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Introduction to Complex Analysis Complex analysis is the study of functions involving complex numbers.

It has “real” applications, for example, evaluating integrals like

ˆ ∞
−∞

dx

1 + x2
= π

but contour integration easily gives us

ˆ ∞
−∞

cosx

1 + x2
dx =

π

e
.

Also we can derive results such as
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∞∑
n=1

1

n2
=
π2

6

∞∑
n=1

1

n4
=
π4

90

∞∑
n=1

1

n6
=

π6

945

etc.

Also complex analysis has applications to many other branches of mathematics from number theory to fluid
mechanics. For example, the Riemann ζ-function explains the distribution of prime numbers.

1 Review of Complex Numbers

1.1 Basics

The set of complex numbers, C is defined by

C =
{
x+ iy|x, y ∈ R, i2 = −1

}
.

Addition and subtraction are all easy, for example, if z = 3− i and w = 1 + 4i then

z + w = (3− i) + (1 + 4i) = 4 + 3i

z − w = (3− i)− (1 + 4i) = 2− 5i

zw = 3− i + 12i− 4i2

= 7 + 11i

Division is a bit trickier, but z
w = z

(
1
w

)
so division boils down to evaluating 1

x+iy .

The trick is similar to “rationalising the denominator”:

1

x+ iy
=

x− iy

(x+ iy)(x− iy)

=
x− iy

x2 + y2

=
x

x2 + y2
− y

x2 + y2
i.

Consider x2 + y2 for x, y ∈ R. Since x2 ≥ 0 and y2 ≥ 0, x2 + y2 ≥ 0 also, and x2 + y2 > 0 unless x2 = 0 and
, which can only happen if x = 0 and y = 0. So we can always divide by a complex number as long as it’s not
zero.

3
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Example
z = 3− i, w = 1 + 4i.

3− i

1 + 4i
=

(3− i) (1− 4i)

(1 + 4i) (1− 4i)

=
3− i− 12i− 4i2

12 + 42

=
−1− 13i

17

= − 1

17
− 13

17
i.

Jargon For z = x+ iy with x, y ∈ R,

• x = <(z) - the real part of z

• y = =(z) - the imaginary part of z

• x− iy = z = z? - the complex conjugate of z.

Also,

x =
(x+ iy) + (x− iy)

2

=⇒ <(z) = z + z?

2

and =(z) = z − z?
2

and

zz? = (x+ iy)(x− iy)

= x2 + y2

which is a non-negative real number.

Let |z| =
√
x2 + y2 =

√
zz? be the absolute value (or modulus) of z.

Note that

x2 ≤ x2 + y2

=⇒
√
x2 ≤

√
x2 + y2

=⇒ |x| ≤
√
x2 + y2

i.e. |<(z)| ≤ |z| and |=(z)| ≤ |z| .
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1.2 Argand diagram

Regard x+ iy as the point (x, y) in the Cartesian plane.

ℜ

ℑ

−3 + 2i

1 + i

0 + 0i

Addition and subtraction in C correspond to addition and subtraction of position vectors.

By Pythagoras’ theorem, |z| =
√
x2 + y2 is the distance from 0 to z in the Argand diagram!

Lemma If z, w ∈ C then

• (z ± w)? = z? ± w?

• (zw)? = z?w?

• (z/w)? = z?/w? if w 6= 0.

Idea of Proof Write z = x+ iy and w = u+ iv.

Note that (−i)2 = i2 = −1 in a formula is valid as long as all variables are real.

Corollary If z, w ∈ C then |zw| = |z| |w| .

Proof

|zw|2 = (zw)(zw)?

= zw · z?w?
= zz?ww?

= |z|2 |w|2

=⇒ |zw| = |z| |w| (taking square roots)

�
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Corollary (Triangle Inequality) If z, w ∈ C then

|z + w| ≤ |z|+ |w|

Proof (Estermann) If z + w = 0 then this is definitely true!

Otherwise assume z + w 6= 0. Then

z

z + w
+

w

z + w
= 1

=⇒ <
(

z

z + w

)
+ <

(
w

z + w

)
= 1

Also note that

<
(

z

z + w

)
≤
∣∣∣∣ z

z + w

∣∣∣∣ and <
(

w

z + w

)
≤
∣∣∣∣ w

z + w

∣∣∣∣
so

∣∣∣∣ z

z + w

∣∣∣∣+ ∣∣∣∣ w

z + w

∣∣∣∣ ≥ 1

=⇒ |z|+ |w| ≥ |z + w| (multiplying both sides by |z + w|).

�

The triangle inequality says that the length of a side of a triangle is at most the sum of the lengths of the other
two sides. Remember it, as it will be used a lot in this module!

ℜ

ℑ
z + w

z

|z + w| |z|

|w|

Also, another very useful inequality is

|z + w| ≥ |z| − |w|
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whose proof is a question on the problem sheet.

Let z 6= 0 and z ∈ C. Consider w = z/ |z|. then |w| = 1.

We claim there is some θ ∈ R such that w = cos θ + i sin θ.

If w is in the first quadrant:

ℜ

ℑ

θ

w

cos θ

si
n
θ

1

In general to get to the other 3 quadrants, we need θ outside the interval
[
0, π2

]
.

For example, if θ = 3π
4 then cos θ + i sin θ = − 1√

2
+ i√

2
, and if θ = −π

4 say, then cos θ + i sin θ = 1√
2
− i√

2
.

If θ > 0, cos θ + i sin θ is obtained by starting at the point 1 and rotating an angle θ anticlockwise. If θ < 0 we
get cos θ + i sin θ by starting at 1 and rotating clockwise through an angle |θ| .

A corollary to this is that each nonzero complex number has the form z = reiθ where r = |z| and eiθ is defined
to be cos θ + i sin θ. This is called the polar form of z.

Lemma For θ, φ ∈ R,
ei(θ+φ) = eiθeiφ.

Proof The LHS is cos(θ + φ) + i sin(θ + φ).

The RHS is

(cos θ + i sin θ) (cosφ+ i sinφ) = cos θ cosφ− sin θ sinφ+ i (cos θ sinφ+ sin θ cosφ) .

These are the same (they are addition formulae for trigonometric functions!)

�
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Corollary (
reiθ
)(

seiφ
)
= rsei(θ+φ).

We call θ in z = reiθ an argument of z.

Note that arguments are not unique, as e2πi = cos 2π + i sin 2π = 1 + i · 0 = 1 = ei·0.

Similarly, ei(θ+2π) = eiθe2πi = eiθ. This can also be extended to ei(θ+2nπ) = eiθ if n ∈ Z.

In general, eiθ = eiφ ⇐⇒ θ − φ = 2nπ with n ∈ Z. Arguments are only defined “modulo 2π”.

Define the principal argument of z 6= 0 to be the unique θ satisfying −π < θ ≤ π with z = |z| eiθ.

We write the principal argument as Arg(z).

For example, we have

Arg(1) = 0
Arg(i) = π

2
Arg(−1) = π

Arg
(
− 1√

2
+ i√

2

)
= 3π

4

Arg
(

1√
2
− i√

2

)
= −π

4 .

Also we have Arg(z + w) = Arg(z) + Arg(w) + 2mπ where m ∈ Z, and m depends on z and w.

In the product
(
reiθ
) (
seiφ

)
= rsei(θ+φ), although θ and φ may be the principal arguments of z and w, θ+φ may

not be the principal argument of zw.

But θ+φ differs from Arg(zw) by a multiple of 2π, e.g. (−1)(−1) = 1 and Arg(−1)+Arg(−1) = 2π 6= 0 = Arg(1).

ℜ

ℑ

φ
θθ + φ

z

w

z + w

8
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1.3 Complex Functions

Complex analysis deals with functions of complex numbers.

We consider functions of the form f : D → C where D ⊆ C.

Example

• f(z) = z2 + 1. Note that f(±i) = 0 since f can take the value 0 over C.

• Polynomials: f(z) = a0 + a1z + a2z
2 + . . .+ anz

n are all functions from C to C.

• Rational functions: f(z) =
1

z
or f(z) =

1

z2 + 1
etc.

