Basics of complex numbers

Robin Chapman

13 January 2012

This is a summary of the basic facts about complex numbers. I shall assume that everyone coming to this course already knows this material; I provide this only as a reminder and reference.

The set \mathbf{C} of complex numbers is defined as $\mathbf{C}=\{x+y i: x, y \in \mathbf{R}\}$ where $i^{2}=-1$. Addition, subtraction and multiplication of complex numbers (using $i^{2}=-1$) is straightforward.

We represent complex numbers as points in the Argand diagram of "complex plane". The complex number $z=x+y i$ is identified with the point whose Cartesian coordinates are (x, y).

The real part of $z=x+y i$ is $\operatorname{Re} z=x$, its imaginary part is $\operatorname{Im} z=y$ and its complex conjugate is $\bar{z}=x-y i$. Then $\overline{z+w}=\bar{z}+\bar{w}, \overline{z-w}=\bar{z}-\bar{w}$, $\overline{z w}=\overline{z w}$ and $\overline{\bar{z}}=z$. Also $z \bar{z}=x^{2}+y^{2} \geq 0$ and $z \bar{z}=0$ if and only if $z=0$. The absolute value of z is $|z|=\sqrt{z \bar{z}}$. If $z \neq 0$ and $w=\bar{z}|z|^{-2}$ then $z w=1$ so that z has a reciprocal (and \mathbf{C} is a field). Note that $|z-w|$ is the distance between points z and w in the Argand diagram.

One basic theorem in complex numbers is the triangle inequality: $|z+w| \leq$ $|z|+|w|$.

If z is a nonzero complex number then $w=z /|z|$ satisfies $|w|=1$. So w lies on the unit circle in the Argand diagram, that is the circle with centre 0 and radius 1. It follows that there is some real number θ with $w=\cos \theta+$ $i \sin \theta$. We write $e^{i \theta}$ for $\cos \theta+i \sin \theta$ and note that the addition identities for sine and cosine imply that $e^{i \theta} e^{i \phi}=e^{i(\theta+\phi)}$. We can then write $z=r e^{i \theta}$ where $r=|z|>0$ and θ in \mathbf{R}. Such a number θ is called an argument of z. The argument of z is not unique since $e^{i \theta}=e^{i(\theta+2 \pi)}$. However, z has a unique argument θ in the interval $(-\pi, \pi]$ which we call the principal argument and denote by $\operatorname{Arg} z$. The general argument of z is $\operatorname{Arg} z+2 k \pi$ where $k \in \mathbf{Z}$.

We define the complex exponential by $\exp (x+i y)=e^{x} e^{i y}=e^{x}(\cos y+$ $i \sin y)$ for $x . y \in \mathbf{R}$. Then $\exp (z+w)=\exp (z) \exp (w)$. For non-zero z, the equation $e^{w}=z$ has the general solution $w=\log |z|+i \arg z+2 k \pi i$ (where
$k \in \mathbf{Z})$. Then $\log |z|+i \operatorname{Arg} z$ is defined to be the principal logarithm $\log z$ of z.

Convergence of sequences and series of complex numbers are defined in much the same way as those of real numbers. A sequence $\left(z_{n}\right)$ of complex numbers converges to a limit z if for all $\varepsilon>0$ there is N such that $n \geq N$ implies $\left|z_{n}-w\right|<\varepsilon$. Then $\lim _{n \rightarrow \infty} z_{n}=w$ if and only if both $\lim _{n \rightarrow \infty} \operatorname{Re} z_{n}=$ Re w and $\lim _{n \rightarrow \infty} \operatorname{Im} z_{n}=\operatorname{Im} w$. Sums, differences, products and quotients (under the usual caveats) of convergent complex sequences are convergent. Again, a series $\sum_{n=1}^{\infty} z_{n}$ converges to z if and only if $\lim _{N \rightarrow \infty} \sum_{n=1}^{N} z_{n}=w$. As with real series, absolute convergence implies convergence.

We also consider complex functions: maps $f: A \rightarrow \mathbf{C}$ where $A \subseteq \mathbf{C}$ Limits and continuity for complex functions are defined in the same way as for real functions. For instance $f: A \rightarrow \mathbf{C}$ is continuous at $a \in A$ if and only if $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(a)$ for all sequences $\left(a_{n}\right)$ of points in A with $a_{n} \rightarrow a$. Again, continuity satisfies the same basic properties as for real functions: for example, sums, differences, products, quotients and composites of continuous functions (subject to the usual caveats) are continuous. As a consequence, polynomial functions are continuous, and so are rational functions where they are defined (where the denominator is nonzero).

The complex exponential function exp is continuous on C. Indeed $\exp (z)=$ $\sum_{n=0}^{\infty} z^{n} / n$!. For real x, as $e^{i x}=\cos x+i \sin x$ and $e^{-i x}=\cos x-i \sin x$ then $\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$ and $i \sin x=\frac{1}{2}\left(e^{i x}-e^{-i x}\right)$. We define the complex sine and cosine function using these formulae:

$$
\cos z=\frac{\exp (i z)+\exp (-i z)}{2}, \quad \sin z=\frac{\exp (i z)-\exp (-i z)}{2 i} .
$$

Then $\cos i z=\frac{1}{2}(\exp (z)+\exp (-z))=\cosh z$ and $\sin i z=-i \frac{1}{2}(\exp (-z)-$ $\exp (z))=i \sinh z$. This shows that although the sine and cosine are bounded on \mathbf{R} they are not bounded functions on \mathbf{C}.

