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Let I be an interval, and f be a function from I to R. For a € I we say
that f is differentiable at a if

1 f@) = f(@)
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exists. If so we denote this limit by f’(a). Of course, we say that f is
differentiable on I if it is differentiable at all a € I. Then the function
f' is called the derivative of f. Another way of writing the definition of

differentiablity is
oy g flath) — fa)
flo) = Jim ==,

provided this limit exists.

It is convenient sometimes in the theory to use an equivalent but more
roundabout-seeming definition. We claim that f is differentiable at a if and
only if there is a function ¢ : I — R such that both

o f(z)= f(a)+ (z —a)p(zx) for all x, and
e ( is continuous at a.

Also p(a) = f'(a). Note that p(z) must equal (f(z) — f(a))/(x — a) when
x # a. To define p(a) so that ¢ is continuous at a then we must have

. - f(z) — fla)
pla) = }}{}}L p(r) = }Clg}l T a—a
As a consequence, f(x) — f(a)+ (a —a)p(a) = f(a) as ¢ — a and so if f is
differentiable at a it is continuous there.
Combining differentiable functions via the standard arithmetic operations
gives differentiable functions. That is if f and ¢ are differentiable at a then
soare f+g, f—g, fg and f/g; moreover the derivatives are what you think



they are. (Of course for f/g we need g(a) # 0; then it follows that g(z) # 0
when z is close enough to a). The sum and difference rules are very easy to
prove, so I'll look at the product and quotient rules in detail.

As f and g are differentiable at a then there are functions ¢ and 1,
continuous at a with f(z) = f(a)+(x—a)p(x) and g(x) = g(a)+(x—a)p(z);
moreover ¢(a) = f'(a) and ¥(a) = ¢'(a). To prove differentiability of fg at
a, consider

f(x)g(x) — f(a)g(a)
(f(a) + (x — a)p(x))(g(a) + (x — a)(z)) — f(a)g(a)

= p(x)ga) + fla)y(x) + (x — a)p(x)(x).

As p(x) = p(a) = f'(a) as  — a (since ¢ is continuous at a) and similarly
Y(x) = ¢'(a) as © — a then

f(@)g(x) — fla)g(a)

r—a

— f'(a)g(a) + f(a)g'(a)

as * — a. This means that fg is differentiable at a with derivative f’(a)g(a)+
fla)g'(a).

We can write f/g as f(1/g) and so using the product rule we can reduce
the quotient rule to the case of 1/g. This time we consider

g@) "t —gla)™ _  g(x) —g(a)
T—a (z —a)g(a)g(x)
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As x — a then ¥ (z) — ¢'(a) and g(z) — g(a) (since g is continuous at a).

Hence . . )
o) g0 gla)
T—a g(a)?
so that 1/g is differentiable at a with derivative —¢'(a)/g(a)?.

A similar argument proves the “chain rule” for the differentiability of the
composite of two functions. Let f: I — R and g : J — R be functions such
that g o f makes sense, and suppose that f is differentiable at a and ¢ at
f(a). Then f(z) = f(a) + (z — a)p(z) and g(y) = g(f(a)) + (y — f(a))¥(y)
where ¢ is continuous at a, ¢ is continuous at f(a); moreover p(a) = f'(a)

and ¥ (f(a)) = ¢'(f(a)). We now consider
9(f (@) —g(f(a)) _ g(f(a)) + (f(z) — fa)¥(f(x)) — 9(f(a))

Tr — a r—a




As z — athen f(z) = f(a), (x) = @(a) = f'(a) and P(f(x)) = ¢(f(a)) =
g'(f(a)). Therefore

9(f(x)) — 9(f(a))

Tr—a

— ['(a)g'(f(a))

which is the familiar “chain rule”.

There is also a rule for calculating the derivative of an inverse function.
Suppose that f: I — R is a continuous increasing (or decreasing) function,
and that f is differentiable at some a € I with f'(a) # 0. Let F be the
inverse function of f. Write b = f(a) and f(I) = J. Let (y,) be a sequence
of points in J converging to b, and with each y,, # b. Write z,, = F(y,).
Then a = F(b), x, # a and by the continuity of F', z,, — a. Then

Fy) - F®) __ v-a 1
Yn — b f(@a) = fla) — f(a)
Hence F’(b) exists and equals 1/f'(a).

Derivatives are often used to detect local maxima or minima. Suppose
that f is defined (a,b), ¢ € (a,b), f'(c) exists and f is maximized over (a,b)
at ¢, that is f(x) < f(c) for all € (a,b). Then there is a sequence (c,) of
points in (a, b) converging to ¢ with each ¢ < ¢, < b. Then

flen) — f(¢)

<0
Cp — C
and so

Similarly there is a sequence (¢},) of points in (a, b) converging to ¢ with each
¢ > ¢, > a, which leads to f’(¢) > 0. Hence f’(¢) = 0 and the argument
adapts to the case of a local minimum too.

It’s essential that we look at “interior” points of intervals here. On a
closed interval a function may be maximized or minimized at the endpoints
where the derivative may be nonzero.

Applying the Boundedness theorem and this maximum/minimum corol-
lary leads to Rolle’s theorem:

If a < b, fis continuous on [a,b] and differentiable on (a, b)
and moreover f(a) = f(b) then there is ¢ € (a,b) with f'(c) = 0.



For a proof see my last year’s “proofs of major theorems”. An almost imme-
diate corollary is the Mean Value Theorem”

If a < b, fis continuous on [a, b] and differentiable on (a, b)
then there is ¢ € (a,b) with f(b) — f(a) = f'(c)(b— a).

This is most usefully applied when we know numbers m and M such that
m < f'(x) < M for all z € (a,b). Then m(b —a) < f(b) — f(a) < M(b—a).
A corollary is that if f(z) > 0 on an interval then f is strictly increasing
there.

Another way of writing the Mean Value theorem is that

fla+h)= f(a)+ hf'(a+th)

for some 0 < t < 1, where f is continuous and differentiable on the interval
between a and a + h. There is a more precise “second mean value theorem”
stating that

Fla+1) = f(@)+ hf (@) + o (a1

where 0 < t; < 1 under the hypothesis that f is twice differentiable between
x and x + h. There is an “n-th mean value theorem” also known as Taylor’s
theorem (with remainder term).



