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For interest’s sake I talk about a few topics that are “beyond the scope
of the course” but only just. If I had some more time I might have lectured
on these.

Another definition of continuity

The definition of continuous function I gave in the lectures is not the one
found in most texts (although it is in Bryant’s Yet Another Introduction to
Analysis). The definition I gave is that a function f : A → R is continuous
at a point a ∈ A if

lim
n→∞

f(an) = f(a) whenever lim
n→∞

an = a.

This definition is often called sequential continuity. The definition in most
books is often called ε-δ-continuity. Here it is:

the function f : A → R is continuous at a ∈ A if for each
ε > 0 there is δ > 0 such that if x ∈ A and |x − a| < δ then
|f(x)− f(a)| < ε.

A similar definition is often used for limits of functions too.
I used the sequential continuity definition for two reasons:

(a) the ε-δ definition appears more complicated;

(b) we have previously done a lot of work on sequences, and it makes sense
to exploit that.

If you read other texts or lecture notes, you may worry that the different
definition of continuity may matter in some way. The good news is that it
doesn’t.
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Theorem. A function f : A → R is sequentially continuous at a point a ∈ A
if and only if it is ε-δ-continuous at a.

Proof Suppose first that f is sequentially continuous at a. In order to derive
a contradiction assume that f is not ε-δ-continuous at a. Then there is ε > 0
such that for all δ > 0 there is some x ∈ A such that |x − a| < δ but that
|f(x) − f(a)| ≥ ε. For each n ∈ N this is true for δ = 1/n. Hence for each
n ∈ N there is xn ∈ A such that |xn − a| < 1/n and |f(xn) − f(a)| ≥ ε.
But then the sequence (xn) converges to a and the sequence (f(xn)) does not
converge to f(a). So f is not sequentially continuous at a, a contradiction.
So sequential continuity implies ε-δ-continuity.

Conversely suppose that f is ε-δ-continuous at a. Let (xn) be a sequence
of points in A converging to a. To prove that f is sequentially continuous at a,
it suffices to prove that the sequence (f(an)) converges to f(a). Let ε > 0.
Then there is δ > 0 such that if x ∈ A and |x−a| < δ then |f(x)−f(a)| < ε.
Now eventually |xn − a| < δ, so eventually |f(xn) − f(a)| < ε. As this is
true for all ε > 0, then (f(xn)) converges to f(a). Hence f is sequentially
continuous at a.

Derivatives of power series

I omitted the proof that a function defined by a power series is differentiable.
This was not because the proof was particularly hard, but rather the details
are a bit fiddly. I give a proof here.

Theorem. Let the power series

f(x) =
∞∑

n=0

anx
n

have radius of convergence R. If |x0| < R then f is differentiable at x0 with
derivative ∞∑

n=1

nanx
n−1
0 .

Proof We define power series

g(x) =
∞∑

n=1

nanx
n−1

and

h(x) =
∞∑

n=2

n|an|(n− 1)xn−2.
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To prove the theorem, we need to prove that the series for g(x) converges for
|x| < R, and that

lim
x→x0

f(x)− f(x0)

x− x0

= g(x0).

The idea is to prove that there is some number C such that∣∣∣∣∣f(x)− f(x0)

x− x0

− g(x0)

∣∣∣∣∣ ≤ C|x− x0|

at least when x is close enough to x0. The details are, alas, a bit awkward.
We first prove the convergence of g. Suppose that |x| < R. Then there

is x1 with |x| < x1 < R. The series
∑∞

n=0 anx
n
1 converges. It follows that

the sequence (anx
n
1 ) is bounded. So there is M such that |anx

n
1 | ≤ M for all

n ∈ N. Therefore

|nanx
n−1| = n|anx

n−1
1 ||x/x1|n−1 ≤ n

M

x1

|x/x1|n−1.

As |x/x1| < 1, the ratio test shows that the series

∞∑
n=1

n|x/x1|n−1

is convergent. By comparison, the series

∞∑
n=1

nanx
n−1

is absolutely convergent.
Repeating the above argument with g playing the rôle of f proves that

the series for h(x) converges for |x| < R.
If |x0| < R, |x| < R and x 6= x0 then

f(x)− f(x0) =
∞∑

n=0

anx
n −

∞∑
n=0

anx
n
0 =

∞∑
n=0

an(xn − xn
0 ) =

∞∑
n=1

an(xn − xn
0 ).

