MAS2010

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS

MATHEMATICAL SCIENCES

ANALYSIS

May/June 2006
Time allowed: 2 HOURS.

Examiner: Professor A. Langer

This is a CLOSED BOOK examination.
The mark for this module is calculated from 75% of the percentage mark for this paper plus 25% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

SECTION A

1. (a) Find the set of real numbers x satisfying

$$
\begin{equation*}
\frac{x}{x-1} \leq \frac{2 x+3}{x+3} \tag{5}
\end{equation*}
$$

expressing your answer in interval notation.
(b) Find positive numbers k and N with

$$
\begin{equation*}
\left|\frac{n-3}{3 n^{2}-1}\right|<\frac{k}{n} \text { for all } n \geq N . \tag{4}
\end{equation*}
$$

(c) State the limit of the sequence $\left(\frac{2 n^{2}+4 n+2}{3 n^{2}-2 n-2}\right)$.

Prove that your answer is indeed the limit:
(i) from the definition; and
(ii) using the Theorem on the Algebra of Limits of Sequences.
(d) Find the supremum and infimum, where they exist, of the set

$$
\begin{equation*}
\{x+|x-1|: x \in \mathbb{R}\} . \tag{6}
\end{equation*}
$$

(e) Determine the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(n!)^{2} x^{2 n}}{(2 n)!} . \tag{8}
\end{equation*}
$$

(f) Use appropriate tests to decide which of the following series is convergent and which is divergent.

$$
\begin{equation*}
\text { (i) } \quad \sum_{n=1}^{\infty} \frac{1+\sin (n)}{3^{n}+2 n^{3}}, \quad \text { (ii) } \quad \sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}+1} \text {. } \tag{12}
\end{equation*}
$$

(g) For the following statements either give a general proof or give a counterexample.
(i) If a function is continuous then it is differentiable.
(ii) If a sequence is bounded then it converges.

SECTION B

2. (a) State the definition of " $a_{n} \rightarrow l$ as $n \rightarrow \infty$ ", and the definition of "the sequence (a_{n}) is bounded".
Prove from these definitions that a convergent sequence is bounded.
(b) Prove that
(i) if $|x|<1$ then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$;
(ii) if $x=1$ then $x^{n} \rightarrow 1$ as $n \rightarrow \infty$;
(iii) if $x=-1$ then the sequence (x^{n}) diverges;
(iv) if $|x|>1$ then the sequence (x^{n}) diverges.
(c) Prove that one of the following statements is true and the other is false.
(i) If $x_{n} \rightarrow 1$ as $n \rightarrow \infty$, then $\left(x_{n}^{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
(ii) If $0<r<1$ and $x_{n} \rightarrow r$ as $n \rightarrow \infty$, then $\left(x_{n}^{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
3. (a) (i) State (without proof) the Intermediate Value Theorem for continuous functions on closed bounded intervals.
(ii) Prove that the equation $f(x)=2 x \cos x-\sin x=0$ has at least 5 solutions in $[-2 \pi, 2 \pi]$. (Hint: Consider $f(k \pi)$ for $k=-2,-1,0,1,2)$.
(b) State, and prove, the Fixed Point Theorem for a continuous function from the closed interval $[0,1]$ to itself.
(c) Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Explain (no proofs required) why the function $g(x)=(f(x))^{2}$ is a continuous function from $[0,1]$ into $[0,1]$. Hence use the Fixed Point Theorem to show that there is a number c with $0 \leq c \leq 1$ and $f(c)=\sqrt{c}$.
4. (a) State (without proof) Rolle's Theorem. Use this to prove Cauchy's Mean Value Theorem, which states that if f and g are differentiable on (a, b) and continuous on $[a, b]$ then, provided $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, there exists a $c, a<c<b$, such that

$$
\begin{equation*}
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} \tag{8}
\end{equation*}
$$

(b) Prove L'Hôpital's rule, which states that if f and g satisfy the hypotheses of Cauchy's Mean Value Theorem, and if x_{0} satisfies $a<x_{0}<b$ and $f\left(x_{0}\right)=g\left(x_{0}\right)=0$, then

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { provided the latter limit exists. } \tag{6}
\end{equation*}
$$

(c) Let $p(x)$ be a polynomial satisfying $p(-1)=2, p(0)=-1$, $p(1)=0, p^{\prime}(2)=p(2)=0$, and $p(3)=0$.
Show that there are three distinct numbers $c_{1}, c_{2}, c_{3} \in(-1,3)$ with $p^{(2)}\left(c_{i}\right)=0$ for $i=1,2,3$.
(d) Use L'Hôpital's rule to evaluate

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\cot x\right) . \tag{5}
\end{equation*}
$$

