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Informally a sequence (an) is a list a1, a2, . . . of real numbers. More for-
mally it’s a map f : N → R where we write an instead of f(n). We call an
the n-th term of the sequence (an). (Sometimes we start the indexing of a
sequence at 0, or occasionally at some other starting value, e.g. a0, a1, . . . or
a4, a5, . . .).

The sequence (an) is increasing if an ≤ an+1 for all n and decreasing if
an ≥ an+1 for all n. It is strictly increasing if an < an+1 for all n and strictly
decreasing if an > an+1 for all n. A monotone sequence is one which is either
increasing or decreasing.

A sequence (an) is bounded above, if it has an upper bound, that is a
number A with an ≤ A for all n. Similarly it is bounded below, if it has a
lower bound, that is a number B with an ≥ A for all n. Also it is bounded if it
is both bounded above and bounded below, equivalently if there is a number
C with |an| ≤ C for all n. An increasing sequence is always bounded below
and a decreasing sequence is always bounded above.

Often a sequence may fail to have one of these properties, but only due
to a finite number of exceptional terms. So we say that a sequence (an)
eventually has a certain property P if there is some positive integer N such
that the sequence aN , aN+1, . . . has property P . For example the sequence
(an) given by an = (n− 4)2 is not increasing (as a1 > a2) but it is eventually
increasing (as an ≤ an+1 whenever n ≥ 4).

We now define the notion of convergence. The idea is that a sequence
(an) converges to a real number a if the sequence is eventually “close” to a.
However, this term “close” is vague. We can make it precise by choosing a
number ε > 0 and saying that a number x is ε-close to a if |x − a| < ε,
equivalently x ∈ (a− ε, a+ ε). A sequence is ε-close to a if all its terms are
ε-close to a and is eventually ε-close to a if all but finitely many of its terms
are ε-close to a. When the sequence (an) converges to a we call a the limit
of the sequence (an) and write a = limn→∞ an. (As an exercise you should
prove that a convergent sequence cannot have to different limits).
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A null sequence is a sequence that converges to 0. It follows straight from
the definition that a sequence (an) converges to a if and only if the sequence
(an − a) is a null sequence.

A sequence which converges to a limit is convergent, and a sequence which
is not convergent is divergent. A sequence (an) diverges to ∞ if for each
number A, all but finitely many terms of the sequence satisfy an > A. I’ll
leave you to write down the corresponding definition of a sequence diverging
to −∞. Please note that there are many divergent sequences which neither
diverge to ∞ nor to −∞, for example taking an = (−1)n.

One very useful lemma concerning limits is that they preserve “weak”
inequalities. More precisely, if (an) converges to a and an ≥ b for all n then
a ≥ b. (We could replace ≥ by ≤). To prove this suppose that a < b and
let ε = b − a. Then ε > 0 and the sequence (an) must be ε-close to a, that
is the terms an satisfy a − ε < an < a + ε for all but finitely many n. But
a+ ε = b so this means that an < b which is contrary to the hypothesis that
always an ≥ b. By contradiction, then a ≥ b.

An important example of a null sequence is (1/n). It is perhaps less
obvious than it looks that (1/n) converges to zero. To prove this we need
to prove that for each ε > 0 the sequence (1/n) is ε-close to zero. Consider
1/ε. Then 1/ε > 0 and by the Archimedean property there is N ∈ N with
N > 1/ε. If n ∈ N and n ≥ N then n ≥ N > 1/ε so that 1/n ≤ 1/N < ε.
As 1/n > 0 then certainly |1/n| < ε for n ≥ N and so the sequence (1/n)is ε-
close to 0. As this is true for all positive ε > 0 then (1/n) is a null sequence.
Note how essential the Archimedean property is here; in some sense it is
equivalent to the assertion that limn→∞ 1/n = 0.

While one can give arguments from first principles like the above to prove
what the limit of each convergent sequence is, it is good to have more sys-
tematic ways of proceeding in practice. The main method is the so-called
“algebra of limits”, which is the theorem that the arithmetic operations of
addition, subtraction, multiplication and division preserve convergence and
limits. To summarize: let (an) and (bn) be sequences with limits a and b
respectively. Then

• (an + bn) has limit a+ b,

• (an − bn) has limit a− b,

• (anbn) has limit ab and

• provided that bn 6= 0 for all n and also b 6= 0 then (an/bn) has limit
a/b.



In the last case, remember the maxim “thou shalt not divide by zero”! I will
prove these in the lectures.

One big result on sequences is that each bounded monotone sequence is
convergent. I’ll prove this for increasing sequences that are bounded above,
so let (an) be such a sequence. Define A = {an : n ∈ N}, the set of all
terms of the sequence. Then A has an upper bound since the sequence is
bounded above. By the Completeness Axiom, it has a least upper bound α
say. I claim that (an) converges to α. To prove this, let ε be any positive
real number, and let us aim to show that the sequence (an) is ε-close to α.
As α − ε < α then α − ε is not an upper bound of A (since α is the least
upper bound of A). So there is an element of A, say aN , with aN > α − ε.
For n ≥ N , an ≥ aN as (an) is increasing, so also an > α − ε. Also an ∈ A
so an ≤ α as α is an upper bound for A. So for n ≥ N , α − ε < an ≤ α so
that an is ε-close to α and the sequence (an) is eventually ε-close to α. The
conclusion is that (an) converges to α.

A subsequence of a sequence (an) is roughly speaking a sequence formed
by pulling out selected terms from (an) in the order they appear in the
original sequence. More formally let (kn) be a strictly increasing sequence
of positive integers. Then (akn) is a subsequence of (an). It’s an easy exercise
to prove that if a sequence converges to a limit, then each of its subsequences
converges to the same limit. So a sequence having subsequences converging to
different limits must be divergent. Thus there are two strategies for proving
that a sequence is divergent:

• prove that it has two subsequences converging to different limits,

• prove that it has a subsequence diverging to ∞ or to −∞.

Indeed one of these strategies will work on any divergent sequence.
A big result on subsequences is the Bolzano-Weierstrass theorem, which

states that each bounded sequence has a convergent subsequence. There’s a
proof in my 2010 handout “proofs of some major theorems” but I’ll give a
different proof in this year’s course. The Bolzano-Weierstrass theorem is one
of the most useful in analysis, and I’ll use it in proving some key theorems
on real functions.