In general, f(z) =
g(z)

h(z)
is a rational function when g and h are polynomials.

– f(z) =
1

z
is a function from C\{0} to C.

– f(z) =
z

z2 + 1
is defined on C\{i,−i} and is a function from C\{i,−i} to C.

Theorem If g(z) = anz
n + an−1z

n−1 + . . . + a1z + a0 with an 6= 0, and a1, a2, . . . , an ∈ C, then the equation
g(z) = 0 has at most n complex roots.

Proof We need to use the following result.

Lemma (Remainder Theorem) If g(z) is a polynomial over C and b ∈ C, then

g(z) = (z − b)h(z) + g(b)

where h(z) is a polynomial.
Proof By long division of polynomials, g(z) = (z − b)h(z) + c where c ∈ C.
Substitute z = b to get g(b) = 0 · h(b) + c, i.e. c = g(b).

�

If g(z) = 0 had no roots then we win.

Suppose z1 is a root. Then g(z1) = 0 and so by the remainder theorem, g(z) = (z − z1)h(z) where h is a
polynomial.

As g(z) = anz
n + . . . then h(z) = anz

n−1 + . . . .

If h(z2) = 0 then we can remove another factor (z − z2) and so on.

Eventually

g(z) = (z − z1) (z − z2) . . . (z − zn) p(z)

where p(z) is a polynomial and p(z) = 0 has no solutions. p(z) = anz
n−k + . . . (with k ≤ n).

9
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g(z1) = 0 ⇐⇒ z − z1 = 0

or z − z2 = 0

...
or z − zk = 0

or p(z) = 0

⇐⇒ z ∈ {z1, . . . , zk} .

Therefore g(z) = 0 has k ≤ n distinct solutions.

�

The only polynomials p(z) over C with no solution to p(z) = 0 are constant polynomials (Fundamental Theorem
of Algebra).

In general, every polynomial over C does factorise as

a (z − z1) (z − z2) . . . (z − zn) .

Given a rational function f(z), f(z) is defined for all but finitely many complex values. If f(z) = g(z)
h(z) then

h(z) 6= 0 except for finitely many values of z.

1.3.1 The Exponential Function

Let z = x+ iy, with x, y ∈ R.

Define

exp(z) = ez

= ex+iy

= ex (cos y + i sin y) .

The formula ex =
∑∞

n=0
xn

n! should generalise to ez =
∑∞

n=0
zn

n! .

For this to be the case,

eyi =

∞∑
n=0

(iy)n

n!

= 1 + iy − y2

2!
− iy3

3!
+
y4

4!
+ . . .

=

(
1− y2

2!
+
y4

4!
+ . . .

)
+

(
iy − iy3

3!
+ . . .

)
= cos y + i sin y.

10
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Properties

• ez+w = ezew follows from ex+y = exey ∀x, y ∈ R. (This is a homomorphism from (C,+) to (C\{0},×).)

• ez+2πi = ez (as ez+2πi = eze2πi = ez · 1 = ez), so exp is a periodic function on C with period 2πi.

•
∣∣ex+iy

∣∣ = |ex| ∣∣eiy∣∣ = ex · |cos y + i sin y| = ex
√
cos2 y + sin2 y = ex · 1 = ex. So |ez| = e<(z).

• For y ∈ R, eiy = cos y + i sin y and e−iy = cos(−y) + i sin(−y) = cos y − i sin y. So

cos y =
eiy + e−iy

2
and sin y =

eiy − e−iy

2i

Now define, for z ∈ C,

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

Then

cos ix =
e−x + ex

2
= coshx

sin ix =
e−x − ex

2i

= i

(
ex + e−x

2

)
= i sinhx.

1.3.2 Complex Logarithms

Given w ∈ C, what are the solutions of exp z = w?

We need w 6= 0 as exp(z) 6= 0 (because exp(z) exp(−z) = 1).

For any nonzero w, exp(z) = w is soluble but with infinitely many solutions!

Write w = reiθ in polar form for y ∈ R. Set z = x+ iy, with x, y ∈ R.

Then exp(z) = exeiy should equal reiθ.

ex =
∣∣exeiy∣∣ = ∣∣reiθ∣∣ = r > 0. So x has to equal log r.

Then we get eiy = eiθ, i.e. y = θ + 2nπ where n ∈ Z.

So ez = reiθ has solutions
z = log r + i (θ + 2nπ)

where n ∈ Z.

Any of these solutions is a logarithm of reiθ = w, that is, if w ∈ C\{0} then a logarithm of w is a solution to
exp z = w.

One logarithm of w is log |w|+ iArg(w). We call this the principal logarithm and write it as Log(w).

As before we can deduce that

11
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log(zw) = Log(z) + Log(w)

+ 2πni

(n ∈ N).

Example
Log(−3− 4i)

φ

54

3

Here,

Log(−3− 4i) = log |−3− 4i| − θi

= log 5− i

(
π

2
+ arctan

3

4

)
.

2 Main Course

We want to be able to study differentiable functions on subsets of C.

2.1 Open and closed sets

An open disc is a set of the form

D(a, r) = {z ∈ C| |z − a| < r}
where a ∈ C and r ∈ R+.

A closed disc is one of the form

D(a, r) = {z ∈ C| |z − a| ≤ r}

and a punctured open disc is one of the form

D′(a, r) = {z ∈ C| 0 < |z − a| < r} .

12
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ℑ

ℜ

r

a

D(a, r)

ℑ

r

a

D̄(a, r)

ℑ

a

D′(a, r)

ℜ ℜ

Let A ⊆ C. Each point a ∈ C is either an interior point of A or an exterior point of A, or a boundary point
of A.

a is:

• an interior point of A is there is no r > 0 with D(a, r) ⊆ A (for example, a1)

• an exterior point of A if there is r > 0 with D(a, r) ∩A = ∅ (for example a2)

• a boundary point of A if a is neither an interior nor exterior point of A (for example, a3)

a1 a3

a2

A subset A ⊆ C is open if all a ∈ A are interior points of A, i.e. no element of A is a boundary point of A.

A subset A ⊆ C is closed if every a ∈ C which is a boundary point of A is an element of A, i.e. A contains all
its boundary points.

Claim

1. D(a, r) is open

2. D(a, r) is closed.

13
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Proof

1. Let b ∈ D(a, r). We need to prove b is an interior point of D(a, r), i.e. we need to find s > 0 with
D(b, s) ⊆ D(a, r).

a

b

Try s = r − |b− a| . Let z ∈ D(b, s). Then |z − b| < s.

We need to prove that z ∈ D(a, r), i.e. that |z − a| < r. then

|z − a| = |(z − b) + (b− a)|
≤ |z − b|+ |b− a| (by the triangle inequality )
< s+ |b− a|
= r

So z ∈ D(a, r) and D(b, s) ⊆ D(a, r).
We should have proved that s > 0 but as b ∈ D(a, r) then |b− a| < r and so s = r − |b− a| > 0.

2. To show D(a, r) is closed, we need to show every boundary point of D(a, r) is an element of D(a, r). It
suffices to prove that if b /∈ D(a, r) then b is not a boundary point of D(a, r) (which is the contrapositive),
so that |b− a| 6= r.

So we shall show that each b /∈ D(a, r) is an exterior point.

a

b

D(a, r)

We claim there is s > 0 with D(b, s) ∩ D(a, r) = ∅. Take s = |b− a| − r.
Note that as b /∈ D(a, r) then |b− a| > r.

Skipping the details, we again use the triangle inequality.

�
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Examples

• C is both open and closed.

• B = {z ∈ C| |z| ≤ 1 and =(z) > 0} is neither open nor closed.

– For example, 0 and i are boundary points of B. 0 ∈ B so B isn’t closed, but i ∈ B so B isn’t open.

−1 1

i

B

2.2 Domains

A domain is a connected open set.

A subset A ⊆ C is bounded if A ⊆ D(a, r) for some a ∈ C, r > 0.

C is unbounded, as we can’t have C ⊆ D(a, r) as a+ 2r /∈ D(a, r).

Definition An open set U ⊆ C is connected if for any 2 points a and b in U , I can join a to b in a finite
sequence of straight line segments contained within U . (This is only appropriate for open sets.)

a

b

Examples

• D(a, r) is connected.

