ECM2701

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

January 2011

Analysis
Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Find irrational numbers a and b such that $a+b$ is rational. Also find irrational numbers c and d such that $c d$ is rational.
(b) Find the greatest lower bound and the least upper bound (if they exist) of the set

$$
\begin{equation*}
A=\left\{(-1)^{n} /\left(n^{2}+1\right): n \in \mathbf{Z}\right\} . \tag{8}
\end{equation*}
$$

(c) Determine whether the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n+\sin n}{\sqrt{n^{4}+1}} \tag{8}
\end{equation*}
$$

converges.
(d) Prove that the equation

$$
\begin{equation*}
e^{x}=2 \cos x \tag{10}
\end{equation*}
$$

has exactly one solution in the interval $\left[0, \frac{\pi}{2}\right]$.
(e) Compute

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{x-\sin x}{\sinh ^{3} x} \tag{10}
\end{equation*}
$$

(f) Find all complex solutions of the equation

$$
\begin{align*}
z^{8} & =16 \\
\text { expressing each in the form } z & =x+i y \tag{10}
\end{align*}
$$

SECTION B

2. (a) What is an absolutely convergent series? Prove that each absolutely convergent series is convergent. (You may assume the comparison test for series with non-negative terms).
(b) Define a sequence $\left(a_{n}\right)$ recursively by $a_{1}=2$ and

$$
a_{n+1}=4-\frac{3}{a_{n}} .
$$

Prove that $1<a_{n}<3$ for all n and that $\left(a_{n}\right)$ is increasing. Hence prove that $\left(a_{n}\right)$ is convergent and find its limit.
(c) Determine the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n!(2 n)!}{(3 n)!} x^{n} . \tag{8}
\end{equation*}
$$

3. (a) State Rolle's theorem and the mean value theorem. Assuming Rolle's theorem, prove the mean value theorem.
(b) Using the mean value theorem, or otherwise, prove that

$$
\begin{equation*}
1-\cos t<t \sin t \tag{5}
\end{equation*}
$$

whenever $0<t<\frac{\pi}{2}$.
(c) Prove that the function f defined by

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin (1 / x) & \text { if } x \neq 0 ; \tag{10}\\
0 & \text { if } x=0
\end{array}\right.
$$

is differentiable for all x but that f^{\prime} is not continuous at 0 .
4. (a) Let f be a complex function and write

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

where u and v are real-valued functions. Prove that if f is analytic then the Cauchy-Riemann equations

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{11}
\end{equation*}
$$

hold.
(b) Evaluate the integral

$$
\begin{equation*}
\int_{\gamma} \cos z d z \tag{7}
\end{equation*}
$$

where γ is the line segment from $\frac{\pi}{4}-i$ to $\frac{\pi}{4}+i$.
(c) Prove that

$$
\begin{equation*}
\left|\int_{C} \frac{e^{z}}{4 z^{2}+1} d z\right| \leq \frac{2 \pi e}{3} \tag{7}
\end{equation*}
$$

where C is the unit circle (with centre 0 and radius 1).

