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A power series is a series

f(x) =
∞∑
n=0

anx
n (∗)

considered as a function of x. Some texts also call a series such as

∞∑
n=0

an(x− c)n

a power series with centre c, but I shall largely stick to the definition (∗).
Natural questions concerning power series inculde: for which x does the

series converge? what sort of function does it define? is it continuous? differ-
entiable? etc.

Understanding convergence is relatively easy. Of course a power series
always converges for x = 0. If (∗) converges for x = x0 6= 0 then it converges
absolutely for all x ∈ (−|x0|, |x0|) since then the sequence (|anxn0 |) is bounded
above, and so then

∑
anx

n converges by comparison with the geometric series∑ |x/x0|n. It follows that if (∗) does converge for some nonzero x, it either
converges absolutely for all x, or else there is R > 0 such that it converges
absolutely for |x| < R and diverges for |x| > R. This R is the radius of
convergence and we write R = 0 if f(x) only converges for x = 0 and R =∞
if it converges for all x. To prove R exists, we consider the least upper bound
of the set of r for which f(x) converges on the interval (−r, r).

An application of the ratio test proves that

R = lim
n→∞

∣∣∣∣∣ anan+1

∣∣∣∣∣
provided this limit exists. (We allow ∞ as a “limit” in this context). This
works for most of the standard power series.
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If a power series has radius of convergence R > 0 it defines a function on
(−R,R) and we can ask whether this function is continuous, differentiable
and so on. In fact it is, and its derivative is exactly what one would expect.
However the proof is quite tricky if we start from first principles (see my
“extra topics” document from last year). So to work up to it I start with
what I call the “shifting theorem” (I don’t think anyone else calls it that)
which states that if f(x) is given by a power series then for x0 inside its
radius of convergence then g(t) = f(x0 + t) is also given by a power series.
More precisely

Let f(x) =
∑∞
n=0 anx

n be a power series with radius of conver-
gence R > 0 and suppose that |x0| < R. Then for |t| < R− |x0|,

f(x0 + t) =
∞∑
k=0

fk(x0)t
k

where

fk(x0) =
∞∑
n=k

(
n

k

)
anx

n−k
0 .

To prove this just write

f(x0 + t) =
∞∑
n=0

an(x0 + t)n =
∞∑
n=0

n∑
k=0

(
n

k

)
anx

n−k
0 tk.

We would like to reverse the summation here and get

f(x0 + t) =
∞∑
k=0

∞∑
n=k

(
n

k

)
anx

n−k
0 tk =

∞∑
k=0

tk
∞∑
n=k

(
n

k

)
anx

n−k
0 =

∞∑
k=0

fk(x0)t
k.

However, this step is highly dubious — in general even when a double se-
ries

∑∞
m=0

∑∞
n=0 bm,n converges, the reversed double series

∑∞
n=0

∑∞
m=0 bm,n

may not converge, and even if it does, may converge to a different value
to
∑∞
m=0

∑∞
n=0 bm,n. But there is a theorem that if the double series is abso-

lutely convergent, that is
∑∞
m=0

∑∞
n=0 |bm,n| converges to (a finite) limit, then

indeed
∑∞
m=0

∑∞
n=0 bm,n and

∑∞
n=0

∑∞
m=0 bm,n converge to the same value. For-

tunately, that is the case here, as

∞∑
n=0

n∑
k=0

∣∣∣∣∣
(
n

k

)
anx

n−k
0 tk

∣∣∣∣∣ =
∞∑
n=0

|an|
n∑
k=0

(
n

k

)
|x0|n−k|t|k =

∞∑
n=0

|an|(|x0|+ |t|)n

which converges, since |x0|+ |t| < R.
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We now show that power series define differentiable (and so continuous)
functions. First we show that f(x) given by (∗) is differenitiable at 0, pro-
vided that R > 0, and has derivative a1. For x 6= 0 then

f(x)− f(0)

x
− a1 =

f(x)− a0
x

− a1 = x
∞∑
n=2

anx
n−2 = x

∞∑
m=0

am+2x
m = xg(x).

say. The power series g(x) has the same radius of convergence as f(x) (why?)
so we can pick a number r with 0 < r < R. Then

∑∞
m=0 am+2r

m converges
absolutely so let A =

∑∞
m=0 |am+2|rm. It’s clear that |g(x)| ≤ A for |x| < r.