Therefore

f(x)− f(x0)

x− x0

=
∞∑

n=1

an
xn − xn

0

x− x0

=
∞∑

n=1

an

n−1∑
j=0

xn−1−jxj
0

where I have used the identity

xn − xn
0 = (x− x0)(x

n−1 + xn−1x0 + · · ·+ xn−1
0 ) = (x− x0)

n−1∑
j=0

xn−1−jxj
0.
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Then

f(x)− f(x0)

x− x0

− g(x0) =
∞∑

n=1

an

n−1∑
j=0

xn−1−jxj
0 −

∞∑
n=1

nanx
n−1
0

=
∞∑

n=1

an

n−1∑
j=0

xn−1−jxj
0 − nxn−1

0


=

∞∑
n=2

an

n−1∑
j=0

(xn−1−jxj
0 − xn−1

0 )

=
∞∑

n=2

an

n−1∑
j=0

xj
0(x

n−1−j − xn−j−1
0 )

= (x− x0)
∞∑

n=2

an

n−1∑
j=0

xj
0

n−2−j∑
k=0

xn−2−j−kxk
0.

(You see what I mean about the details being fiddly). Note that I shifted
the start of the summation from n = 1 to n = 2 as the n = 1 term cancels
out. There is a number y such that |x0| < y < R. If in addition |x| < y then∣∣∣∣∣f(x)− f(x0)

x− x0

− g(x0)

∣∣∣∣∣ ≤ |x− x0|
∞∑

n=2

∣∣∣∣∣∣an

n−1∑
j=0

xj
0

n−2−j∑
k=0

xn−2−j−kxk
0

∣∣∣∣∣∣
≤ |x− x0|

∞∑
n=2

|an|
n−1∑
j=0

yj
n−2−j∑

k=0

yn−2−j−kyk

= |x− x0|
∞∑

n=2

|an|
n−1∑
j=0

n−2−j∑
k=0

yn−2

= |x− x0|
∞∑

n=2

|an|
n−1∑
j=0

(n− j − 1)yn−2

= |x− x0|
∞∑

n=2

|an|
n(n− 1)

2
yn−2

=
|x− x0|

2
h(y).

If (xn) is a sequence converging to x0, with xn 6= x0 then eventually |xn| < y.
Eventually then, ∣∣∣∣∣fn(x)− f(x0)

xn − x0

− g(x0)

∣∣∣∣∣ ≤ h(y)

2
|xn − x0|.

As xn → x0 then
f(xn)− f(x0)

xn − x0

→ g(x0).
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Hence f ′(x0) exists and equals g(x0).
As an immediate corollary f is continuous in the interval (−R,R). Iter-

ating the argument shows that f is differentiable any number of times in this
interval, and that the k-th derivative of f is given by

f (k)(x) =
∞∑

n=k

n!

(n− k)!
anx

n−k.

Cauchy’s mean value theorem and l’Hôpital’s rule

L’Hôpital’s rule always seems popular with students. It has what I’ll call a
weak and a strong version. The weak version is easier to prove.

Theorem. Let f and g be continuous and differentiable functions on an
interval I. Let a ∈ I and suppose that f(a) = g(a) = 0. Assume that
g′(x) 6= 0 for all x ∈ I. Then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Proof As f(a) = g(a) = 0 then for x 6= a

f(x)

g(x)
=

f(x)− f(a)

g(x)− g(a)
=

f(x)− f(a)

x− a

(
g(x)− g(a)

x− a

)−1

.

By the algebra of limits, as

lim
x→a

f(x)− f(a)

x− a
= f ′(a) and lim

x→a

g(x)− g(a)

x− a
= g′(a)

then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

(To be pedantic, we needn’t worry about the possibility g(x)− g(a) = 0;
this is impossible by Rolle’s theorem and the nonvanishing of g′.)

