ECM2701

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTING AND MATHEMATICS

MATHEMATICAL SCIENCES

January 2009
Analysis
Module Leader: Dr M. Saïdi
Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Determine the supremum and infimum of the following set

$$
\begin{equation*}
S=\left\{1+(-1)^{n} \frac{1}{n}, n \geq 1, n \text { integer }\right\} \tag{8}
\end{equation*}
$$

(b) Determine whether the following series converges

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} . \tag{6}
\end{equation*}
$$

Justify your answer.
(c) Evaluate the following limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{\sin x^{2}} \tag{8}
\end{equation*}
$$

(d) Say whether the following set is open:

$$
\begin{equation*}
D=\left\{z \in \mathbb{C}| | z \left\lvert\,<\frac{1}{2}\right.\right\} . \tag{8}
\end{equation*}
$$

Justify your answer.
(e) Find in polar form all the solutions to the equation $z^{3}=1+i$.
(f) State the Cauchy-Riemann equations. Verify them for the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
f(z)=2 z^{2}+i z . \tag{10}
\end{equation*}
$$

SECTION B

2. (a) Define the sequence $\left(a_{n}\right)_{n \geq 0}$ inductively by $a_{0}=0$, and

$$
a_{n+1}=\frac{3 a_{n}+1}{a_{n}+3}
$$

for all $n \geq 0$. Prove that $0 \leq a_{n}<1$ for all $n \geq 0$. Prove that the sequence $\left(a_{n}\right)$ is monotonic increasing. Deduce that the sequence $\left(a_{n}\right)$ converges and find its limit.
(b) Let f be continuous on $[a, b]$, and suppose that $f(c) \neq 0$ for some $c \in[a, b]$. Show that there exists a $\delta>0$ with the property that $f(x) \neq 0$ for all $x \in[a, b]$ such that $|x-c|<\delta$.
(c) Compute the derivative of the function

$$
f(x)=\sin ^{-1}\left(e^{-x^{2}-1}\right)
$$

where $\sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is the inverse of the sine function.
3. (a) Let A be a set of positive real numbers with infimum $\beta>0$. Define

$$
B=\left\{\left.\frac{1}{a} \right\rvert\, a \in A\right\} .
$$

Show that B has a supremum. What is its value? Justify your answer.
(b) State the Mean Value Theorem. Prove that if a function

$$
f:[a, b] \rightarrow \mathbb{R}
$$

is differentiable, and $f^{\prime}(x)<0$ for all $x \in[a, b]$, then f is a strictly decreasing function on $[a, b]$.
(c) Find the derivative of the function

$$
\begin{equation*}
f(x)=\cos \left[\log \left(1+x^{2}\right)\right] . \tag{5}
\end{equation*}
$$

4. (a) Show that the set

$$
\begin{equation*}
\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\} \tag{9}
\end{equation*}
$$

is an open set.

$$
\text { Page } 3 \text { of } 4 \quad \text { ECM2701/continued ... }
$$

(b) Evaluate the integral

$$
\begin{equation*}
\int_{\gamma} \sin 2 z d z \tag{6}
\end{equation*}
$$

where γ is the line segment joining $i+1$ to $-i$.
(c) Let γ be the arc of the circle $\{|z|=2\}$, traversed once anticlockwise, that lies in the first quadrant $\{z \in \mathbb{C} \mid \operatorname{Im}(z) \geq$ $0, \operatorname{Re}(z) \geq 0\}$. Show that

$$
\begin{equation*}
\left|\int_{\gamma} \frac{d z}{z^{2}+1}\right| \leq \frac{\pi}{3} \tag{10}
\end{equation*}
$$

