## MAS2010

## UNIVERSITY OF EXETER

# SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS 

## MATHEMATICAL SCIENCES

May/June 2007
ANALYSIS
Module Leader: Professor A. Langer
Duration: 2 HOURS.
The mark for this module is calculated from $75 \%$ of the percentage mark for this paper plus $25 \%$ of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B ( $25 \%$ for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

## SECTION A

1. (a) Find the set of real numbers $x$ satisfying

$$
\begin{equation*}
\frac{3}{x-4}<-x \tag{5}
\end{equation*}
$$

(b) Find the set of real numbers $x$ satisfying

$$
\begin{equation*}
\left|x^{2}+x-4\right|=2 \tag{5}
\end{equation*}
$$

(c) Show that if $\left(x_{n}\right)$ is a sequence with $x_{n} \leq b$ for all $n$ and $\lim _{n \rightarrow \infty} x_{n}=L$, then $L \leq b$.
(d) Compute the supremum and infimum of the function

$$
\begin{equation*}
f(x)=\frac{x}{1+|x|}, \text { with } x \in \mathbb{R} \tag{6}
\end{equation*}
$$

(e) Determine whether or not the following series are convergent
(i) $\sum_{n=1}^{\infty} \frac{\sin \left(2^{n}\right)}{2^{n}}$
(ii) $\sum_{n=1}^{\infty} \frac{n-3}{\sqrt{2+9 n^{6}}}$.
(f) Calculate $\lim _{n \rightarrow \infty} x_{n}$ in each of the following cases

$$
\begin{equation*}
\text { (i) } \quad x_{n}=\sqrt{n+1}-\sqrt{n} \quad \text { (ii) } \quad x_{n}=\frac{(n+3)!}{n!n^{3}} \tag{8}
\end{equation*}
$$

(g) Calculate the radius of convergence $R$ of the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ in each of the following cases
(i) $a_{n}=\frac{3 n+4}{2^{n}}$
(ii) $\frac{(2 n)!}{n^{n}}$.

## SECTION B

2. (a) Show that the product of a nullsequence and a bounded sequence is again a nullsequence.
(b) Find examples of sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that $b_{n}>0$ for all $n$, $a_{n} \longrightarrow 0, b_{n} \longrightarrow 0$ and
(i) $\frac{a_{n}}{b_{n}} \longrightarrow l$ where $l$ is a prescribed number;
(ii) $\frac{a_{n}}{b_{n}} \longrightarrow \infty$;
(iii) $\frac{a_{n}}{b_{n}} \longrightarrow-\infty$;
(iv) the sequence $\left(\frac{a_{n}}{b_{n}}\right)$ is bounded but does not converge.
(c) Prove that one of the following statements is true and that the other is false.
(i) If $x_{n} \longrightarrow 1$ as $n \longrightarrow \infty$, then $\left(x_{n}^{n}\right) \longrightarrow 1$ as $n \longrightarrow \infty$.
(ii) If $0<r<1$ and $x_{n} \longrightarrow r$ as $n \longrightarrow \infty$, then $\left(x_{n}^{n}\right) \longrightarrow 0$ as $n \rightarrow \infty$.
3. (a) (i) State (without proof) Rolle's Theorem for differentiable functions on closed bounded intervals.
(ii) Investigate the number of (real) roots of each of the polynomials

$$
\begin{equation*}
p(x)=x^{3}+3 x+1 \text { and } q(x)=x^{3}-3 x+1 \tag{12}
\end{equation*}
$$

(b) Let

$$
f(x)= \begin{cases}\frac{\sin x}{x} & \text { for } x<0 \\ \cos x & \text { for } x \geq 0\end{cases}
$$

Show that $f$ is continuous at 0 (and hence continuous everywhere).
(c) Let $f$ be a differentiable function on $(a, b)$. Show that if $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f$ is a constant function.
4. (a) Find the derivatives of the functions
(i) $f(x)=x^{x}$ for $x>0$
(ii) $x^{10} \sin \frac{1}{x}$ for $x>0$.
(b) Prove L' Hôpital's rule which states that if $f$ and $g$ are functions which are differentiable on an open interval I containing a such that $f(a)=g(a)=0$ and $g^{\prime}(x) \neq 0$ except perhaps at $a$, then

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{9}
\end{equation*}
$$

provided the second limit exists.
(c) Use L'Hôpital's rule to compute
(i) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
(ii) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-\frac{x}{2}}{x^{2}}$.