– Let b, c ∈ D(a, r). One can join b and c directly by a straight line segment which itself lies within
D(a, r).

• U = {z ∈ C| <(z) 6= 0} is not connected.

– U consists of points off the imaginary axis. Any sort of path made up of line segments from −1 to 1
must cross the y-axis so can’t lie entirely inside U .

15
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−1 1

• Consider A(a, r, s) = {z ∈ C| r < |z − a| < s, r, s ∈ R, 0 < r < s}, the annulus with centre a and the re-
gion between the two circles |z − a| = r and |z − a| = s. This is connected.

– Draw a polygon inside A(a, r, s) encircling the centre. For z, w ∈ A(a, r, s) we can join z and w to
the polygon by straight line segments, so to get z to w, we walk from z to the polygon, walk around
the polygon, then walk to w. So the annulus is connected.

z

w

2.3 Convergence of sequences

Let (zn) be a sequence of complex numbers. We say (zn) converges to z or zn → z or limn→∞ zn = z if either

• < (zn)→ < (z) and = (z)→ = (z)

• |zn − z| → 0.

(These are equivalent.)∑∞
n=0 zn converges to z if

∑∞
n=0 zn converges to z as N →∞ (same as in real analysis).

16
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We claim that if |z| < 1 then
∑∞

n=0 z
n converges to 1

1−z .

N∑
n=0

zn =
1− zN+1

1− z

so ∣∣∣∣∣ 1

1− z −
N∑
n=0

zn

∣∣∣∣∣ =
∣∣∣∣zN+1

1− z

∣∣∣∣
→ 0

as |z| < 1.

As with real series,
∑∞

n=0 zn is divergent when zn 6→ 0. If |z| > 1 then zn 6→ 0.

The “calculus of limits” works over C in exactly the same way as over R.

Lemma (Absolute Convergence) If
∑∞

n=0 |zn| converges then so does
∑∞

n=0 zn.

Outline of Proof Apply the real version to
∑< (zn) and

∑= (zn), etc.

�

We say
∑∞

n=0 zn is absolutely convergent if
∑∞

n=0 |zn| converges.

Example For all z ∈ C,
∑∞

n=0
zn

n! is absolutely convergent since

∞∑
n=0

∣∣∣∣znn!
∣∣∣∣ = ∞∑

n=0

|z|n
n!

is a convergent series over R.

“Proof” that
∑∞

n=0
zn

n! = ez Note that

∞∑
n=0

(z + w)n

n!
=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zn−kwk (by the binomial theorem)

=

∞∑
n=0

n∑
k=0

zn−kwk

(n− k)!k! (∗)

=

∞∑
k=0

wk

k!

∞∑
m=0

zm

m!
(letting m = n− k).

�

17
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At (∗), we interchanged the order of summation. This is legitimate as the “double” series is absolutely conver-
gent.

In particular, if x, y ∈ R, then
∞∑
n=0

(x+ iy)n

n!
=

∞∑
n=0

xn

n!

∞∑
n=0

(iy)n

n!

= ex(cos y + i sin y)

= ex+iy.

2.4 Continuity

Definition Let f : A→ C where A ⊆ C. We say that f is continuous at a ∈ A if all sequences (an) ∈ A with
an → a satisfy f(an)→ f(a).

We say f is continuous on A if f is continuous at all a ∈ A.

Examples Obviously constant functions are continuous and f(z) = z is continuous.

Theorem Continuity holds under addition, subtraction, multiplication, division and composition, subject to the
usual caveats (dividing by zero/well-defined composition, etc.)

Proof Same as for real analysis.

�

Remark Polynomials are continuous on all of C, rational functions are continuous where defined.

Important Example f(z) = exp z is continuous.

Proof Suppose an → a. We will show that ean → ea.

Note that

ean = eaean−a

= eaebn

where bn = an − a→ 0. It suffices to show that ebn → 1.

ebn − 1 =
∞∑
k=0

bkn
k!
− 1

=

∞∑
k=1

bkn
k!

18
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As bn → 0, |bn| ≤ 1 eventually. That is, there exists N ∈ N with |bn| ≤ 1∀n ≥ N.

Hence

∣∣∣ebn − 1
∣∣∣ = |bn|

∣∣∣∣∣
∞∑
k=1

bk−1n

k!

∣∣∣∣∣
≤ |bn|

∞∑
k=1

∣∣bk−1n

∣∣
k!

≤ |bn|
∞∑
k=1

1

k!

= |bn| (e− 1)

as |bn| ≤ 1for n ≥ N.

As bn → 0,
∣∣ebn − 1

∣∣→ 0 so that ebn → 1 as required.

Hence exp(z) is continuous on all of C.

�

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

ℜ

ℑ

Here is a complex plot, generated with MATLAB, to illustrate the continuity of exp z. The brightness illustrates
the absolute value (so |z| = 0 is black, and |z| → ∞ leads to white), and the arguments are represented by
hue (on a colour scale) where an argument of 0 is red, and an argument of π is cyan. Notice that there are no
discontinuities (e.g. changing colours/shading along lines or points) so this is visual confirmation that exp z is
continuous, and you can see that it is actually periodic (with period 2πi - the colour of a point will the exactly
the same as that 2πi above it).
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Important Example g(z) = Log(z) is not continuous.

Let (an) be a sequence of points convergine to a = −1 from below the real axis (e.g. an = −1− i
n ).

ℜ

ℑ

a1

a2

a3

an

a = −1

Now g(a) = Log(−1) = iπ but the principal arguments of the an are negative and tend to −π as n→∞ so that

lim
n→∞

Log(an) = −iπ 6= Log(a).

As in real analysis we can deal with limits of functions, i.e. limz→a f(z) = b means that f(an) → b for all
sequences (an) with an → a such that an 6= a.
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−5 −4 −3 −2 −1 0 1 2 3 4 5
−5
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−3

−2

−1

0

1

2

3

4

5

ℜ

ℑ

There is a slit on the negative real axis; the colours are not the same on either side of the line, so the arguments
on either side do not reach the same limit.

2.5 Holomorphic Functions

Definition Let f : A→ C (with A ⊆ C). We say that f is differentiable at a ∈ A if

lim
z→a

f(z)− f(a)
z − a

exists. This limit is called f ′(a) provided it exists.

Definition A function on an open set U which is differentiable at every point of U is called a holomorphic
function on U .

Theorem As in real analysis, if f and g are differentiable then so are f ± g, fg, f/g, f ◦ g, g ◦ f subject to the
usual caveats, and their derivatives are given by the standard formulae from calculus (product/quotient/chain
rules).

The proof is the same as in real analysis.

Examples

• 1
z2+1

has derivative d
dz

(
1

z2+1

)
= − 2z

(z2+1)2
.

• ez
2

has derivative d
dz

(
ez

2
)
= 2zez

2
etc.
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Theorem exp(z) is differentiable and it is its own derivative.

Proof
ez − ea

z − a = ea
(
ez−a − 1

z − a

)
so

lim
z→a

ez − ea

z − a = ez ⇐⇒ lim
z→a

ez−a − 1

z − a = 1

⇐⇒ lim
w→0

ew − 1

w
= 1 (setting w = z − a)

But

ew − 1

w
− 1 =

∞∑
n=1

wn−1

n!

= w
∞∑
n=2

wn−2

n!

and by an argument similar to that which was used for the continuity of exp(z) we get that

lim
w→0

(
ew − 1

w
− 1

)
= 0

whence d
dz (e

z) = ez for all z ∈ C.

�

Corollary
d

dz
(cos z) = − sin z, etc.

Proof

d

dz
(cos z) =

ieiz − ie−iz

2

=
−eiz + e−iz

2i
= − sin z, etc.

�
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Example Let g(z) = z?.

Let a ∈ C. Then
g(z)− g(a)
z − a =

z? − a?
z − a

=
(z − a)?
(z − a)

so that

g′(z) = lim
z→a

(z − a)?
(z − a)

= lim
w→0

z?

z

provided the limit exists.

But this limit does not exist! Let an = 1
n → 0 as n→∞. Now

(an)
?

an
=

1/n

1/n

= 1→ 1.

