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This is a summary of the basic facts about complex numbers. I shall
assume that everyone coming to this course already knows this material; I
provide this only as a reminder and reference.

The set C of complex numbers is defined as C = {x + yi : x, y ∈ R}
where i2 = −1. Addition, subtraction and multiplication of complex numbers
(using i2 = −1) is straightforward.

We represent complex numbers as points in the Argand diagram of “com-
plex plane”. The complex number z = x + yi is identified with the point
whose Cartesian coordinates are (x, y).

The real part of z = x + yi is Re z = x, its imaginary part is Im z = y
and its complex conjugate is z = x−yi. Then z + w = z+w, z − w = z−w,
zw = zw and z = z. Also zz = x2 + y2 ≥ 0 and zz = 0 if and only if z = 0.
The absolute value of z is |z| =

√
zz. If z 6= 0 and w = z|z|−2 then zw = 1

so that z has a reciprocal (and C is a field). Note that |z−w| is the distance
between points z and w in the Argand diagram.

One basic theorem in complex numbers is the triangle inequality : |z+w| ≤
|z|+ |w|.

If z is a nonzero complex number then w = z/|z| satisfies |w| = 1. So w
lies on the unit circle in the Argand diagram, that is the circle with centre
0 and radius 1. It follows that there is some real number θ with w = cos θ+
i sin θ. We write eiθ for cos θ+ i sin θ and note that the addition identities for
sine and cosine imply that eiθeiφ = ei(θ+φ). We can then write z = reiθ where
r = |z| > 0 and θ in R. Such a number θ is called an argument of z. The
argument of z is not unique since eiθ = ei(θ+2π). However, z has a unique
argument θ in the interval (−π, π] which we call the principal argument and
denote by Arg z. The general argument of z is Arg z + 2kπ where k ∈ Z.

We define the complex exponential by exp(x + iy) = exeiy = ex(cos y +
i sin y) for x. y ∈ R. Then exp(z + w) = exp(z) exp(w). For non-zero z, the
equation ew = z has the general solution w = log |z| + i arg z + 2kπi (where
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k ∈ Z). Then log |z| + iArg z is defined to be the principal logarithm Log z
of z.

Convergence of sequences and series of complex numbers are defined in
much the same way as those of real numbers. A sequence (zn) of complex
numbers converges to a limit z if for all ε > 0 there is N such that n ≥ N
implies |zn−w| < ε. Then limn→∞ zn = w if and only if both limn→∞Re zn =
Rew and limn→∞ Im zn = Imw. Sums, differences, products and quotients
(under the usual caveats) of convergent complex sequences are convergent.
Again, a series

∑∞
n=1 zn converges to z if and only if limN→∞

∑N
n=1 zn = w.

As with real series, absolute convergence implies convergence.
We also consider complex functions: maps f : A → C where A ⊆ C

Limits and continuity for complex functions are defined in the same way as
for real functions. For instance f : A→ C is continuous at a ∈ A if and only
if limn→∞ f(an) = f(a) for all sequences (an) of points in A with an → a.
Again, continuity satisfies the same basic properties as for real functions: for
example, sums, differences, products, quotients and composites of continuous
functions (subject to the usual caveats) are continuous. As a consequence,
polynomial functions are continuous, and so are rational functions where they
are defined (where the denominator is nonzero).

The complex exponential function exp is continuous on C. Indeed exp(z) =∑∞
n=0 z

n/n!. For real x, as eix = cosx+ i sinx and e−ix = cosx− i sinx then
cosx = 1

2
(eix + e−ix) and i sinx = 1

2
(eix − e−ix). We define the complex sine

and cosine function using these formulae:

cos z =
exp(iz) + exp(−iz)

2
, sin z =

exp(iz)− exp(−iz)

2i
.

Then cos iz = 1
2
(exp(z) + exp(−z)) = cosh z and sin iz = −i1

2
(exp(−z) −

exp(z)) = i sinh z. This shows that although the sine and cosine are bounded
on R they are not bounded functions on C.
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