Previous exams: hints and outline solutions

Robin Chapman

23 November 2011

Throughout "bookwork" refers to standard theory, convered in lectures (and also in standard texts).

2009/2010

1(a) Show that if both x and $x+y$ are rational then so is y.
1(b) Convergent: ratio test.
1 (c) This is basically 1 (d) on sheet 2 .
1(d) I am not covering closed sets this year, but you might instead try to decide whether $\{z \in \mathbf{C}:|z|>1 / 3\}$ is an open set.
$1(\mathrm{e})$ This is a standard type of example, question 16 of sheet 2 has three examples like this. It's an excellent follow-up to give the solutions in $x+i y$ form, but this will need finding sines/cosines of some "non-standard" angles. 1(f) The Cauchy-Riemann equations are bookwork. For the example expand out $(x+y i)^{2}-2 i(x+y i)$ into real and imaginary parts, and compute their partial derivatives.
2(a) Prove the bound $1<a_{n}<3$ by induction: it's easy to show that $1<a<3$ implies $1<\frac{1}{4}\left(a^{2}+3\right)<3$. To show the sequence is decreasing, express $a_{n}-a_{n+1}$ in terms of a_{n}; you get a quadratic in a_{n} which factorizes and so should clearly be positive when $1<a_{n}<3$. Bounded monotone sequences converge, and the limit A satisfies $A=\frac{1}{4}\left(A^{2}+3\right)$ - this gives a quadratic equation for A only one of whose roots is a possible limit.
2(b) For existence apply the intermediate value theorem to $f(x)=2 \sin x-$ $\left(x^{2}-1\right)$. For uniqueness, consider $f^{\prime}(x)$ and show it's negative between $x=1$ and $x=2$ (so that f is strictly decreasing there).
2(c) Radius of convergence $1 / 2$ by the ratio test.
3(a) Ugh! the plural of the Latin word supremum is suprema. It's what I call the least upper bound. Anyway this is question 4 of sheet 1 and the answer is of course $\alpha+\beta$.

3(b) The intermediate value theorem is bookwork. Apply it to $h(x)=f(x)-$ $g(x)$.
3(c) This is A-level calculus (chain rule), not really second year University analysis.
4(a) Best done via fundamental theorem of calculus: $\sin 2 z=f^{\prime}(z)$ where $f(z)=-\frac{1}{2} \cos 2 z$. Then the integral equals $f(-i)-f(1+i)$. This can be expanded out using $\cos (2+2 i)=\frac{1}{2}\left(e^{2+2 i}+e^{-2-2 i}\right)$ and $\cos (-2 i)=\cos (2 i)=$ $\cosh (2)$ etc.
4(b) I didn't do any examples like this, but it follows from the facts that conjugation respects addition and multiplication (so that $\overline{z^{n}}=\bar{z}^{n}$ etc.). Also $\overline{a_{j}}=a_{j}$ as a_{j} is real (I can't say I like the use of i as a subscript when dealing with complex numbers). If you are particularly fastidious, write the proof as an induction on n.
4(c) Prove that $\left|1 /\left(z^{2}+1\right)\right| \leq 1 / 3$ for z on γ (using $\left.\left|z^{2}+1\right| \geq\left|z^{2}\right|-1=3\right)$ and that γ has length π.

2008/2009

1(a) Compare sheet 1, question 1(b). The results here are 1 more than those in the example, by the same method.
1 (b) Yes, by the ratio test. The limit of a_{n+1} / a_{n} is $1 / 4$.
1(c) 1: use the power series for the sine and exponential functions (or L'Hôpital if you really must).
1(d) This is an open disc, which I do in general in lectures.
1(e) This is very similar to question 16 of problem sheet 2 , especially part (b). For that reason, I won't say more.
$1(\mathrm{f})$ This is virtually identical to $1(\mathrm{f})$ of $2009 / 2010$.
2(a) Compare question 21 of sheet 1 . The method is the same. The limit satisfies $L=(3 L+1) /(L+3)$ which is a quadratic equation.
2(b) This is a question which is I must admit is easier with the "epsilon-delta" definition of continuity rather than the "sequential" definition I useed.

Were there no such δ then for each n there would be $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)=0$ and $\left|x_{n}-c\right|<1 / n$. Then $\left(x_{n}\right) \rightarrow c$ and $f\left(x_{n}\right)=0 \rightarrow 0 \neq f(c)$ contradicting continuity.
2(c) This is A-level calculus (chain rule).
3(a) Compare question 5 of sheet 1 . This is the same with lub and glb interchanged, but the argument is eassentially the same.

3(b) The mean value theorem is bookwork. Apply it to f on the interval $[c, d]$ where $a \leq c<d \leq b$ to prove that $f(c)-f(d)<0$.
3(c) Another A-level calculus question!
4(a) This is very similar to sheet 2 , question 21 . The same method works (with appropriate changes).
4(b) Identical to 4(a) of 2009/2010!
4(c) Identical to 4(c) of 2009/2010!

2007/2008

1(a) Identical to 1 (a) of 2009/2010!
1(b) Identical to 1 (b) of $2009 / 2010$!
1(c) 0: note that $\cos x$ is bounded, and show that $x /\left(x^{3}+1\right) \rightarrow 0$ as $x \rightarrow \infty$.
1 (d) This is bookwork: part of the proof of Rolle's theorem.
1 (e) $1 / 3$: by the ratio test.
1(f) This is an open disc, which I do in lectures.
1 (g) Identical to 4(b) of 2009/2010!
1(h) Virtually identical to 1 (f) of 2009/2010.
2(a) Identical to 2(a) of 2009/2010!
2(b) Identical to 2(b) of 2009/2010!
2(b) Identical to 2(c) of 2008/2009!
3(a) 0 : by the substitution $x=1+y$ we get

$$
\lim _{x \rightarrow 1} \frac{(x-1)^{3}}{\log x}=\lim _{y \rightarrow 0} \frac{y^{3}}{\log (1+y)}
$$

and use the power series for $\log (1+y)$ or (if you must) L'Hôpital's rule.
3(b) Identical to 3(a) of 2009/2010!
3(c) Virtually identical to 3(b) of 2008/2009.
4(a) Virtually identical to 1 (e) of 2008/2009.
4(b) Very similar to 2(b) of 2008/2009 with a complex function instead of a real function. The same proof works.
4(c) Use $1 /\left|3+z^{3}\right| \leq 1 / 2$ on γ and that γ has length π.

