Analysis: Problem sheet 2

Assignment 1 consists of questions 1(b,e), 2(a,e), 4, 5, 7, 9, 12, 13(d), 14(e), 16(b), 20, 23(e), 25, 26(c) and 27(a); it is due in on 15 December 2011 [marks are indicated in square brackets]

1. In each case, determine whether f(x) converges to a limit as $x \to a$. If not then determine whether $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to a$.

(a)
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 4}$$
, $a = 2$,

(b)
$$f(x) = \frac{\tan x}{x}$$
, $a = 0$ [5], (c) $f(x) = \frac{x^2 - 3x + 1}{x}$, $a = 0$, (d) $f(x) = \frac{1 - \cos x}{x^2}$, $a = 0$, (e) $f(x) = \frac{\sqrt{x} - 1}{x - 1}$, $a = 1$ [5].

(d)
$$f(x) = \frac{1 - \cos x}{x^2}$$
, $a = 0$, (e) $f(x) = \frac{\sqrt{x} - 1}{x - 1}$, $a = 1$ [5].

2. In each case, determine whether f(x) converges to a limit as $x \to \infty$. If not then determine whether $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to \infty$.

(a)
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 4}$$
 [5], (b) $f(x) = \frac{\cos x}{x}$, (c) $f(x) = \frac{x^2 - 3x + 1}{x}$, (d) $f(x) = x^3 \cos x$, (e) $f(x) = \frac{1}{\sqrt{x+1} - \sqrt{x}}$ [5].

(c)
$$f(x) = \frac{x^2 - 3x + 1}{x}$$
, (d) $f(x) = x^3 \cos x$,

(e)
$$f(x) = \frac{1}{\sqrt{x+1} - \sqrt{x}}$$
 [5].

- 3. Prove that the equation $x^3 = e^{-x}$ has at least one solution with $x \ge 0$.
- 4. Prove that the equation $x = 8\cos x$ has at least **three** solutions with x > 0.
- 5. Let $f:[a,b]\to \mathbf{R}$ be a continuous function with the property that $f(x) \in [a,b]$ for all $x \in [a,b]$. Prove that f has a fixed point c, that is $c \in [a, b]$ and f(c) = c. (You may assume the Intermediate Value Theorem). [5]
- 6. Prove that the cosine function is differentiable and that $\cos'(x) =$ $-\sin(x)$.
- 7. For which positive real numbers α is the function

$$f_{\alpha}(x) = \begin{cases} |x|^{\alpha} \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

continuous at 0? For which α is f_{α} differentiable at 0? Prove that f'_3 is continuous at 0.

8. Prove that if $0 < a < b < \pi/2$ then

$$(b-a)\sin a < \cos a - \cos b < (b-a)\sin b.$$

9. Prove that if 0 < a < b < 1 then

$$\frac{b-a}{\sqrt{1-a^2}} < \cos^{-1} a - \cos^{-1} b < \frac{b-a}{\sqrt{1-b^2}}.$$
 [5]

- 10. Prove that the equation $xe^x = 2$ has a unique real solution.
- 11. Give a detailed argument to compute the derivative of the function $\cos^{-1}: [-1,1] \to \mathbf{R}.$
- 12. Consider the functions f_1 , f_2 and f_3 defined by $f_1(x) = x \sin x$, $f_2(x) = \cos x - 1 + x^2/2$ and $f_3(x) = \sin x - x + x^3/6$. Prove that all these functions are increasing on the interval $[0,\infty)$ and hence deduce that for $x \geq 0$ we have

$$x \ge \sin x \ge x - \frac{x^3}{6}.\tag{10}$$

- 13. Compute the following limits:
 - (a) $\lim_{x\to 0} \frac{\sinh^3 x}{\sin^3 x}$, (b) $\lim_{x\to 0} \frac{1-\cos x}{(\log(1-x))^2}$, (c) $\lim_{x\to 0} \frac{x-\sinh x}{x\sinh(x^2)}$, (d) $\lim_{x\to 1/2} \frac{(1-x)^{20}-x^{20}}{(1-x)^{11}-x^{11}}$ [5].

(d)
$$\lim_{x \to 1/2} \frac{(1-x)^{20} - x^{20}}{(1-x)^{11} - x^{11}}$$
 [5].

- 14. Find the radius of convergence of each of the following power series:
 - (a) $\sum_{n=0}^{\infty} \frac{x^n}{2011^n}$, (b) $\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n} x^n$, (c) $\sum_{n=0}^{\infty} \frac{n^3 + 1}{n^2 + 1} x^n$, (d) $\sum_{n=1}^{\infty} \frac{3^n 2^n}{2^n 1} x^n$, (e) $\sum_{n=0}^{\infty} \frac{(3n)!}{n!(2n)!} x^n$ [5], (f) $\sum_{n=0}^{\infty} (-1)^n \frac{(2n)!}{(n!)^3} x^n$.

