Analysis: skeleton notes 5: derivatives

Robin Chapman

11 November 2011

Let I be an interval, and f be a function from I to \mathbf{R}. For $a \in I$ we say that f is differentiable at a if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists. If so we denote this limit by $f^{\prime}(a)$. Of course, we say that f is differentiable on I if it is differentiable at all $a \in I$. Then the function f^{\prime} is called the derivative of f. Another way of writing the definition of differentiablity is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided this limit exists.
It is convenient sometimes in the theory to use an equivalent but more roundabout-seeming definition. We claim that f is differentiable at a if and only if there is a function $\varphi: I \rightarrow \mathbf{R}$ such that both

- $f(x)=f(a)+(x-a) \varphi(x)$ for all x, and
- φ is continuous at a.

Also $\varphi(a)=f^{\prime}(a)$. Note that $\varphi(x)$ must equal $(f(x)-f(a)) /(x-a)$ when $x \neq a$. To define $\varphi(a)$ so that φ is continuous at a then we must have

$$
\varphi(a)=\lim _{x \rightarrow a} \varphi(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

As a consequence, $f(x) \rightarrow f(a)+(a-a) \varphi(a)=f(a)$ as $x \rightarrow a$ and so if f is differentiable at a it is continuous there.

Combining differentiable functions via the standard arithmetic operations gives differentiable functions. That is if f and g are differentiable at a then so are $f+g, f-g, f g$ and f / g; moreover the derivatives are what you think
they are. (Of course for f / g we need $g(a) \neq 0$; then it follows that $g(x) \neq 0$ when x is close enough to a). The sum and difference rules are very easy to prove, so I'll look at the product and quotient rules in detail.

As f and g are differentiable at a then there are functions φ and ψ, continuous at a with $f(x)=f(a)+(x-a) \varphi(x)$ and $g(x)=g(a)+(x-a) \psi(x)$; moreover $\varphi(a)=f^{\prime}(a)$ and $\psi(a)=g^{\prime}(a)$. To prove differentiability of $f g$ at a, consider

$$
\begin{aligned}
& \frac{f(x) g(x)-f(a) g(a)}{x-a} \\
= & \frac{(f(a)+(x-a) \varphi(x))(g(a)+(x-a) \psi(x))-f(a) g(a)}{x-a} \\
= & \varphi(x) g(a)+f(a) \psi(x)+(x-a) \varphi(x) \psi(x) .
\end{aligned}
$$

As $\varphi(x) \rightarrow \varphi(a)=f^{\prime}(a)$ as $x \rightarrow a$ (since φ is continuous at a) and similarly $\psi(x) \rightarrow g^{\prime}(a)$ as $x \rightarrow a$ then

$$
\frac{f(x) g(x)-f(a) g(a)}{x-a} \rightarrow f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
$$

as $x \rightarrow a$. This means that $f g$ is differentiable at a with derivative $f^{\prime}(a) g(a)+$ $f(a) g^{\prime}(a)$.

We can write f / g as $f(1 / g)$ and so using the product rule we can reduce the quotient rule to the case of $1 / g$. This time we consider

$$
\begin{aligned}
\frac{g(x)^{-1}-g(a)^{-1}}{x-a} & =-\frac{g(x)-g(a)}{(x-a) g(a) g(x)} \\
& =-\frac{(x-a) \psi(x)}{(x-a) g(a) g(x)}=-\frac{\psi(x)}{g(a) g(x)} .
\end{aligned}
$$

As $x \rightarrow a$ then $\psi(x) \rightarrow g^{\prime}(a)$ and $g(x) \rightarrow g(a)$ (since g is continuous at a). Hence

$$
\frac{g(x)^{-1}-g(a)^{-1}}{x-a} \rightarrow-\frac{g^{\prime}(a)}{g(a)^{2}}
$$

so that $1 / g$ is differentiable at a with derivative $-g^{\prime}(a) / g(a)^{2}$.
A similar argument proves the "chain rule" for the differentiability of the composite of two functions. Let $f: I \rightarrow \mathbf{R}$ and $g: J \rightarrow \mathbf{R}$ be functions such that $g \circ f$ makes sense, and suppose that f is differentiable at a and g at $f(a)$. Then $f(x)=f(a)+(x-a) \varphi(x)$ and $g(y)=g(f(a))+(y-f(a)) \psi(y)$ where φ is continuous at a, ψ is continuous at $f(a)$; moreover $\varphi(a)=f^{\prime}(a)$ and $\psi(f(a))=g^{\prime}(f(a))$. We now consider