But if bn = i
n → 0 as n→∞ we have

(bn)
?

bn
=
−i/n
i/n

= −1→ −1.

So g(z) is not differentiable anywhere!

2.5.1 Theorem (Cauchy-Riemann Equations)

Let
f(x+ iy) = u(x, y) + iv(x, y)

where x, y, u(x, y), v(x, y) ∈ R.
If f is holomorphic on an open set U then

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

So the real and imaginary parts of a holomorphic function f almost detemine each other; <(f) = u and
=(f) = v are deeply entwined with each other.

Proof Let z0 = x0 + iy0 ∈ U . Then

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

= lim
h→0

f(z + h)− f(z0)
h

23
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1. Specialise h ∈ R. Then

f ′(z0) = lim
h→0

[u(x0 + h, y0) + iv(x0 + h, y0)− u(x0, y0)− iv(x0, y0)]

h

= lim
h→0

u(x0 + h, y0) + u(x0, y0)

h
+ i lim

h→0

v(x0 + h, y0)− v(x0, y0)
h

=
∂u

∂x

∣∣∣∣
(x0,y0)

+ i
∂v

∂x

∣∣∣∣
(x0,y0)

2. Specialise h = ik with k ∈ R. Then

f ′(z0) = lim
k→0

[u(x0, y0 + k) + iv(x0, y0 + k)− u(x0, y0)− iv(x0, y0)]

ik

= lim
k→0

v(x0, y0 + k)− v(x0, y0)
k

− i lim
k→0

u(x0, y0 + k)− u(x0, y0)
k

=
∂v

∂y

∣∣∣∣
(x0,y0)

− i
∂u

∂y

∣∣∣∣
(x0,y0)

.

Compare both results (equating real and imaginary parts) to give

∂u

∂x

∣∣∣∣
(x0,y0)

=
∂v

∂y

∣∣∣∣
(x0,y0)

and
∂v

∂x

∣∣∣∣
(x0,y0)

= − ∂u

∂y

∣∣∣∣
(x0,y0)

.

�

A converse If f(x + iy) = u(x, y) + iv(x, y) is a function on an open set U , then if f satisfies the Cauchy-
Riemann equations and ∂u

∂x and ∂v
∂y are continuous on U then f is holomorphic. The proof is omitted here, but

see Chen’s notes - to which there is a link on the website.

Example
f(z) = ez

In this case, f(x+ iy) = ex (cos y + i sin y) with u = ex cos y and v = ex sin y. Then

∂u

∂x
= ex cos y

∂v

∂x
= ex sin y

∂v

∂y
= ex cos y −∂u

∂y
= ex sin y

confirming f to be holomorphic.

Example
f(z) = z?

In this case, f(x+ iy) = x− iy with u = x and v = −y.

But ∂u∂x = 1 and ∂v
∂y = −1 6= ∂u

∂x so f isn’t holomorphic.
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Example

f(z) = |z|

In this case, f(x+ iy) =
√
x2 + y2 with u =

√
x2 + y2 and v = 0. Therefore

∂u

∂x
=

x√
x2 + y2

and
∂u

∂y
= − y√

x2 + y2

but also
∂v

∂x
=
∂v

∂y
= 0.

The Cauchy-Riemann equations can’t hold unless x = y = 0, but then ∂u
∂x and ∂v

∂y would not exist.

Therefore f isn’t differentiable anywhere!

Application A holomorphic real-valued function has to be constant. Since v = 0, then by the Cauchy-
Riemann equations,

∂u

∂x
=
∂v

∂y
= 0

and

∂u

∂y
= −∂v

∂x
= 0

so u is constant.

Claim Log(z) is holomorphic on the set C\ {x|x ∈ R, x ≤ 0} .

Proof For convenience, we’ll prove this for {z = x+ iy|x > 0} .

For x > 0,

Log(x+ iy) = log |x+ iy|+ iArg(x+ iy)

= log
√
x2 + y2 + i arctan

y

x
.

In this case, u = 1
2 log(x

2 + y2) and v = arctan y
x .
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∂u

∂x
=

1

2

2x

x2 + y2

=
x

x2 + y2

∂u

∂y
=

y

x2 + y2

∂v

∂x
=

1

1 +
( y
x

)2 · (− y

x2

)
=

x2

x2 + y2
·
(
− y

x2

)
= − y

x2 + y2

∂v

∂y
=

1

1 +
( y
x

)2 · (1

x

)
=

x2

x2 + y2
· 1
x

=
x

x2 + y2

The derivatives all agree, so Log(z) is holomorphic for <(z) = x > 0.

Then for when x < 0 and y > 0, u is the same as before and v = i
[
π − arctan y

x

]
. And for when when x < 0

and y < 0, u is the same and v changes sign from the previous case.

�

2.6 Paths and path integrals

These are analogous to “line integrals” in the plane.

A path is a continuous map γ : [a, b]→ C. It is smooth if γ is differentiable and γ′ is continuous.

We can write γ(t) = x(t) + iy(t), with x, y : [a, b]→ R.

γ is continuous (and differentiable) if both x and y are.
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ℜ

ℑ

γ(a)

γ(b)

Examples

1. Let z1, z2 ∈ C.
The line segment from z1 to z2 is the path γ : [0, 1]→ C defined by

γ(t) = z1 + t(z2 − z1).

Sometimes we denote this as [z1, z2] .

ℜ

ℑ
z1

z2

2. Let z0 ∈ C, r > 0, α, β ∈ R and α < β.
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Define γ : [α, β]→ C by
γ(t) = z0 + reit.

γ is an arc of the circle centre z and radius r.

ℜ

ℑ

z0

z0 + reiα

z0 + reiβ

If α = 0, β = 2π, one traverses the whole circle. If α = 0 and β = 4π, then the circle is traversed twice,
and so on.

Both of these paths are smooth, as γ′(t) = z2 − z1 and γ(t) = ireit respectively (which are continuous).

Path jargon
For the path γ : [a, b]→ C:

• γ(a) is the start point

• γ(b) is the end point

• If γ(a) = γ(b) then the path is closed (e.g. a full circle)

• If γ(t) = γ(s) =⇒ t = s then the path is simple (i.e. injective). It doesn’t intersect itself except it might
close up at the end.

• γ− = γ(−t) is a map γ− : [−b,−a]→ C is the reversal of γ.

γ

γ−
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Examples

Simple closed path Simple but not closed Closed but not simple Neither closed nor simple

Let f be continuous on an open set U . Let γ : [a, b]→ C be a smooth path contained in U .

Define

ˆ
γ
f(z)dz =

ˆ b

a
f(γ(t))γ′(t)dt

(as a mnemonic, z = γ(t) so dz = γ′(t)dt),

In the last integral, we integrate a complex function over a real variable.

Naturally ˆ b

a
(u(t) + iv(t)) dt =

ˆ b

a
u(t)dt+ i

ˆ b

a
v(t)dt.

Example Integrating

f(z) = z

over γ, the line segment from 1 to 2 + 2i. So then

γ : [0, 1]→ C
t 7→ 1 + t(1 + 2i)

so γ′(t) = 1 + 2i.

ˆ
γ
f(z)dz =

ˆ 1

0
(1 + (1 + 2i)t) (1 + 2i)dt

=

ˆ 1

0
((1 + 2i) + (−3 + 4i)t) dt

=

[
(1 + 2i)t+

1

2
(−3 + 4i) t2

]1
0

= 1 + 2i +
1

2
(−3 + 4i)

= −1

2
+ 4i.
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Remark
There is a connection with line integrals:

f(x+ iy) = u(x, y) + iv(x, y)

ˆ
γ
f(z)dz =

ˆ
γ
(u(x, y) + iv(x, y)) (dx+ idy)

Some properties

•
´
γ (f(z) + g(z)) dz =

´
γ f(z)dz +

´
γ g(z)dz

•
´
γ αf(z)dz = α

´
γ f(z)dz ∀α ∈ C

• If γ− is the reversal of γ, then
´
γ− f(z)dz = −

´
γ f(z)dz.

