Analysis: harder questions

This sheet is entirely optional; it consists of more challenging examples (more challenging than I would expect to set on an exam)

- 1. Let A be a nonempty subset of \mathbb{N} . Prove that A has a least element. (It's clear that A has a greatest lower bound a; you need to show that $a \in A$.)
- 2. Determine whether each of the following series are convergent:

(a)
$$\sum_{n=1}^{\infty} (1 - \cos(1/n));$$
 (b) $\sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2};$

(c)
$$\sum_{n=0}^{\infty} \frac{e^n n!}{n^n};$$
 (d)
$$\sum_{n=0}^{\infty} \frac{n^n}{e^n n!}.$$

- 3. Prove that the sequence $(\sin n)$ is divergent.
- 4. Prove that the sequence (a_n) defined by

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

is increasing and bounded, and so convergent. (It converges to e).

5. The Cauchy condensation test states that:

Let (a_n) be a decreasing sequence of positive numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{m=1}^{\infty} 2^m a_{2^m}$ converges.

Prove it.

- 6. Let (a_n) be a divergent series of real numbers. Prove that (a_n) has either
 - a subsequence diverging to ∞ , or
 - a subsequence diverging to $-\infty$, or
 - two subsequences converging to different limits.
- 7. Consider a sequence (P_n) not of numbers, but of points in the plane (you can write $P_n = (x_n, y_n)$ where x_n and y_n are real numbers). Give suitable definitions for *convergence* and *boundedness* for such a sequence, and prove that a bounded sequence (P_n) of points in the plane has a convergent subsequence.

8. Let (a_n) be a convergent sequence with limit L. We define a new sequence (b_n) by

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

Prove that (b_n) also converges to L.

9. Find a continuous function on the interval $[0, \infty)$ with range (-1, 1).