If xn → 0 and xn 6= 0 then eventually 0 < |xn| < r so that eventually∣∣∣∣∣f(xn)− f(0)

xn
− a1

∣∣∣∣∣ = |xn||g(xn)| ≤ A|xn|.

By the squeeze principle (f(xn)− f(0))/xn → a1 and so f ′(0) = a1.
To prove that f ′(x0) exists whenever |x0| < R we use the “shifting the-

orem”. Then h(t) = f(x0 + t) =
∑∞
k=0 fk(x0)tk and so applying the above

case to this power series in t gives f ′(x0) = h′(0) = f1(x0). So f ′(x) exists
whenever |x| < R and

f ′(x) =
∞∑
n=1

nanx
n−1

as one would expect. From this proof it follows that if the series for f ′ has
radius of convergence R′, then R′ ≥ R, but this can also be proved directly.
Also using the comparison test it follows that R′ ≤ R so actually R′ = R.
Of course one can now iterate the argument: the m-th derivative f (m) exists
on (−R,R) for all m ∈ N.

One classic example of a power series is the exponential series

exp(x) =
∞∑
n=0

xn

n!

which converges for all x. From this series, it’s plain that exp′ = exp. For a ∈
R is we consider the function fa(x) = exp(x) exp(a−x) we find that f ′a(x) = 0
so that fa is constant: fa(x) = fa(0) = exp(a), that is exp(x) exp(a − x) =
exp(a). Putting a = x + y gives exp(x) exp(y) = exp(x + y) and so in
particular 1 = exp(x) exp(−x). Clearly exp(x) > 0 for x ≥ 0 so it follows
that exp(x) > 0 for all x. As exp′(x) = exp(x) > 0 then exp is strictly
increasing.

For x > 0, exp(x) > x so exp(x) → ∞ as x → ∞ and consequently
exp(x) → 0 as x → −∞. Indeed given any real α, there’s n ∈ N with
n > α and so if x > 1, exp(x) > xn/n! and exp(n)/xα > xn−α/n! so that
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exp(x)/xα → ∞ as x → ∞. This means that exp(x) “grows faster” than
any power of x.

The more fastidious texts on analysis treat sine and cosine in the same
way. If we define

S(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
and C(x) =

∞∑
n=0

(−1)n
x2n

(2n)!

then these series converge for all real x. If we let F (x) = S(x)2 +C(x)2 then
F ′(x) = 0 so that F is constant: S(x)2+C(x)2 = F (0) = 1. With much more
effort one shows that S and C are periodic and they have all the properties of
the sine and cosine functions: they indeed are the sine and cosine functions.

One useful application of power series is the evaluation of limits of the
form limc→0 f(x)/g(x). If one knows, or can find out, the power series for f
and g, or indeed even the first nonzero term of that power series, the limit
just drops out. As an example, consider

lim
x→0

cosx− coshx

sinx sinhx
.

The numerator is(
1− x2

2
+
x4

24
+ · · ·

)
−
(

1 +
x2

2
+
x4

24
+ · · ·

)
= −x2 +

x2

12
+ · · ·

and the denominator is(
x− x3

6
+ · · ·

)(
x+

x3

6
+ · · ·

)
= x2

(
1− x2

6
+ · · ·

)(
1 +

x2

6
+ · · ·

)
.

so that

cosx− coshx

sinx sinhx
=

−1 + x2/12 + · · ·
(1− x2/6 + · · ·)(1 + x2/6 + · · ·)

→ −1

as x→ 0. One can adapt this to more general limits by writing limx→a h(x) =
limy→0 h(a+ y).
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A Appendix: double series

In this section, I’ll use the usual notation for sequences starting the indexing
at 1. A double sequence (bm,n) is basically a map from N×N to R, that is
there is a number bm,n defined for all positive integers m and n. It can be
visualized as an infinite 2-dimensional array:

b1,1 b1,2 b1,3 b1,4 · · ·
b2,1 b2,2 b2,3 b2,4 · · ·
b3,1 b3,2 b3,3 b3,4 · · ·
b4,1 b4,2 b4,3 b4,4 · · ·

...
...

