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The set C of complex numbers is defined as C = {x + yi : x, y ∈ R}
where i2 = −1. Addition, subtraction and multiplication of complex numbers
(using i2 = −1) is straightforward.

We represent complex numbers as points in the Argand diagram of “com-
plex plane”. The complex number z = x + yi is identified with the point
whose Cartesian coordinates are (x, y).

The real part of z = x + yi is Re z = x, its imaginary part is Im z = y
and its complex conjugate is z = x − yi. It’s straightforward to prove that
z + w = z + w, z − w = z − w, zw = zw and z = z. Also zz = x2 + y2 ≥ 0
and zz = 0 if and only if z = 0. The absolute value of z is |z| =

√
zz. If

z 6= 0 and w = z|z|−2 then zw = 1 so that z has a reciprocal (and C is a
field). Note that |z−w| is the distance between points z and w in the Argand
diagram.

One basic theorem in complex numbers is the triangle inequality : |z+w| ≤
|z|+ |w|.

If z is a nonzero complex number then w = z/|z| satisfies |w| = 1. So w
lies on the unit circle in the Argand diagram, that is the circle with centre
0 and radius 1. It follows that there is some real number θ with w = cos θ+
i sin θ. We write eiθ for cos θ+ i sin θ and note that the addition identities for
sine and cosine imply that eiθeiφ = ei(θ+φ). We can then write z = reiθ where
r = |z| > 0 and θ in R. Such a number θ is called an argument of z. The
argument of z is not unique since eiθ = ei(θ+2π). However, z has a unique
argument θ in the interval (−π, π] which we call the principal argument and
denote by arg z. The general argument of z is arg z + 2kπ where k ∈ Z.

We define the complex exponential by exp(x + iy) = exeiy = ex(cos y +
i sin y) for x. y ∈ R. Then exp(z + w) = exp(z) exp(w). For non-zero z, the
equation ew = z has the general solution w = log |z| + i arg z + 2kπi (where
k ∈ Z). Then log |z| + i arg z is defined to be the principal logarithm log z
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of z.
Convergence of sequences and series of complex numbers are defined

in much the same way as those of real numbers, and the basic theorems
are the same, so we shall not dwell on the details. A sequence (zn) of
complex numbers converges to a limit z if for all ε > 0 then eventually
|zn − w| < ε. Also limn→∞ zn = w if and only if both limn→∞Re zn = Rew
and limn→∞ Im zn = Imw. Sums, differences, products and quotients (under
the usual caveats) of convergent complex sequences are convergent. Again,
a series

∑∞
n=1 zn converges to z if and only if limN→∞

∑N
n=1 zn = w. As with

real series, absolute convergence implies convergence.
We also consider complex functions: maps f : A → C where A ⊆ C

Limits and continuity for complex functions are defined in the same way as
for real functions. For instance f : A→ C is continuous at a ∈ A if and only
if limn→∞ f(an) = f(a) for all sequences (an) of points in A with an → a.
Again, continuity satisfies the same basic properties as for real functions: for
example, sums, differences, products, quotients and composites of continuous
functions (subject to the usual caveats) are continuous. As a consequence,
polynomial functions are continuous, and so are rational functions where they
are defined (where the denominator is nonzero).

The complex exponential function exp is continuous on C. Indeed exp(z) =∑∞
n=0 z

n/n!. For real x, as eix = cosx+ i sinx and e−ix = cosx− i sinx then
cosx = 1

2
(eix + e−ix) and i sinx = 1

2
(eix − e−ix). We define the complex sine

and cosine function using these formulae:

cos z =
exp(iz) + exp(−iz)

2
, sin z =

exp(iz)− exp(−iz)

2i
.

Then cos iz = 1
2
(exp(z) + exp(−z)) = cosh z and sin iz = −i1

2
(exp(−z) −

exp(z)) = i sinh z. This shows that although the sine and cosine are bounded
on R they are not bounded functions on C.

To study differentiability it is convenient to restrict the domains of our
functions to sets “without boundary points”. The open disc of centre a ∈ C
and radius r > 0 is

D(a, r) = {z ∈ C : |z − a| < r}.

A subset U ⊆ C is open if it contains an open disc centred at each of its
points; more formally U is open if for each a ∈ U there is r > 0 such that
D(a, r) ⊆ U . Informally speaking a set U is open if none of its “boundary
points” are elements of U . As behaviour of a function at boundary points can
be complicated, it is convenient when we don’t have any! Using the triangle
inequality one can prove that each open disc D(a, r) is an open set.
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An open set U is connected if any two points in U can be joined by
a polygonal path lying inside U . A polygonal path from z0 to zn is a set
[z0, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−1, zn] where [z, w] = {z + t(w − z) : 0 ≤ t ≤ 1}
is the line segment joining z and w. A connected open set if often called a
region or domain. The open disc D(a, r) is a connected open set. Connected
open sets play in complex analysis an analogous role to open intervals in real
analysis.

