MAS2010
UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE \& MATHEMATICS

DEPARTMENT OF MATHEMATICAL SCIENCES

ANALYSIS

Examiner: Professor A. Langer

Answer Section A (50\%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline.
Calculators labelled as approved by the
Department of Mathematical Sciences may be used.

SECTION A

1. (a) Find the set of real numbers x satisfying

$$
\begin{equation*}
\frac{-3}{x-4} \leq x \tag{5}
\end{equation*}
$$

(b) Find the set of real numbers x satisfying

$$
\begin{equation*}
|2 x+1| \leq|3 x-6| . \tag{5}
\end{equation*}
$$

(c) If $\sum_{n=1}^{\infty} a_{n} z^{n}$ has finite radius of convergence R, what is the radius of convergence of $\sum_{n=1}^{\infty} a_{n} z^{2 n}$? Give a proof of your answer.
(d) Compute the supremum and infimum of the function

$$
\begin{equation*}
f(x)=\frac{x^{2}}{1+x^{2}} \text { on } \mathbb{R} . \tag{6}
\end{equation*}
$$

(e) Determine whether or not the following series are convergent

$$
\begin{equation*}
\text { (i) } \quad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}, \quad \text { (ii) } \quad \sum_{n=1}^{\infty} \frac{(2+n)}{\sqrt{4 n^{2}-1}} \text {. } \tag{10}
\end{equation*}
$$

(f) Calculate $\lim _{n \rightarrow \infty} x_{n}$ in each of the following cases

$$
\begin{equation*}
\text { (i) } \quad x_{n}=\frac{\cos \left(n^{2}\right)}{\sqrt{n^{2}+n}}, \quad \text { (ii) } \quad x_{n}=\frac{(3 n+1)^{2}}{\sqrt{4 n^{4}+1}} . \tag{8}
\end{equation*}
$$

(g) Calculate the radius of convergence R of the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ in each of the following cases:

$$
\begin{equation*}
\text { (i) } \quad a_{n}=\frac{(2 n)!}{(n!)^{2}}, \quad \text { (ii) } \quad a_{n}=\frac{2^{n}}{3^{n}+1} \tag{12}
\end{equation*}
$$

SECTION B

2. (a) Show that a convergent sequence $\left(a_{n}\right)$ is bounded.
(b) (i) Let $a_{n}=1+(-1)^{n}$. Show that (a_{n}) diverges.
(ii) Let $\left(a_{n}\right), a_{n}>0$ be a sequence with $a_{n} \longrightarrow a$. Show that the sequence $\left(\sqrt{a_{n}}\right)$ is convergent and determine its limit.
(iii) Let $\left(a_{n}\right),\left(b_{n}\right)$ be sequences with $a_{n} \longrightarrow a, b_{n} \longrightarrow b$.

Show that the sequences $\left(\max \left(a_{n}, b_{n}\right)\right),\left(\min \left(a_{n}, b_{n}\right)\right)$ and $\left(\left|a_{n}\right|\right)$ are convergent and $\max \left(a_{n}, b_{n}\right) \longrightarrow \max (a, b)$, $\min \left(a_{n}, b_{n}\right) \longrightarrow \min (a, b),\left|a_{n}\right| \longrightarrow|a|$.
(c) Prove that $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\lim _{n \rightarrow \infty}\left(a_{n}\right) \cdot \lim _{n \rightarrow \infty}\left(b_{n}\right)$ provided that $\left(a_{n}\right)$, $\left(b_{n}\right)$ are convergent sequences with $\lim _{n \rightarrow \infty}\left(a_{n}\right)=a, \lim _{n \rightarrow \infty}\left(b_{n}\right)=b$.
3. (a) (i) State (without proof) the Intermediate Value Theorem for continuous functions on closed bounded intervals.
(ii) Prove that the equation

$$
\begin{equation*}
f(x)=x \cdot \sin ^{2} x-\cos x=0 \tag{12}
\end{equation*}
$$

has at least 4 solutions in $[-2 \pi, 2 \pi]$.
(b) Show that a function that is differentiable at a, is also continuous at a. Give a counterexample to show that the converse statement (continuous \Rightarrow differentiable) is not true.
(c) Show that the function

$$
\begin{equation*}
f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x)=|x|^{n} \tag{5}
\end{equation*}
$$

is differentiable at 0 for all $n \in \mathbb{N}, n>1$.
4. (a) Compute the derivatives of the following functions

$$
\begin{equation*}
\text { (i) } \quad f(x)=\exp \left(\frac{1-x^{2}}{1+x^{2}}\right), \quad \text { (ii) } \quad g(x)=\log (\log x), x>1 . \tag{8}
\end{equation*}
$$

(b) Prove L' Hôpital's rule which states that if f and g are functions which are differentiable on an open interval I containing a such that $f(a)=g(a)=0$ and $g^{\prime}(x) \neq 0$ except perhaps at a, then

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{9}
\end{equation*}
$$

provided the second limit exists.
Use L'Hôpital's rule to compute
(i) $\lim _{x \rightarrow 0} \frac{3 x-\sin x}{x}$,
(ii) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$.