...
...

. . .

.

From this we can form the double series
∑∞
m=1

∑∞
n=1 bm,n and

∑∞
n=1

∑∞
m=1 bm,n.

For the first double series to converge, we need each series
∑∞
m=1 bm,n to

converge (these are the “row sums” in the above array) to cm say, and then
the series

∑∞
m=1 cm to converge. Likewise for

∑∞
n=1

∑∞
m=1 bm,n to converge, we

need every “column sum” to converge and also the sum of the column sums
to converge.

The problem with double series is that even if the first sum
∑∞
m=1

∑∞
n=1 bm,n

converges, the second sum
∑∞
n=1

∑∞
m=1 bm,n may not converge and even if it

does it may converge to a different value to the first sum. As a simple ex-
ample, define bm,m = 1, bm,m+1 = −1 and bm,n = 0 otherwise. This double
sequence looks like

1 −1 0 0 · · ·
0 1 −1 0 · · ·
0 0 1 −1 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

.

The row sums are all zero, so that
∑∞
m=1

∑∞
n=1 bm,n =

∑∞
m=1 0 = 0. But

the first column sum is 1 and the remaining column sums are zero so that∑∞
n=1

∑∞
m=1 bm,n = 1 +

∑∞
n=2 0 = 1. As a nice exercise you might prove that

given any two sequences, there’s a double sequence whose row sums form
your first sequence and whose column sums form your second sequence.

The big theorem is that double sums can be reversed as long as we have
absolute convergence. We say that

∑∞
m=1

∑∞
n=1 bm,n is absolutely convergent

if
∑∞
m=1

∑∞
n=1 |bm,n| is convergent. (Our previous example was certainly not

absolutely convergent. The main result is that if
∑∞
m=1

∑∞
n=1 bm,n is abso-

lutely convergent, then so is
∑∞
n=1

∑∞
m=1 bm,n and they converge to the same

value.
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To prove this we first assume that each bm,n ≥ 0. Let cm =
∑∞
n=1 bm,n be

the m-th row sum. Then the series
∑∞
m=1 cm is convergent. For each m and

n, 0 ≤ bm,n ≤ cm, so for each n the column sum dn =
∑∞
m=1 bm,n is convergent

by comparison with
∑∞
m=1 cm. For N ∈ N we have

N∑
n=1

dN =
N∑
n=1

∞∑
m=1

bm,n =
∞∑
m=1

N∑
n=1

bm,n.

We have reversed a summation here, but this is OK since one summa-
tion is finite, and we can prove this by induction on N . For each m and
N ,

∑N
n=1 bm,n ≤ cm and so

∑N
n=1

∑∞
m=1 bm,n ≤

∑∞
m=1 cm. The sequence(∑N

n=1

∑∞
m=1 bm,n

)∞
N=1

is bounded and increasing, so convergent. Hence
∑∞
n=1

∑∞
m=1 bm,n

converges to a limit; moreover that limit is at most
∑∞
m=1 cm =

∑∞
m=1

∑∞
n=1 bm,n.

We have show that
∑∞
n=1

∑∞
m=1 bm,n converges and that

∑∞
n=1

∑∞
m=1 bm,n ≤∑∞

m=1

∑∞
n=1 bm,n. Interchangingm and n in the above argument gives

∑∞
m=1

∑∞
n=1 bm,n ≤∑∞

n=1

∑∞
m=1 bm,n so that

∑∞
m=1

∑∞
n=1 bm,n =

∑∞
n=1

∑∞
m=1 bm,n.

To extend the result to general absolutely convergent series, we use the
same trick as in the proof that absolutely convergent series are convergent.
Write each bm,n = b+m,n − b−m,n. Then

∑∞
m=1

∑∞
n=1 b

+
m,n and

∑∞
m=1

∑∞
n=1 b

−
m,n

are absolutely convergent so we may reverse the summation in both, and so
on.
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