•
´
γ f(z)dz =

´
γ1
f(z)dz+

´
γ2
f(z)dz where γ : [a, b]→ C, γ1 : [a, c]→ C and γ2 : [c, b]→ C, with a < c < b.

Also γ1(t) = γ(t) and γ2(t) = γ(t).

γ
γ1

γ2

• Notation:
´ w2

w1
f(z)dz means

´
γ f(z)dz where γ is the line segment from w1 to w2 - this only makes sense

if f is defined in a domain containing this segment.

2.6.1 Theorem (Fundamental Theorem of Calculus)

Assume f : U → C is holomorphic and U is open. Also assume that f ′ is continuous. Then

ˆ
γ
f ′(z)dz = f (γ(b))− f (γ(a))

If γ is a closed path, then
´
γ f
′(z)dz = 0.
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Proof

ˆ
γ
f ′(z)dz =

ˆ b

a
f ′ (γ(t)) γ′(t)dt

=

ˆ b

a

d

dt
f (γ(t)) dt (applying the chain rule in reverse)

= [f (γ(t))]t=bt=a (by the real version of the Fundamental Theorem of Calculus)
= f (γ(b))− f (γ(a))

�

Example

ˆ 2+2i

1
zdz

using the Fundamental Theorem of Calculus.

ˆ 2+2i

1
zdz =

ˆ 2+2i

1

d

dz

(
z2

2

)
dz

=
(2 + 2i)2

2
− 12

2

=
4 + 8i− 4− 1

2

= −1

2
+ 4i.

Example
On U = C\(−∞, 0], Log(z) has derivative 1

z .

So if γ is a path from w1 to w2, which does not touch the negative real axis or 0, then

ˆ
γ

dz

z
= Log(w2)− Log(w1).

31



Oliver Bond ECM3703: Complex Analysis Lecture Notes

ℜ

ℑ

w1

w2
γ

However, if γ is the unit circle:

γ : [0, 2π]→ C
t 7→ eit

then

ˆ
γ

dz

z
=

ˆ 2π

0

γ′(t)

γ(t)
dt

=

ˆ 2π

0

ieit

eit
dt

= i

ˆ 2π

0
tdt

= 2πi 6= 0.

Corollary
1

z
is not the derivative of any holomorphic function defined on a region containing the unit circle.

2.7 Contours

A contour of γ = (γ1, . . . , γn) is a sequence of smooth paths “arranged end-to-end”, i.e. the end-point of γj is
the start point of γj+1. It is closed if the end-point of γn is the start point of γ1 (The last two contours shown
are closed.)
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γ1

γ2

γ3

γ1

γ2

γ1

γ2

γ3

γ4

For a contour γ = (γ1, . . . , γn) define

ˆ
γ
f(z)dz =

ˆ
γ1

f(z)dz + . . .

ˆ
γn

f(z)dz.

The Fundamental Theorem of Calculus also works for contours. In particular,
´
γ f
′(z)dz = 0 if γ is a closed

contour.

Estimations of contour integrals
If γ is a smooth path γ : [a, b]→ C , the length of γ is

`(γ) =

ˆ b

a

∣∣γ′(t)∣∣ dt
and the length of a contour γ = (γ1, . . . , γn) is

`(γ) =
n∑
j=1

` (γj) .

Example
If γ is a line segment from w1 to w2, that is,

γ : [0, 1]→ C
t 7→ w1 + (w2 − w1)t

and γ′(t) = w2 − w1. Then trivially, `(γ) =
´ 1
0 |w2 − w1| dt = |w2 − w1| .

Example

γ : [α, β]→ C
t→ w0 + reit

with w0 ∈ C and r > 0.

Then γ′(t) = rieit and |γ′(t)| = r.

So

`(γ) =

ˆ β

α
rdt

= r(β − α).
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A whole circle centre 0, radius r has length 2πr.

γ : [0, 4π]→ C, γ(t) = eit has length `(γ) = 4π etc.

Lemma If f is complex-valued then

∣∣∣∣ˆ b

a
f(t)dt

∣∣∣∣ ≤ ˆ b

a
|f(t)| dt.

Proof Let

I =

ˆ b

a
f(t)dt

∈ C

We claim that there is α = eia with a ∈ R, such that αI = |I| .

When I = 0, any α works, otherwise
|I|
I

has absolute value so it equals eia with a ∈ R. Then |α| = 1.

|I| = αI

=

ˆ β

a
αf(t)dt

=

ˆ β

a
u(t)dt+ i

ˆ β

a
v(t)dt

where u(t) = < [αf(t)], v(t) = = [αf(t)].

Since |I| is real,

|I| =
ˆ b

a
u(t)dt

=

ˆ b

a
< [αf(t)] dt

≤
ˆ b

a
|αf(t)| dt

=

ˆ b

a
|f(t)| dt

as |α| = 1.

�
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2.7.1 Corollary (ML-Bound)

Consider a contour γ and a continuous function f defined on γ. Suppose |f(z)| ≤M , for all z on γ.
Then ∣∣∣∣ˆ

γ
f(z)dz

∣∣∣∣ ≤ML

where L = `(γ).

Proof Assume γ is a smooth path γ : [a, b]→ C. Then

∣∣∣∣ˆ
γ
f(z)dz

∣∣∣∣ = ∣∣∣∣ˆ b

a
f (γ(t)) γ′(t)dt

∣∣∣∣
≤
ˆ b

a

∣∣f (γ(t)) γ′(t)∣∣ dt (by the Lemma)

≤M
ˆ b

a

∣∣γ′(t)∣∣ dt (as |f(γ(t))| ≤M)

=ML.

�

Example Showing that

∣∣∣∣ˆ
γ

ez

z2 + 2
dz

∣∣∣∣ ≤ eπ

where γ is the arc of the unit circle to the right of the imaginary axis.

ℜ

ℑ
i

−i

γ
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On γ,

|ez| = e<(z)

≤ e|z|

= e1 = e

and also ∣∣z2 + 2
∣∣ ≥ 2−

∣∣z2∣∣ (by the alternate triangle inequality )
= 2− 1 = 1

=⇒
∣∣∣∣ 1

z2 + 2

∣∣∣∣ ≤ 1

1
= 1

∴

∣∣∣∣ ez

z2 + 2

∣∣∣∣ ≤ e on γ.

So by the ML-bound, ∣∣∣∣ˆ
γ

ez

z2 + 2
dz

∣∣∣∣ ≤ eπ.

2.8 Cauchy’s Theorem

Let f be holomorphic on a domain U and let γ be a closed contour inside U .

U
γ

By the Fundamental Theorem of Calculus, if f has an “antiderivative” g, i.e. f = g′, then

ˆ
γ
f(z)dz =

ˆ
γ
g′(z)dz = 0

But
´
γ

dz
z = 2π 6= 0 where γ is the unit circle.

The function f(z) is holomorphic everywhere except at z = 0, and this lies inside the contour γ.

Vague Cauchy’s Theorem If f is holomorphic on and at all points inside a closed contour γ, then
´
γ f(z)dz =

0.
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Cauchy’s Theorem for triangles WARNING: The proof of this theorem is the hardest in the course!

A triangle T consists of 3 points its vertices, the line segments joining these 3 points, the edges and the interior
points. Points lying inside intervals with endpoints on two different edges of the triangle.

T
∂T

w1

w2

w3

Use T to denote a typical triangle (set of vertices, edge points and interior points) and ∂T denotes the boundary
of T (vertices and edge points but not the interior points). We also use ∂T to denote the contour formed by
the edges. For definition’s sake, assume that ∂T goes round anticlockwise.

Theorem (Cauchy’s Theorem for Triangles)
If f is holomorphic on a domain U and T ⊆ U is a triangle, then

´
∂T f(z)dz = 0.

Remarks

1.
´
∂T f(z)dz =

´ w2

w1
f(z)dz +

´ w3

w2
f(z)dz +

´ w1

w3
f(z)dz (integrals along straight line segments).

2. If we knew f ′ was continuous on U , then Cauchy’s theorem follows quickly from Green’s Theorem. In
fact f ′ will be continuous, but proving that relies on this theorem! (To see the Green’s theorem proof see
William Chem’s notes).