There is a stronger version of l’Hôpital’s rule, that can be iterated. The
above version can’t be applied when g′(a) = 0.

The proof of the strong version depends on Cauchy’s mean value theorem,
which is a generalization of the vanilla mean value theorem.

Theorem. Let f and g be continuous functions on the interval [a, b]. Suppose
also that f and g are differentiable on (a, b) and that g′ is nonzero on (a, b).
Then there is t ∈ (a, b) with

f(b)− f(a)

g(b)− g(a)
=

f ′(t)

g′(t)
.
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The vanilla mean value theorem is the special case with g(x) = x. As
with the mean value theorem, this is proved using a cunning application of
Rolle’s theorem.
Proof We remark that the statement makes sense: we cannot have g(b) −
g(a) = 0 for then by Rolle’s theorem there would be c ∈ (a, b) with g′(c) = 0,
contrary to hypothesis.

Define
h(x) = (f(b)− f(a))g(x)− (g(b)− g(a))f(x).

Then

h(a) = (f(b)− f(a))g(a)− (g(b)− g(a))f(a) = f(b)g(a)− g(b)f(a)

and

h(b) = (f(b)− f(a))g(b)− (g(b)− g(a))f(b) = −f(a)g(b) + g(a)f(b).

Therefore h(a) = h(b). As h is continuous on [a, b] and differentiable on (a, b)
then by Rolle’s theorem there is t ∈ (a, b) with h′(t) = 0. But

h′(t) = (f(b)− f(a))g′(t)− (g(b)− g(a))f ′(t)

and so
(f(b)− f(a))g′(t) = (g(b)− g(a))f ′(t).

Equivalently
f(b)− f(a)

g(b)− g(a)
=

f ′(t)

g′(t)
.

One consequence of Cauchy’s mean value theorem is L’Hôpital’s rule. I
give a careful statement and proof.

Theorem. Let f and g be continuous functions on an interval I. Let a ∈ I
and suppose that f(a) = g(a) = 0. Assume that f and g are differentiable at
all points of I save possibly a and that g′(x) 6= 0 for all x ∈ I with x 6= a. If

L = lim
x→a

f ′(x)

g′(x)

exists, then

lim
x→a

f(x)

g(x)
= L.
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Proof Let (xn) be a sequence of numbers in I converging to a with xn 6= a for
all n. By Cauchy’s mean value theorem, for each n there is some tn between
a and xn such that

f(xn)− f(a)

g(xn)− g(a)
=

f ′(tn)

g′(tn)
.

As f(a) = g(a) = 0, this says that

f(xn)

g(xn)
=

f ′(tn)

g′(tn)
.

Since |tn − a| < |xn − a| and xn → a it follows that tn → a. Hence

f ′(tn)

g′(tn)
→ lim

x→a

f ′(x)

g′(x)
= L

and so
f(xn)

g(xn)
→ L.

We conclude that

lim
x→a

f(x)

g(x)
= L.

The advantage of the strong form of l’Hôpital’s rule is that it can be
iterated. Suppose f and g are nice functions with lots of derivatives. If
f ′(a) = g′(a) = 0 the weak form is flummoxed, but with the strong form we
can turn the handle again:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= lim

x→a

f ′′(x)

g′′(x)

and so on.
However I don’t like l’Hôpital’s rule. If one needs to iterate the procedure

more than once, the higher derivatives of f and g can become cumbersome.
The l’Hôpital fan is urged to try evaluating the limit

lim
x→0

sin x− sinh x

x log(1 + x) log(1− x)

using l’Hôpital’s rule. As I demonstrated in the lectures, this example yields
very easily to my favoured method. This is to write

lim
x→a

f(x)

g(x)
= lim

x→0

f(x + a)

g(x + a)
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and then expand f(x + a) and g(x + a) as power series in x. In fact, we only
need the first nonzero term in the numerator and denominator.

Another annoyance I find is circular reasoning involving l’Hôpital’s rule.
I spent a while in the lectures using geometric arguments to prove that

lim
x→0

sin x

x
= 1. (∗)

Over the years I have been often asked why one can’t just use l’Hôpital’s
rule to prove this. The argument is apparently simple: take f(x) = sin x,
g(x) = x and a = 0 in the weak form of l’Hôpital’s rule to get

lim
x→0

sin x

x
= lim

x→0

f(x)

g(x)
=

f ′(0)

g′(0)
=

cos 0

1
= 1.

