Limits and bounds

Robin Chapman

19 October 2011

When computing the least upper bound (or greatest lower bound) of a subset A or \mathbf{R}, an alternative to arguing from first principles is to use sequences. We have the following result.

Lemma. Let A be a subset of \mathbf{R} and suppose that A is bounded above.

- There is a sequence $\left(a_{n}\right)$ of elements of A converging to $\operatorname{lub} A$.
- If $\left(b_{n}\right)$ is a sequence of elements of A converging to b, and b is an upper bound of A then $b=\operatorname{lub} A$.

Proof Let $a=\operatorname{lub} A$. For $n \in \mathbf{N}, a-1 / n$ is not an upper bound for A so there is some $a_{n} \in A$ with $a_{n}>a-1 / n$. But $a_{n} \leq a$ as a is an upper bound of A. Hence $a-1 / n<a_{n} \leq a$ and by the squeeze principle (as $a-1 / n \rightarrow a$), $a_{n} \rightarrow a$.

Now suppose that $b_{n} \in A$ and $b_{n} \rightarrow b$ which is an upper bound of A. Let c be any upper bound of A. Then $b_{n} \leq c$ for all n, and as $b_{n} \rightarrow b$ then $b \leq c$. Therefore b is the least upper bound of A.

Of course this lemma applies muatatis mutandis to greater lower bounds.
As an example, consider the set $A=[0,1)=\{x \in \mathbf{R}: 0 \leq x<1\}$ which I treated in the lectures. It is clear that 1 is an upper bound of A; also for $n \in \mathbf{N}, 1-1 / n \in A$ and as $1-1 / n \rightarrow 1$ then by the lemma, 1 is the least upper bound of A.