When f : U → C is a function on a connected open set U and a ∈ U , we
say that f is differentiable at a if

lim
z→a

f(z)− f(a)

z − a
exists; if so this number is called f ′(a). If f is differentiable at all points of U
then f is an analytic function on U . Analytic functions are the main objects
of study in complex analysis. As ever, sums, differences, products, quotients
and composites are analytic functions (subject to the usual caveats) and their
derivatives are given by the familiar formulae from calculus.

We can express a complex function by two real-valued functions of two
real variables:

f(x+ iy) = u(x, y) + iv(x, y).

If f is analytic the real functions u and v satisfy the Cauchy-Riemann equa-
tions :

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

There is a converse (which I won’t prove) to the effect that if u and v satisfy
the Cauchy-Riemann equations and their partial derivatives are continuous,
then f is analytic.

We now turn to integration of complex functions. Our integrals are ana-
logues of line integrals in vector calculus. Before proceeding to complex
integrals, note that differentiation and integration of complex-valued func-
tions of a real variable is straightforward. Let f : [a, b] → C be a function.
Then f(t) = u(t)+iv(t) where u and v are real-valued functions on [a, b]. We
define f ′(t) to be u′(t)+ iv′(t) for any t where u and v are both differentiable.
We also define ∫ b

a
f(t) dt =

∫ b

a
u(t) dt+ i

∫ b

a
v(t) dt

as long as both real integral exist (they certainly will if f is continuous). As
an exercise, you might prove that

∫ b
a (f(t) + g(t)) dt =

∫ b
a f(t) dt +

∫ b
a g(t) dt

and
∫ b
a αf(t) dt = α

∫ b
a f(t) dt for α ∈ C.

A path is a continuous map γ : [a, b] → C. It is smooth if its derivative
γ′ exists and is continuous on [a, b]. A contour is a finite sequence of paths
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joined end-to-end; formally it is a sequence γ = (γ1, . . . , γn) of smooth paths
γk : [ak, bk]→ C with γk(bk) = γk+1(ak+1) for 1 ≤ k ≤ n− 1. This contour is
closed if γn(bn) = γ1(a1). We define the path integral of a function f along
the smooth path γ as ∫

γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt.

For this to make sense, f must be defined at all points γ(t) of the path. If f
is continuous on a region containing these points then certainly this integral
makes sense. The contour integral of f along the contour γ = (γ1, . . . , γn) is
defined as ∫

γ
f(z) dz =

n∑
k=1

∫
γk

f(z) dz.

The length of a smooth path γ : [a, b]→ C is

`(γ) =
∫ b

a
|γ′(t)| dt

but perhaps a better way to think about it is as the distance travelled by a
point moving in the Argand diagram with position γ(t) at time t, between
times a and b. Naturally, the length of a contour γ = (γ1, . . . , γn) is `(γ) =
`(γ1) + · · ·+ `(γn). There is a useful method of bounding a contour integral:∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ ≤M`(γ)

where M is a number with the property that |f(z)| ≤ M for all z on the
contour γ. (If f is continuous, there will always be such an M .)

Many contour integrals can be evaluated using the complex version of
the Fundamental Theorem of Calculus. This states that if f(z) = g′(z) in a
region U and γ is a contour in U then∫

γ
f(z) dz = g(β)− g(α)

where α and β are the starting and ending points of the contour γ. When γ
is a closed contour, then α = β and then

∫
γ f(z) dz = 0 (provided that f is

the derivative of an analytic function). If γ : [a, b]→ C is a smooth path we
prove the fundamental theorem for γ simply by calculating∫
γ
f(z) dz =

∫ b

a
g′(γ(t))γ′(t) dt =

∫ b

a

d

dt
g(γ(t)) dt = g(γ(b))−g(γ(a)) = g(β)−g(α).
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Consider the integral, ∫
γ

dz

z
= 2πi

where γ is the unit circle. This is an integral over a closed contour, but is
nonzero. This shows that f(z) = 1/z cannot be expressed as a derivative
1/z = g′(z) in any region U containing the unit circle. with more precise
analysis one can prove that 1/z is not a derivative in any region that “winds
around” 0. In particular there is no analytic function on C \ {0} which cor-
responds to a logarithm. This is a very significant fact about the arithmetic
and geometry of the complex numbers.
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