Lemma
Let T be a triangle with vertices w1, w2, w3.
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w1

w2

w3
z1

z2

z3
T1

T2
T3

T4

Then ˆ
∂T
f(z)dz =

4∑
j=1

ˆ
∂Tj

f(z)dz.

Here we take the boundaries in the anticlockwise direction.
´
∂T1 f(z)dz+ . . .+

´
∂T4 f(z)dz is the sum of 12 integrals over the sides of the small triangles, 6 of which cancel,

e.g.

ˆ z2

z3

f(z)dz occurs in
ˆ
∂T1

f(z)dz

and
ˆ z3

z2

f(z)dz occurs in
ˆ
∂T2

f(z)dz

and these cancel.

Also
ˆ z3

w1

f(z)dz occurs in
ˆ
∂T1

f(z)dz

and
ˆ w2

z3

f(z)dz occurs in
ˆ
∂T2

f(z)dz

and these add to give
ˆ w2

w1

f(z)dzwhich occurs in
ˆ
∂T
f(z)dz.

The remaining 6 integrals combine in this way to give
´
∂T f(z)dz.

�

Proof of Theorem
Write
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ˆ
∂T
f(z)dz = I(T )

=

4∑
j=1

I(Tj).

One of these Tj satisfies |I(Tj)| ≥ 1
4 |I(Tj)| . Set T (0) = T and T (1) = T . Note that Tj has side lengths half of

those of T . We get a sequence
(
T (m)

)
of triangles by repeating the argument, with

T (m+1) ⊆ T (m), T (0) ⊆ T .

T = T (0)

T (1)

T (2)

. . .

The side lengths of T (m) are 1
2m those of T and∣∣∣I (T (m)

)∣∣∣ ≥ 1

4m
|I (T )| .

We claim there is a point z0 with z0 ∈ T (m) for all m.

(The website has a proof that a decreasing sequence of closed bounded non-empty subsets of C has a point
in common)

Take ε > 0. The function f is differentiable at z0, i.e.

lim
z→z0

∣∣∣∣f(z)− f(z0)z − z0
− f ′(z0)

∣∣∣∣ = 0.

Therefore we can pick a radius such that

• f is holomorphic on D(a, r)

•
∣∣∣∣f(z)− f(z0)z − z0

− f ′(z0)
∣∣∣∣ < ε for z ∈ D(z0, r).

On D(z0, r), ∣∣f(z)− f(z0)− f ′(z0)(z − z0)∣∣ ≤ ε |z − z0| .
Let g(z) = f(z)− f(z0)− f ′(z0)(z − z0). For large enough m, T (m) ⊆ D(z0, r).
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z0

z

T m

D(z0, r)

So

∣∣∣∣ˆ
∂T (m)

g(z)dz

∣∣∣∣ ≤ ε · length(∂T (m)
)
·max |z − z0|

= ε2−mPdm

(where dm = greatest side length of T (m) =
1

2m
× greatest side length of T =

P

2m
)

= ε4−mP 2

but g(z) = f(z) + a+ bz for some constants a and b.

ˆ
∂T (m)

g(z)dz =

ˆ
∂T (m)

f(z)dz +

ˆ
∂T (m)

(a+ bz) dz

= I
(
T (m)

)
+

ˆ
∂T (m)

d

dz

(
az +

1

2
bz2
)
dz︸ ︷︷ ︸

=0

= I
(
T (m)

)

so

4−m
∣∣∣I (T (m)

)∣∣∣ ≤ ε4−mP 2

=⇒ |I(T )| ≤ εP 2

∴ I(T ) = 0.

�

2.9 Star Domains

A star domain is a domain in C with a star centre. A point z0 is a star centre of U if for all z ∈ U the line
segment from z to z0 lines inside U .

Examples

1. Discs are convex; every line segment with endpoints in the disc are in the disc.
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z0

z

2. An annulus is not a star domain.

If z0 lies in the annulus, let z1 be a reflection of z0 about the centre, then the line segment from z0 to z1 is
not contained in the annulus.

z0

z1

3. The slit plane U = C\ {x ∈ R|x ≤ 0} is a star domain. 1 is a star centre.

Theorem
If f is holomorphic on a star domain U then f = g′ for some g holomorphic on U .

Proof Let z0 be a star centre of U .

z0

z

U

Define
g(z) =

ˆ z

z0

f(w)dw.

We need to prove that

lim
h→0

(
g(z + h)− g(z)

h
− f(z)

)
= 0.

As U is a domain, U is open so there is r > 0 with D(z, r) ⊆ U . In considering this limit I can assume |h| < r.
So z + h ∈ D(a, r).
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z0

z

U

D(z, r)

z + h

Let T be the triangle with vertices z0, z, z + h. I claim that T ⊆ U . The line segment from z to z + h lies in
D(z, r) and so also in U .

For any point z′ on this line segment, the line segment from z0 to z′ lies inside U as U is a star domain, and z0
is a star centre. Any point inside T lies on a line segment from z0to a point on the line segment between z and
z + h, so T ⊆ U .

We can apply Cauchy’s theorem to T , so that
´
∂T f(w)dw = 0, i.e.

ˆ z

z0

f(w)dw −
ˆ z+h

z0

f(w)dw +

ˆ z+h

z
f(w)dw = 0

=⇒ g(z + h)− g(z) =
ˆ z+h

z
f(w)dw

=⇒ g(z + h)− g(z)
h

− f(z) = 1

h

ˆ z+h

z
(f(w)− f(z)) dw

=⇒
∣∣∣∣g(z + h)− g(z)

h
− f(z)

∣∣∣∣ ≤ 1

|h|

∣∣∣∣ˆ z+h

z
(f(w)− f(z)) dw

∣∣∣∣
Pick ε > 0. For some s > 0 (s < r if we like) D(z, s) has the property that w ∈ D(z, s), then |f(w)− f(z)| < ε.

As f is continuous, lim
w→z

(f(w)− f(z)) = 0. If |h| < s, then |f(w)− f(z)| < ε for all w on the line segment from
z to z + h.

So I can take ε for ”M” in the ML-bound, with the length of the segment being |h| .

So

ˆ z+h

z
(f(w)− f(z)) dw ≤ ε |h|

=⇒
∣∣∣∣g(z + h)− g(z)

h
− f(z)

∣∣∣∣ ≤ ε
holds if |h| < s. So ∀ε > 0∃s > 0 such that the above line holds, and therefore from the definition of the limit,

lim
h→0

(
g(z + h)− g(z)

h
− f(z)

)
= 0.

Thus g is differentiable at z and g′(z) = f(z).
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�

Corollary (Cauchy’s theorem for star domains) If U is a star domain with f holomorphic on U , and γ is a
closed contour on U , then

´
γ f(z)dz = 0.

Proof There exists g with f = g′ such that
´
γ f(z)dz =

´
γ g
′(z)dz = 0 by the Fundamental Theorem of

Calculus.

�

Example ˆ
γ

ez
3+z cos(z2)

(2 + z2)2
dz = 0

where γ is the unit circle.

D(0,
√
2)

γ

The integrand (however horrible looking it is) is holomorphic on D(0,
√
2), which contains the unit circle γ, and

is a star domain. So the integral is zero.

Example
U = C\ {x ∈ R|x ≤ 0} (the "slit plane")

is a star domain with star centre 1. Now 1
z is holomorphic on U , so 1

z = L′(z) for some L(z). We can take
L(z) =

´ z
1

dw
w .

We claim that on U , L(z) = Log(z).

To prove this, assume |z| > 1, =(z) > 0 (not essential - slightly different diagrams needed for other cases).

I claim L(z) =
´
γ

dw
w where γ consists of the line segment from 1 to |z| and the circular arc γ2 from |z| to |z|

(centred at 0).

γ1 followed by γ2 followed by the reverse of the line segment [1, z] is a closed contour, so as U is a star domain,
the integral over this contour is zero, i.e.

ˆ
γ1

dw

w
+

ˆ
γ2

dw

w
−
ˆ z

1

dw

w
= 0

i.e. L(z) =
ˆ
γ1

dw

w
+

ˆ
γ2

dw

w
.
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where
ˆ
γ1

dw

w
=

ˆ |z|
1

dt

t

= log |z| .