But this uses the fact that sin′ 0 = 1. That means that

lim
x→0

sin x− sin 0

x− 0
= 1

which is precisely the assertion that

lim
x→0

sin x

x
= 1.

So prove (∗) via l’Hôpital’s rule we need to use the fact that (∗) is true! This
temptation towards implicit circular reasoning is yet another reason I dislike
l’Hôpital’s rule.

Decimals

I will only deal with decimal expansions of numbers between 0 and 1. In
general you get other real numbers by adding integers to these.

To me, a decimal expansion 0·a1a2a3 · · · is a just a sequence (an) of digits,
that is, each an ∈ D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Thus 0 · a1a2a3 · · · amounts
to a mapping n 7→ an from N to D. The value of 0 · a1a2a3 · · · is defined to
be the sum of the series ∞∑

n=1

an

10n
.

This series of nonnegative terms is convergent by comparison with the geo-
metric series ∞∑

n=1

9

10n
.
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We use 0 · a1a2a3 · · · as notation for its value, that is

0 · a1a2a3 · · · =
∞∑

n=1

an

10n
.

In particular when all an = 9 we have

0 · 999 · · · =
∞∑

n=1

9

10n
=

9

10

1

1− 1/10
= 1.

In general
0 = 0 · 000 · · · ≤ 0 · a1a2a3 · · · ≤ 0 · 999 · · · = 1.

Any number x with 0 < x < 1 and having a finite decimal expansion, has
two decimal expansions, one ending in a sequence of zeroes and the other in
a sequence of nines. For example

0 · 436 = 0 · 436000 · · · = 0 · 435999 · · · .

We claim that every number in [0, 1] has a decimal expansion. We have
seen this is the case for 0 and 1 so let 0 < x < 1. We define a sequence (an)
recursively such that an ∈ D and

0 ≤ x−
n∑

k=1

ak

10k
< 1. (∗)

To define a1 consider 10x. Then 0 < 10x < 10 so let a1 be the integer
part of 10x, namely the largest integer with a1 ≤ 10x. Then a1 ∈ D and
a1 ≤ 10x < a1 + 1, that is 0 ≤ 10x− a1 < 1 or

0 ≤ x− a1

10
<

1

10
.

Suppose that a1, . . . , an have been defined. Let bn =
∑n

k=1 ak/10k. Then

0 ≤ 10nx− 10nbn < 1

so that
0 ≤ 10n+1x− 10n+1bn < 10.

Let an+1 be the integer part of 10n+1x− 10n+1bn. Then an+1 ∈ D and

0 ≤ 10n+1x− 10n+1bn − an+1 < 1.

Hence

0 ≤ x−
(
bn +

an+1

10n+1

)
<

1

10n+1
.
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But

bn +
an+1

10n+1
=

n∑
k=1

ak

10k
+

an+1

10n+1
=

n+1∑
k=1

ak

10k

so that

0 ≤ x−
n+1∑
k=1

ak

10k
<

1

10n+1
.

This gives the induction step, so there is a decimal expansion 0 · a1a2a3 · · ·
such that (∗) holds for all n.

From (∗) it is apparent that∣∣∣∣∣x−
n∑

k=1

ak

10k

∣∣∣∣∣ < 1

10n
.

Hence the sequence (x−∑n
k=1 ak/10k) is a null sequence and so

x =
∞∑

k=1

ak

10k
= 0 · a1a2a3 · · ·

has a decimal expansion.
Of course there is nothing special about decimals. The obsession with

the base ten stems from an accidental fact of primate physiology. One could
repeat the above with ten replaced by any integer b ≥ 2. The set of digits
would be Db = {0, 1, . . . , b− 1} and the result is that every number x ∈ [0, 1]
has a representation

x =
∞∑

n=1

an

bn

with each n ∈ Db. Again for largely accidental reasons, there is a minor
cultural obsession with the case b = 2,
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