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Let I be an interval, and f be a function from I to R. For a ∈ I we say
that f is differentiable at a if

lim
x→a

f(x)− f(a)

x− a

exists. If so we denote this limit by f ′(a). Of course, we say that f is
differentiable on I if it is differentiable at all a ∈ I. Then the function
f ′ is called the derivative of f . Another way of writing the definition of
differentiablity is

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

provided this limit exists.
It is convenient sometimes in the theory to use an equivalent but more

roundabout-seeming definition. We claim that f is differentiable at a if and
only if there is a function ϕ : I → R such that both

• f(x) = f(a) + (x− a)ϕ(x) for all x, and

• ϕ is continuous at a.

Also ϕ(a) = f ′(a). Note that ϕ(x) must equal (f(x) − f(a))/(x − a) when
x 6= a. To define ϕ(a) so that ϕ is continuous at a then we must have

ϕ(a) = lim
x→a

ϕ(x) = lim
x→a

f(x)− f(a)

x− a
.

As a consequence, f(x)→ f(a) + (a− a)ϕ(a) = f(a) as x→ a and so if f is
differentiable at a it is continuous there.

Combining differentiable functions via the standard arithmetic operations
gives differentiable functions. That is if f and g are differentiable at a then
so are f + g, f − g, fg and f/g; moreover the derivatives are what you think
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they are. (Of course for f/g we need g(a) 6= 0; then it follows that g(x) 6= 0
when x is close enough to a). The sum and difference rules are very easy to
prove, so I’ll look at the product and quotient rules in detail.

As f and g are differentiable at a then there are functions ϕ and ψ,
continuous at a with f(x) = f(a)+(x−a)ϕ(x) and g(x) = g(a)+(x−a)ψ(x);
moreover ϕ(a) = f ′(a) and ψ(a) = g′(a). To prove differentiability of fg at
a, consider

f(x)g(x)− f(a)g(a)

x− a

=
(f(a) + (x− a)ϕ(x))(g(a) + (x− a)ψ(x))− f(a)g(a)

x− a
= ϕ(x)g(a) + f(a)ψ(x) + (x− a)ϕ(x)ψ(x).

As ϕ(x)→ ϕ(a) = f ′(a) as x→ a (since ϕ is continuous at a) and similarly
ψ(x)→ g′(a) as x→ a then

f(x)g(x)− f(a)g(a)

x− a
→ f ′(a)g(a) + f(a)g′(a)

as x→ a. This means that fg is differentiable at a with derivative f ′(a)g(a)+
f(a)g′(a).

We can write f/g as f(1/g) and so using the product rule we can reduce
the quotient rule to the case of 1/g. This time we consider

g(x)−1 − g(a)−1

x− a
= − g(x)− g(a)

(x− a)g(a)g(x)

= − (x− a)ψ(x)

(x− a)g(a)g(x)
= − ψ(x)

g(a)g(x)
.

As x → a then ψ(x) → g′(a) and g(x) → g(a) (since g is continuous at a).
Hence

g(x)−1 − g(a)−1

x− a
→ − g

′(a)

g(a)2

so that 1/g is differentiable at a with derivative −g′(a)/g(a)2.
A similar argument proves the “chain rule” for the differentiability of the

composite of two functions. Let f : I → R and g : J → R be functions such
that g ◦ f makes sense, and suppose that f is differentiable at a and g at
f(a). Then f(x) = f(a) + (x− a)ϕ(x) and g(y) = g(f(a)) + (y − f(a))ψ(y)
where ϕ is continuous at a, ψ is continuous at f(a); moreover ϕ(a) = f ′(a)
and ψ(f(a)) = g′(f(a)). We now consider

g(f(x))− g(f(a))

x− a
=

g(f(a)) + (f(x)− f(a))ψ(f(x))− g(f(a))

x− a
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=
(x− a)ϕ(x)ψ(f(x))

x− a
= ϕ(x)ψ(f(x)).

As x→ a then f(x)→ f(a), ϕ(x)→ ϕ(a) = f ′(a) and ψ(f(x))→ ϕ(f(a)) =
g′(f(a)). Therefore

g(f(x))− g(f(a))

x− a
→ f ′(a)g′(f(a))

which is the familiar “chain rule”.
There is also a rule for calculating the derivative of an inverse function.

Suppose that f : I → R is a continuous increasing (or decreasing) function,
and that f is differentiable at some a ∈ I with f ′(a) 6= 0. Let F be the
inverse function of f . Write b = f(a) and f(I) = J . Let (yn) be a sequence
of points in J converging to b, and with each yn 6= b. Write xn = F (yn).
Then a = F (b), xn 6= a and by the continuity of F , xn → a. Then

F (yn)− F (b)

yn − b
=

xn − a
f(xn)− f(a)

→ 1

f ′(a)
.

Hence F ′(b) exists and equals 1/f ′(a).
Derivatives are often used to detect local maxima or minima. Suppose

that f is defined (a, b), c ∈ (a, b), f ′(c) exists and f is maximized over (a, b)
at c, that is f(x) ≤ f(c) for all x ∈ (a, b). Then there is a sequence (cn) of
points in (a, b) converging to c with each c < cn < b. Then

f(cn)− f(c)

cn − c
≤ 0

and so

f ′(c) = lim
n→∞

f(cn)− f(c)

cn − c
≤ 0.

Similarly there is a sequence (c′n) of points in (a, b) converging to c with each
c > c′n > a, which leads to f ′(c) ≥ 0. Hence f ′(c) = 0 and the argument
adapts to the case of a local minimum too.

It’s essential that we look at “interior” points of intervals here. On a
closed interval a function may be maximized or minimized at the endpoints
where the derivative may be nonzero.

Applying the Boundedness theorem and this maximum/minimum corol-
lary leads to Rolle’s theorem:

If a < b, f is continuous on [a, b] and differentiable on (a, b)
and moreover f(a) = f(b) then there is c ∈ (a, b) with f ′(c) = 0.
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For a proof see my last year’s “proofs of major theorems”. An almost imme-
diate corollary is the Mean Value Theorem”

If a < b, f is continuous on [a, b] and differentiable on (a, b)
then there is c ∈ (a, b) with f(b)− f(a) = f ′(c)(b− a).

This is most usefully applied when we know numbers m and M such that
m ≤ f ′(x) ≤M for all x ∈ (a, b). Then m(b− a) ≤ f(b)− f(a) ≤M(b− a).
A corollary is that if f ′(x) > 0 on an interval then f is strictly increasing
there.

Another way of writing the Mean Value theorem is that

f(a+ h) = f(a) + hf ′(a+ th)

for some 0 < t < 1, where f is continuous and differentiable on the interval
between a and a+ h. There is a more precise “second mean value theorem”
stating that

f(a+ h) = f(a) + hf ′(a) +
h2

2
f ′′(a+ t1h)

where 0 < t1 < 1 under the hypothesis that f is twice differentiable between
x and x+ h. There is an “n-th mean value theorem” also known as Taylor’s
theorem (with remainder term).
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