Limits and bounds

Robin Chapman

19 October 2011

When computing the least upper bound (or greatest lower bound) of a subset A or \mathbf{R} , an alternative to arguing from first principles is to use sequences. We have the following result.

Lemma. Let A be a subset of \mathbf{R} and suppose that A is bounded above.

- There is a sequence (a_n) of elements of A converging to lub A.
- If (b_n) is a sequence of elements of A converging to b, and b is an upper bound of A then b = lub A.

Proof Let a = lub A. For $n \in \mathbb{N}$, a - 1/n is not an upper bound for A so there is some $a_n \in A$ with $a_n > a - 1/n$. But $a_n \le a$ as a is an upper bound of A. Hence $a - 1/n < a_n \le a$ and by the squeeze principle (as $a - 1/n \to a$), $a_n \to a$.

Now suppose that $b_n \in A$ and $b_n \to b$ which is an upper bound of A. Let c be any upper bound of A. Then $b_n \leq c$ for all n, and as $b_n \to b$ then $b \leq c$. Therefore b is the least upper bound of A.

Of course this lemma applies mutatis mutandis to greater lower bounds. As an example, consider the set $A = [0,1) = \{x \in \mathbf{R} : 0 \le x < 1\}$ which I treated in the lectures. It is clear that 1 is an upper bound of A; also for $n \in \mathbf{N}$, $1 - 1/n \in A$ and as $1 - 1/n \to 1$ then by the lemma, 1 is the least upper bound of A.