
Analysis: skeleton notes 3: sequences

Robin Chapman

14 October 2011

Informally a series is an “infinite sum”
∑∞

n=1 an of real numbers an. What
what does such an expression mean? The axioms for the reals allow us to
add pairs of numbers, and a finite sum such as

∑N
n=1 an makes sense as

(· · · ((a1 + a2) + a3) + · · ·+ aN−1) + aN . Of course using the associative and
commutative laws for addition it matters not how we bracket the terms, nor
even in which order we take them, so we write

∑N
n=1 an = a1 + a2 + · · ·+ aN .

But what about an infinite sum
∑∞

n=1 an? We divide such series into
convergent and divergent series by considering an associated sequence. Let
sN =

∑N
n=1 an. We call sN the N-th partial sum of the series. Consider the

sequence of partial sums (sN). We say that the series
∑∞

n=1 an is conver-
gent or divergent according to whether the sequence (sn) of partial sums is
convergent or divergent. If

∑∞
n=1 an is convergent its sum is limN→∞ sn =

limN→∞
∑N

n=1 an. So for a convergent series
∑∞

n=1 an the sum is the limit of
the sequence

a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4, . . . .

As with sequences we can start the indexing from a point other than n = 1,
so we see series like

∑∞
n=0 bn or

∑∞
n=5 cn etc.

One important and basic theorem on series is that if a series
∑∞

n=1 an is
convergent, then limn→∞ an = 0. To see this note that an = sn − sn−1 where
sn is the n-th partial sum of the series. As the series is convergent then the
sequence (sn) is convergent to s say. Then also (sn−1) converges to the same
limit s, and by the algebra of limits (an) = (sn−sn−1) converges to s−s = 0.

However the converse of this theorem is false. There are divergent series∑∞
n=1 an where an → 0. The classic example is the harmonic series

∑∞
n=1 1/n.

I will prove this series is divergent in the lectures.
A very important class of series is the geometric series

∑∞
n=0 r

n where r
is a fixed real number. If |r| ≥ 1 then it’s easy to see the series diverges.
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Suppose that |r| < 1. The N -th partial sum is

sN =
N∑

n=0

rn =
1− rN+1

1− r

and as |r| < 1, limN→∞ rN+1 = 0 leading to

∞∑
n=0

rn = lim
N→∞

sN =
1

1− r
.

This is perhaps the most crucial series evaluation in analysis; you must know
this and how to prove it.

If a series
∑∞

n=1 an has nonnegative terms (all an ≥ 0) then its partial sums
sN = a1 + · · · + aN form an increasing sequence; if the sequence of partial
sums is bounded above then the series converges, otherwise it diverges (to
∞). From this observation we deduce the comparison test for nonnegative
series:

• Let
∑∞

n=1 an and
∑∞

n=1 bn be series with 0 ≤ an ≤ bn for all n. If
∑∞

n=1 bn
is convergent, then

∑∞
n=1 an is convergent.

The proof is the observation that
∑N

n=1 an ≤
∑∞

n=1 bn so if the second series
converges, the partial sums of the first series are convergent, and as the first
series has nonnegative terms, the first series is convergent.

In practice, a “souped-up” version of the comparison test, the limit-
comparison test is more useful.

• Let
∑∞

n=1 an and
∑∞

n=1 bn be series with an > 0 and bn > 0 for all n.
Suppose also that the sequence bn/an converges to a (finite) nonzero
limit L. Then

∑∞
n=1 an is convergent if and only if

∑∞
n=1 bn is convergent.

To prove this, suppose that
∑∞

n=1 bn converges. Then an < (L + 1)bn with
only finitely many exceptions. We then apply the comparison test to

∑∞
n=1 an

and the convergent series
∑∞

n=1(L + 1)bn (if there are only finitely many n
with an ≥ (L+1)bn that doesn’t affect convergence). The proof that

∑∞
n=1 an

converges implies
∑∞

n=1 bn converges is similar.
Applying the limit test with the geometric series, gives in essence the

ratio test.

• Let
∑∞

n=1 an be a series of positive terms. Suppose that the sequence
(an+1/an) converges to a limit L. If L < 1 then

∑∞
n=1 an is convergent.

If L > 1 then
∑∞

n=1 an is divergent.
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Suppose first that L < 1. Choose a number r with L < r < 1. Then
for large enough n, say for n ≥ N , an+1/an < r and so for n ≥ N , an ≤
aNr

n−N . For all but finitely many n, then an ≤ (aNr
−N)rn (note that aNr

−N

is independent of n) and so we can use the fact that
∑∞

n=1 r
n converges to

see that
∑∞

n=1 an converges.
If L > 1 then for large enough n, an+1 > an, so the sequence (an) cannot

converge to 0 and
∑∞

n=1 an must be divergent.
A series

∑∞
n=1 an is absolutely convergent if

∑∞
n=1 |an| is convergent. As the

name suggests, an absolutely convergent series is always convergent, but the
proof isn’t so obvious: see my 2010 handout on “proofs of major theorems”.
One can deduce stronger versions of the comparison, limit-comparison and
ratio tests.

• If
∑∞

n=1 bn is convergent and |an| ≤ bn then
∑∞

n=1 an is (absolutely)
convergent.

• If
∑∞

n=1 bn is absolutely convergent, and the sequence (|an/bn|) con-
verges to a (finite) limit L then

∑∞
n=1 an is (absolutely) convergent.

• Suppose that the sequence (|an+1/an|) converges to a limit L. If L < 1
then the series

∑∞
n=1 an is (absolutely) convergent If L > 1 then the

series
∑∞

n=1 an is divergent.

A convergent sequence that is not absolutely convergent is conditionally
convergent. A nice theorem, which I won’t prove, states that re-arranging the
terms of an absolutely convergent series always gives an absolutely convergent
series with the same sum, but if you re-arrange the terms of a conditionally
convergent series, you can make the new series converge to any real number,
or make it diverge.

One convergence test that works even when the series is conditionally
convergent is Leibniz’s test or the alternating series test. An alternating
series is a series like 1 − 1/2 + 1/3 − 1/4 + 1/5 − · · · where the terms are
alternately positive and negative. More formally

∑∞
n=1 an is alternating if

an = (−1)n−1bn with each bn > 0. Leibniz’s test states that an alternating
series

∑∞
n=1(−1)nbn is convergent if both

• bn ≥ bn+1 for all n, and

• limn→∞ bn = 0.

I’ll sketch the proof, omitting some details. Let aN =
∑N

n=1(−1)nbn be the
N -th partial sum. Then s1 ≥ s3 ≥ s5 ≥ · · · and s2 ≤ s4 ≤ s6 ≤ · · · (proving
this uses bn ≥ bn+1). Both the sequences (s2N−1) and (s2N) are monotone
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and bounded (why)? so they converge to limits L1 and L2 respectively. But
L1−L2 = limN→∞ b2N = 0 so L1 = L2. As the “odd” partial sums and “even”
partial sums converge to the same limit, the whole sequence of partial sums
converges to that limit, so the series is convergent.
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