$$
\frac{g(f(x))-g(f(a))}{x-a}=\frac{g(f(a))+(f(x)-f(a)) \psi(f(x))-g(f(a))}{x-a}
$$

$$
=\frac{(x-a) \varphi(x) \psi(f(x))}{x-a}=\varphi(x) \psi(f(x)) .
$$

As $x \rightarrow a$ then $f(x) \rightarrow f(a), \varphi(x) \rightarrow \varphi(a)=f^{\prime}(a)$ and $\psi(f(x)) \rightarrow \varphi(f(a))=$ $g^{\prime}(f(a))$. Therefore

$$
\frac{g(f(x))-g(f(a))}{x-a} \rightarrow f^{\prime}(a) g^{\prime}(f(a))
$$

which is the familiar "chain rule".
There is also a rule for calculating the derivative of an inverse function. Suppose that $f: I \rightarrow \mathbf{R}$ is a continuous increasing (or decreasing) function, and that f is differentiable at some $a \in I$ with $f^{\prime}(a) \neq 0$. Let F be the inverse function of f. Write $b=f(a)$ and $f(I)=J$. Let $\left(y_{n}\right)$ be a sequence of points in J converging to b, and with each $y_{n} \neq b$. Write $x_{n}=F\left(y_{n}\right)$. Then $a=F(b), x_{n} \neq a$ and by the continuity of $F, x_{n} \rightarrow a$. Then

$$
\frac{F\left(y_{n}\right)-F(b)}{y_{n}-b}=\frac{x_{n}-a}{f\left(x_{n}\right)-f(a)} \rightarrow \frac{1}{f^{\prime}(a)} .
$$

Hence $F^{\prime}(b)$ exists and equals $1 / f^{\prime}(a)$.
Derivatives are often used to detect local maxima or minima. Suppose that f is defined $(a, b), c \in(a, b), f^{\prime}(c)$ exists and f is maximized over (a, b) at c, that is $f(x) \leq f(c)$ for all $x \in(a, b)$. Then there is a sequence $\left(c_{n}\right)$ of points in (a, b) converging to c with each $c<c_{n}<b$. Then

$$
\frac{f\left(c_{n}\right)-f(c)}{c_{n}-c} \leq 0
$$

and so

$$
f^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{f\left(c_{n}\right)-f(c)}{c_{n}-c} \leq 0
$$

Similarly there is a sequence $\left(c_{n}^{\prime}\right)$ of points in (a, b) converging to c with each $c>c_{n}^{\prime}>a$, which leads to $f^{\prime}(c) \geq 0$. Hence $f^{\prime}(c)=0$ and the argument adapts to the case of a local minimum too.

It's essential that we look at "interior" points of intervals here. On a closed interval a function may be maximized or minimized at the endpoints where the derivative may be nonzero.

Applying the Boundedness theorem and this maximum/minimum corollary leads to Rolle's theorem:

If $a<b, f$ is continuous on $[a, b]$ and differentiable on (a, b) and moreover $f(a)=f(b)$ then there is $c \in(a, b)$ with $f^{\prime}(c)=0$.

For a proof see my last year's "proofs of major theorems". An almost immediate corollary is the Mean Value Theorem"

$$
\text { If } a<b, f \text { is continuous on }[a, b] \text { and differentiable on }(a, b)
$$ then there is $c \in(a, b)$ with $f(b)-f(a)=f^{\prime}(c)(b-a)$.

This is most usefully applied when we know numbers m and M such that $m \leq f^{\prime}(x) \leq M$ for all $x \in(a, b)$. Then $m(b-a) \leq f(b)-f(a) \leq M(b-a)$. A corollary is that if $f^{\prime}(x)>0$ on an interval then f is strictly increasing there.

Another way of writing the Mean Value theorem is that

$$
f(a+h)=f(a)+h f^{\prime}(a+t h)
$$

for some $0<t<1$, where f is continuous and differentiable on the interval between a and $a+h$. There is a more precise "second mean value theorem" stating that

$$
f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2} f^{\prime \prime}\left(a+t_{1} h\right)
$$

where $0<t_{1}<1$ under the hypothesis that f is twice differentiable between x and $x+h$. There is an " n-th mean value theorem" also known as Taylor's theorem (with remainder term).

