MAS2101

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS

MATHEMATICAL SCIENCES

January 2008 ANALYSIS

Module Leader: Dr M. Saïdi

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

- (a) Prove that if x is irrational and y is rational then x+y is irrational. (6)
 - (b) Prove that the following series converges:

$$\sum_{n=1}^{\infty} \frac{2^n \sqrt{n}}{3^n}.$$
(7)

(c) Find the limit of

$$f(x) = \frac{x \cos x}{x^3 + 1}$$

when x tends to infinity.

- (d) Let $f:[a,b] \to \mathbb{R}$ be a function which is continuous and differentiable on [a, b]. Suppose that f attains its maximum at a point c, that is $f(c) = \sup\{f(x) \mid x \in [a,b]\}$. Prove that f'(c) = 0.(6)
- (e) Find the radius of convergence of the power series:

$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{(n+1)^2} x^n. \tag{7}$$

(f) Say whether the following set is open:

$$D = \{ z \in \mathbb{C} \mid |z| < 1 \}.$$

Justify your assertion.

- (6)(g) Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ be a polynomial with
- real coefficients, that is $a_i \in \mathbb{R}$ for all $0 \leq i \leq n$. Prove that if $z_0 \in \mathbb{C}$ satisfies $P(z_0) = 0$ then $P(\overline{z_0}) = 0$. (6)
- (h) State the Cauchy-Riemann equations. Verify them for the function $f: \mathbb{C} \to \mathbb{C}$ defined by $f(z) = iz^2 + 2z$. (6)

[50]

(6)

SECTION B

2. (a) Define the sequence $(a_n)_{n\geq 1}$ inductively by $a_1=\frac{3}{2}$, and

$$a_{n+1} = \frac{1}{4}(a_n^2 + 3)$$

for all $n \geq 2$. Prove that $1 < a_n < 3$ for all $n \geq 1$. Prove that the sequence (a_n) is monotonic decreasing. Deduce that the sequence (a_n) converges and find its limit.

(10)

- (b) Prove that the equation $2\sin x = x^2 1$ has a solution x which satisfies 1 < x < 2. Prove that this solution is unique. (10)
- (c) Compute the derivative of the function $f(x) = \sin^{-1}(e^{-x^2-1})$, where $\sin^{-1}: [-1,1] \to [\frac{-\pi}{2}, \frac{\pi}{2}]$ is the inverse of the sine function. (5)

[25]

3. (a) Evaluate the following limit:

$$\lim_{x \to 1} \frac{(x-1)^3}{\log x}.$$

(6)

- (b) Let A and B be two nonempty subsets of \mathbb{R} that are bounded above, and write $A + B = \{a + b \mid a \in A, b \in B\}$. Prove that A + B is bounded above and that $\sup(A + B) = \sup A + \sup B$. (10)
- (c) State the Mean Value Theorem. Prove that if a function

$$f:[a,b]\to\mathbb{R}$$

is differentiable, and f'(x) > 0 for all $x \in [a, b]$, then f is a strictly increasing function on [a, b] (Hint: use the Mean Value Theorem).

(9) [**25**]

- - (a) Find, in polar form, the complex numbers z ∈ C satisfying the equation: z³ = 1 i.
 (b) Prove the following: if f: A → C, where A ⊂ C is an open subset,

is continuous at $z_0 \in \mathbb{C}$ and $f(z_0) \neq 0$ then there exists $\delta > 0$ such that $f(z) \neq 0$ for all $z \in D(z_0, \delta) \cap A$. (9)

(c) Prove that

$$\left| \int_{\gamma} \frac{dz}{3+z^3} \right| \le \frac{\pi}{2},$$

where γ is the upper half of the unit circle traversed once anticlockwise.

(8) [**25**]