether each of the following series are convergent:
(a) $\sum_{n=0}^{\infty} \frac{2 n-1}{n^{2}+2}$;
(b) $\sum_{n=1}^{\infty} \frac{2^{n}-1}{3^{n}-2^{n}}$;
(c) $\sum_{n=1}^{\infty} \frac{\log n}{n}$;
(d) $\sum_{n=0}^{\infty} \frac{999^{n} n^{1000}}{1000^{n}}$;
(e) $\sum_{n=0}^{\infty} \frac{2^{n} n^{3}+3^{n}}{3^{n} n+2^{n}} \quad[5]$;
(f) $\quad \sum_{n=2}^{\infty}(-1)^{n} \frac{n}{n-1}$;
(g) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} ;$
(h) $\sum_{n=1}^{\infty} \sin \left((-1)^{n} / n\right) \quad[5] ;$
(i) $\sum_{n=1}^{\infty} \sin (1 / n)$;
(j) $\quad \sum_{n=0}^{\infty} 20^{n} \frac{(n!)^{3}}{(3 n)!}[5] ; \quad$ (k) $\quad \sum_{n=0}^{\infty} \frac{2^{n} n!}{n^{n}} ;$
(1) $\sum_{n=0}^{\infty} \frac{3^{n} n!}{n^{n}}[5]$.
(You may use the fact, which I haven't proved yet in lectures, that $\left.\lim _{n \rightarrow \infty}\left(1+n^{-1}\right)^{n}\right)=e$.
23. Theorems have hypotheses!

Give an example of a divergent alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ where each $a_{n}>0$ and $\left(a_{n}\right)$ is decreasing.
Give an example of a divergent alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ where each $b_{n}>0$ and $b_{n} \rightarrow 0$.
24. The Cauchy condensation test states that:

Let $\left(a_{n}\right)$ be a decreasing sequence of positive numbers.
Then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{m=1}^{\infty} 2^{m} a_{2^{m}}$ converges.
Use the Cauchy condensation test to determine for which positive real numbers α is the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}}
$$

convergent.

