ECM2701

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTING AND MATHEMATICS

MATHEMATICAL SCIENCES

May/June 2010

Analysis

Module Leader: Dr M. Saïdi

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

- 1. (a) Show that if x is rational and y is irrational then x+y is irrational. (8)
 - (b) Determine whether the following series converges:

$$\sum_{n=1}^{\infty} \frac{2^n \sqrt{n}}{3^n}.$$

Justify your answer.

(6)

(c) Evaluate the following limit

$$\lim_{x \to 0} \frac{\cos x - 1}{2x^2}.$$

(8)

(d) Say whether the following set is closed:

$$D = \{ z \in \mathbb{C} \mid |z| \ge \frac{1}{3} \}.$$

Justify your answer.

(8)

- (e) Find in polar form all the solutions to the equation $z^4 16i = 0$. (10)
- (f) State the Cauchy-Riemann equations. Verify them for the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$f(z) = z^2 - 2iz.$$

(10)

[50]

SECTION B

2. (a) Define the sequence $(a_n)_{n\geq 1}$ inductively by $a_1=\frac{3}{2}$, and

$$a_{n+1} = \frac{1}{4}(a_n^2 + 3)$$

for all $n \ge 1$. Prove that $1 < a_n < 3$ for all $n \ge 1$. Prove that the sequence (a_n) is monotonic decreasing. Deduce that the sequence (a_n) converges and find its limit.

- (b) Prove that the equation $2\sin x = x^2 1$ has a solution x which satisfies 1 < x < 2. Show that this solution is unique. (10)
- (c) Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{2^{n+1}}{(n+1)^2} x^n.$$

(5) [**25**]

(10)

3. (a) Let A and B be non-empty sets of real numbers with supremums $\alpha = \sup A$, and $\beta = \sup B$, respectively. Define the set

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Show that the set A + B has a supremum. Find the supremum of A + B. (10)

- (b) State the Intermediate Value Theorem. Let $f:[0,1] \to \mathbb{R}$, and $g:[0,1] \to \mathbb{R}$, be continuous functions. Assume that f(0) < g(0) and f(1) > g(1). Show that there exists 0 < x < 1 such that f(x) = g(x).
- (c) Find the derivative of the function

$$f(x) = \sin[\log(x + x^2)].$$

(5)

[25]

4. (a) Evaluate the integral

$$\int_{\gamma} \sin 2z \ dz$$

where γ is the line segment joining i + 1 to -i. (10)

Page 3 of 4 ECM2701/continued ...

- (b) Let $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ be a polynomial with real coefficients, that is $a_i \in \mathbb{R}$ for all $0 \le i \le n$. Prove that if $z_0 \in \mathbb{C}$ satisfies $P(z_0) = 0$ then $P(\overline{z_0}) = 0$. (5)
- (c) Let γ be the arc of the circle $\{|z|=2\}$, traversed once anti-clockwise, that lies in the first quadrant $\{z\in\mathbb{C}\mid Im(z)\geq 0,\ Re(z)\geq 0\}$. Show that

$$\left| \int_{\gamma} \frac{dz}{z^2 + 1} \right| \le \frac{\pi}{3}.$$

(10)

[25]