γ2 is parametrised by γ(t) = |z| eit, for 0 ≤ t ≤ θ = Arg(z), γ′(t) = i |z| eit. Then

ˆ
γ2

dw

w
=

ˆ Arg(z)

0

i |z| eit
|z| eit dt

= iArg(z)

Therefore

L(z) = log |z|+ iArg(z)

= Log(z).

This constitutes another proof that Log(z) is holomorphic on the slit plane, with L′(z) = 1/z.

�

2.10 Cauchy’s Integral Formula

Theorem (Cauchy’s Integral Formula for a Circle) Let Ube a domain. Suppose D(a, r) ⊆ U . Let γ be the
circle centre a and radius r. If f is holomorphic on U then

f(z) =
1

2πi

ˆ
γ

f(w)

w − zdw

for z ∈ D(a, r).
Note that this formula expresses the values of f in the interior of the disc in terms of its values on the boundary
of the disc.

Proof (technical claim) There exists r′ > r such that D(a, r′) ⊆ U . The proof of this initial remark is in a
document on the website.

Assume that f is holomorphic on D(a, r′). Let z ∈ D(a, r). Let γ1 be a small circle, centre z radius s > 0
contained inside D(a, r).

We claim that

ˆ
γ

f(w)

w − zdw =

ˆ
γ1

f(w)

w − zdw.

Draw a line horizontally through z. Use this to define contours γ2 and γ3 as shown.
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We claim that that

ˆ
γ2

f(w)

w − zdw +

ˆ
γ3

f(w)

w − zdw =

ˆ
γ

f(w)

w − z −
ˆ
γ1

f(w)

w − z .

In the first sum, the integrals over the horizontal edges cancel.

The integrals over over arcs of the big circle add to
´
γ
f(w)
w−z dw, and those of the small circle add to −

´
γ1

f(w)
w−z dw.

Consider
´
γ2

f(w)
w−z dw. The function f(w)

w−z is not holomorphic on w = z, so what we want to do now is consider a

contour over which f(w)
w−z is holomorphic and dodges this singularity.

Now consider U ′ which is obtained by deleting z and all points vertically below it from D(a, r′); U ′ is a star
domain.

By Cauchy’s theorem,
´
γ2

f(w)
w−z dw = 0 and similarly,

ˆ
γ3

f(w)

w − zdw = 0 =⇒
ˆ
γ

f(w)

w − zdw =

ˆ
γ1

f(w)

w − zdw.

Parametrise γ1 by γ1(t) = z + δeit with t ∈ [0, 2π], and γ′1(t) = iδeit.

ˆ
γ1

f(w)

w − zdw =

ˆ 2π

0

f(z + δeit)

δeit
iδeitdt

= i

ˆ 2π

0
f(z + δeit)dt

=

ˆ
γ

f(w)

w − zdw.

Now let δ → 0. We claim that

lim
δ→0

ˆ 2π

0
f(z + δeit)dt = 2πf(z).

So we need to justify this claim. Note that

ˆ 2π

0
f(z + δeit)dt− 2πf(z) =

ˆ 2π

0

[
f(z + δeit)− f(z)

]
dt

and as f is continuous at z, given ε > 0 there is some η > 0 such that |f(u)− f(z)| < ε if u ∈ D(z, η).

So if δ < η, ∣∣∣∣ˆ 2π

0

[
f(z + δeit)− f(z)

]
dt

∣∣∣∣ ≤ ˆ 2π

0

∣∣f(z + δeit)− f(z)
∣∣dt

≤ 2πε.

So this shows that limδ→0

´ 2π
0 f(z + δeit)dt = 2πf(z). Therefore
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ˆ
γ

f(w)

w − zdw = lim
δ→0

i

ˆ 2π

0
f(z + δeit)dt

= 2πif(z)

as required.

�

Example ˆ
γ

ez
2

z + 1
dz

where γ is the circle centre 0, radius 2.

Start off by parametrising γ(t) = 2eit with t ∈ [0, 2π].

Also, note that z + 1 = z − (−1). By Cauchy’s integral formula, as f(z) = ez
2

is holomorphic on C, we have

ˆ
γ

ez
2
dz

z + 1
= 2πif(−1)

= 2πie.

Example ˆ
γ

e2z

z2 − 1
dz

where γ is the circle centre 1, radius 1.

Note that

e2z

z2 − 1
=

e2z

(z + 1)(z − 1)

=
f(z)

z − 1

where f(z) = e2z

z+1 .

f(z) is holomorphic on and inside γ, so the integral is

2πif(1) = 2πi
e2

2
= πie2.
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Cauchy’s Integral Formula for other closed contours

The formula holds for f holomorphic on and inside a rectangular contour. The idea is the same, i.e. that
integrating over the rectangle is the same as integrating over a small circle, and this reduces to proving that
integrals along the two contours are zero etc.

We claim that the formula is true for all simple closed contours, if a contour is traversed anticlockwise. The
idea is to reduce to an integral over a small circle, and break up the different into contours each contained in a
star domain.

There is a well-defined notion of anticlockwise on γ. then if f is holomorphic on a domain containing γ and its
interior,

´
γ f(z)dz = 0 and for z in the interior of γ, f(z) = 1

2πi

´
γ
f(w)
w−z dw.

Cauchy’s Integral Formula for the Derivative

Theorem Let γ be a simple close contour. Let f be holomorphic on γ and its interior (we always assume γ
is taken in an anticlockwise direction).

If z is in the interior of γ, then

f ′(z) =
1

2πi

ˆ
γ

f(w)

(w − z)2dw.

Proof The idea is to consider Cauchy’s integral formula and differentiate it with respect to z. But we shall
proceed carefully!

Define

F (z) =
1

2πi

ˆ
γ

f(w)

(w − z)2dw.

To show that F (z) = f ′(z) we need to prove that

lim
h→0

(
f(z + h)− f(z)

h
− F (z)

)
= 0.

Let z be in the interior of γ. Pick δ > 0 such that D(z, δ) is contained in the interior of γ.

We claim that |f(w)| is bounded on γ. If I have some parametrisation of γ, then γ : [a, b]→ C then t 7→ |f (γ(t))|
is a continuous real-valued function on this interval, so it is bounded.

There is M > 0 with |f(w)| ≤M for all w on γ. There is M > 0 with |f(w)| ≤M for all w on γ.
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Let 0 < |h| < δ. Then

f(z + h)− f(z)
h

− F (z)

=
1

2πi

ˆ
γ

1h
 1

(w − z − h)︸ ︷︷ ︸
f(z+h)

− 1

(w − z)︸ ︷︷ ︸
f(z)

− 1

(w − z)2

 f(w)dw
=

1

2πi

ˆ
γ

[
1

(w − z − h)(w − z) −
1

(w − z)2
]
f(w)dw

=
1

2πi

ˆ
γ

(w − z)− (w − z − h)
(w − z)2(w − z − h) f(w)dw

=
h

2πi

ˆ
γ

f(w)dw

(w − z)2(w − z − h)

|f(w)| ≤M , |w − z| ≥ δ for w on γ and D(z, δ) doesn’t meet γ.

By the “alternate” triangle inequality, we have

|w − z − h| ≥ δ − |h|

∴

∣∣∣∣f(z + h)− f(z)
h

− F (z)
∣∣∣∣ ≤ |h|2π M

δ2(δ − |h|) · length(γ)

→ 0 as h→ 0.

So
f(z + h)− f(z)

h
− F (z)→ 0

as h→ 0, whence F (z) = f ′(z).

�

Using this for z in the interior of γ we get

lim
h→0

f ′(z + h)− f ′(z)
h

=
2

2πi

ˆ
γ

f(w)

(w − z)3dw

The proof is very similar to the above but the algebra is slightly fiddlier (if there was a LATEXsymbol for “sad
face”, I’d be obliged to put one here).

Theorem Let U be a domain, with f holomorphic on U . Then f ′ is also holomorphic on U .
Consequently, if a complex function is differentiable once, then it is infinitely differentiable! Wow!