(d)
$$\sum_{n=1}^{\infty} \frac{3^n - 2^n}{2^n - 1} x^n$$
, (e) $\sum_{n=0}^{\infty} \frac{(3n)!}{n!(2n)!} x^n$ [5], (f) $\sum_{n=0}^{\infty} (-1)^n \frac{(2n)!}{(n!)^3} x^n$

15. For z = x + yi, find the real and imaginary parts of:

(a)
$$z^3$$
, (b) $1/z^2$, (c) $(1+z)/(1-z)$.

16. Find all complex solutions of the following equations:

(a)
$$z^6 = -i$$
, (b) $z^3 = 2 - 2i$ [5], (c) $z^4 = -4$. (In each case express the solution in the form $x + yi$.)

17. Prove that if $z, w \in \mathbb{C}$ then (a) $|z-w| \ge |z| - |w|$ and (b) |z/w| = |z|/|w|(provided, of course, that $w \neq 0$).

- 18. Write each of the following in the form x + yi: (a) e^{3-2i} , (b) $\cos(2-i)$, (c) $\sin(1+i)$, (d) $\log(3i)$, (e) $\log(-3+i)$.
- 19. Let (z_n) be a sequence of complex numbers. Prove that $\lim_{n\to\infty} z_n = z$ if and only if $\lim_{n\to\infty} |z_n - z| = 0$.
- 20. Prove that for real x and y,

$$|\sin(x+iy)|^2 = \sin^2 x + \sinh^2 y$$

and deduce that $|\sin(x+iy)| \le \cosh y$.

[10]

- 21. Prove that the set $A = \{z \in \mathbb{C} : \text{Re}(z) < 0\}$ is open and connected.
- 22. In each case, prove that the function f is continuous on \mathbb{C} : (a) $f(z) = \overline{z}$, (b) f(z) = |z|.
- 23. For each function f, determine where f is analytic, and compute its derivative there:
 - (a) $f(z) = (z+1)^4$, (b) f(z) = (1-z)/(1+z), (c) $f(z) = \sin(1/z^2)$, (d) $f(z) = e^{-z^2}$, (e) $f(z) = e^z/(e^{2z}+1)$ [5].
- 24. In each case, verify the Cauchy-Riemann equations for the following functions (by calculating the appropriate partial derivatives):

(a)
$$f(z) = z^4$$
, (b) $f(z) = 1/z^2$, (c) $f(z) = e^{z^2}$.

- 25. Let f(x+yi) = u(x,y) + iv(x,y) where u and v are real-valued. If f is analytic on \mathbb{C} , $u(x,y) = x^2 + xy y^2$ and f(0) = 0 what is v(x,y)? [5]
- 26. Evaluate the following contour integrals:
 - (a) $\int_{\gamma} \operatorname{Im}(z) dz$ where γ is the line segment from 0 to i followed by the line segment from i to 1+i;
 - (b) $\int_{\gamma} \sin z \, dz$ where γ is the line segment from -1 + 2i to 1 + 2i;
 - (c) $\int_{\gamma} (1-z)^2/z \, dz$ where γ is the unit circle (centre 0, radius 1), traversed anticlockwise; [5]
 - (d) $\int_{\gamma} (1-z)^2/z \, dz$ where γ is the circle with centre 2 and radius 1, traversed anticlockwise;
 - (e) $\int_{\gamma} \overline{z} dz$ where γ is the unit circle, traversed anticlockwise.
- (a) Let γ be the arc of the circle with centre 0 and radius 2 lying in the right half-plane $\{z \in \mathbb{C} : \text{Re}(z) \geq 0\}$. Prove that

$$\left| \int_{\gamma} \frac{e^z \, dz}{z^3 + 1} \right| \le \frac{2\pi e^2}{7}. \tag{5}$$

(b) Let γ be the arc of the unit circle contained in the upper half plane $\{z \in \mathbf{C} : \operatorname{Im}(z) \geq 0\}$. Prove that

$$\left| \int_{\gamma} \frac{\cos z}{z^4} \, dz \right| \le \frac{\pi}{2} (e + e^{-1}).$$

(c) Let γ be the circle with centre 0 and radius R. Prove that

$$\left| \int_{\gamma} \frac{z^2 - 2z - 1}{z^4 + z^2 + 1} \, dz \right| \le \frac{2\pi R(R+1)^2}{R^4 - R^2 - 1}$$

provided that R is sufficently large.