Proof Let z ∈ U , γ be a circle with centre z with with γ and its interior contained in U (this is okay because U
is open).

Then

lim
h→0

f ′(z + h)− f ′(z)
h

exists (derived above), and then f ′′(z) exists and so on!
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�

2.10.1 Corollary (Cauchy’s Formula for the nth Derivative)

If f is holomorphic, the nth derivative of f exists for all n ∈ N.
We also get Cauchy’s integral formula for the nth derivative, under the hypotheses of Cauchy’s integral formula.

f (n)(z) =
n!

2πi

ˆ
γ

f(w)

(w − z)n+1
dw

Outline proofs

1. Follow proof for f ′(z) making appropriate modifications.

2. Integrating f (n)(z) =
CIF

1

2πi

´
γ

f (n)(w)

w − z dw by parts n times.

Example ˆ
γ

sin z

z4
dz

where γ is the unit circle.

ˆ
γ

sin z

z4
dz =

ˆ
γ

f(z)

z3+1
dz where f(z) = sin z (holomorphic on C)

By Cauchy’s integral formula,

f ′′′(0) =
3!

2πi

ˆ
γ

f(z)

(z − 0)3+1
dz

=
6

2πi

ˆ
γ

f(z)

z4
dz

However, f ′′′(0) = − cos 0 = −1, so

6

2πi

ˆ
γ

sin z

z4
dz = −1

⇐⇒
ˆ
γ

sin z

z4
dz = −πi

3
.

Example ˆ
γ

ez

z2(z + 1)
dz

where γ is the circle with centre 0 and radius 2.

The denominator of the integrand vanishes at z = 0 and z = −1, both of which are inside γ, so we can’t apply
Cauchy’s integral formula directly.
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• Method 1: “Break up” γ into two contours each encircling one of the values z = 0 or z = −1. So

ˆ
γ
f(z)dz =

ˆ
γ1

f(z)dz +

ˆ
γ2

f(z)dz

=⇒
ˆ
γ

ez

z2(z + 1)
dz =

ˆ
γ1

g(z)

z2
dz +

ˆ
γ2

h(z)

z + 1
dz

where g(z) = ez

z+1 and h(z) = ez

z2
, holomorphic on and inside γ1 and γ2 respectively.

By Cauchy’s integral formula,
ˆ
γ

ez

z2(z + 1)
dz = 2πig′(0) + 2πih(−1)

= 2πi

[
ez

z + 1
− ez

(z + 1)2

]∣∣∣∣
z=0

+ 2πi

[
ez

z2

]∣∣∣∣
z=−1

= 0 + 2πie−1

=
2πi

e
.

• Method 2: expand 1
z2(z+1)

into partial fractions.

1

z2(z + 1)
=
A

z
+
B

z2
+

C

z + 1

so
ˆ
γ

ez

z2(z + 1)
dz = A

ˆ
γ

ez

z
dz +B

ˆ
γ

ez

z2
dz + C

ˆ
γ

ez

z + 1
dz

• Method 3: Calculus of residues (later).

Cauchy Estimates

Theorem Let f be holomorphic on a domain containing the closed disc D(a, r). Let M be an upper bound
for |f(z)| for z on the circle centre a, radius r. That is, |f(z)| ≤M for all z with |z − a| = r.
Then

f (n)(a) ≤ n!M

rn
.

Proof Let γ be the circle centre a and radius r. Then by Cauchy’s integral formula,

f (n)(a) =
n!

2πi

ˆ
γ

f(w)

(w − a)n+1
dw.

On γ, |f(w)| ≤M by hypothesis, where |w − a| = r.

The length of γ is 2πr. So by the ML-bound,
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∣∣∣f (n)(a)∣∣∣ ≤ n!

2π

M

rn+1
· 2πr

=
n!M

rn
.

�

2.11 Liouville’s Theorem

Corollary (Liouville’s Theorem) Let f be holomorphic on C (such a function is entire).

Then if f is bounded on C, i.e. there exists M with |f(z)| ≤M ∀z ∈ C, then f is constant.

Proof We can apply Cauchy’s estimates with this bound M , and by any a and any r.

∣∣f ′(a)∣∣ ≤ M

r
(∀a ∈ Cand r > 0).

We can let r →∞, and we deduce that f ′(a) = 0 ∀a ∈ C, i.e. f ′ = 0.

If z ∈ C,

f(z)− f(0) =
ˆ z

0
f ′(w)dw

= 0

=⇒ f(z) = f(0) ∀z ∈ C

so f is constant.

�

Corollary (Fundamental Theorem of Algebra) Let

P (z) = zn + a1z
n−1 + . . .+ an−1z + an

be a polynomials of degree n ≥ 1. Then P (z) = 0 has at least 1 solution in C. Wow!

Proof Let f(z) =
1

P (z)
. If P (z) has no root, then f(z) is an entire function. We claim that if this is the case

then f(z) is bounded.

f(z) = z−n
1

1 + a1
z + . . .+ an

zn

with z 6= 0. We see that |f(z)| → 0 as |z| → 0.
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There is R > 0 such that |f(z)| < 1 if |z| > R. But |f(z)| is continuous on D(0, R) so |f(z)| is bounded on
D(0, R) (a continuous real-valued function on a closed bounded set is bounded there).

So f is bounded by Liouville’s theorem. Thus f is constant and so P = 1/f is constant.

But then P (z) = zn+ a1z
n−1 + . . .+ an−1z+ an, so |P (z)| → ∞ so P isn’t constant! This is our contradiction.

Therefore we must have that P (z) has a zero somewhere.

Corollary If P (z) = zn + a1z
n−1 + . . . + an−1z + an then P (z) = (z − z1)(z − z2) . . . (z − zn) for some

z1, . . . , zn ∈ C.

Proof By the Fundamental Theorem of Algebra,

P (z1) = 0 for some z1
=⇒ P (z) = (z − z1)Q(z)

where Q(z) is a polynomial of degree n− 1.

Keep extracting factors to get the desired result.

�

2.11.1 Corollary (Generalised Liouville Theorem)

Let f be entire. Suppose there are n,C,R such that |f(z)| ≤ C |z|n for sufficiently large z with z > R.
Then f is a polynomial of degree at most n.

Proof Let a ∈ C. Then for each r > 0,

f (n+1)(a) ≤ (n+ 1)!

rn+1
M(r)

where M(r) is some upper bound for |f(z)| when |z − a| < r (by Cauchy estimates).

If we take r large enough, then

|f(z)| ≤ C |z|n

≤ C (|z − a|+ |a|)n (by the triangle inequality)
= C (r + |a|)n

when |z − a| = r.

Take M(r) = C (r + |a|)n . Then

∣∣∣f (n+1)(z)
∣∣∣ ≤ (n+ 1)!

rn+1
(r + |a|)n

→ 0 as r →∞.
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∴
∣∣∣f (n+1)(z)

∣∣∣ = 0

=⇒ f (n+1)(z) = 0

=⇒ f(z) = A0 +A1z + . . .+Anz
n (integrating n+ 1 times).

�

Example Suppose |f(z)| ≤ |z| + 1 for all z ∈ C where f is holomorphic. Prove that f(z) = Az + B where
|A| ≤ 1 and |B| ≤ 1.

Proof If |z| ≥ 1 then

|f(z)| ≤ |z|+ 1

≤ 2 |z|

so by the Generalised Liouville theorem, f(z) = Az +B where A,B ∈ C.

Now

|B| = |f(0)|
≤ |0|+ 1 = 1

by the condition |f(z)| ≤ |z|+ 1.

By Cauchy’s estimates,

|A| =
∣∣f ′(0)∣∣ ≤ 1

r
M(r)

with z = r > 0.

On |z| = r,

|f(z)| ≤ |z|+ 1

= r + 1.

Take M(r) = r + 1.Then |A| ≤ r+1
r → 1 as r →∞, so |A| ≤ 1.

�

2.12 Power Series

2.12.1 Theorem (Taylor’s Theorem)

Let f be holomorphic on a domain U , and suppose D(a, r) ⊆ U . Then

f(z) =
∞∑
n=0

f (n)(a) · (z − a)
n

n!

if z ∈ D(a, r) (the series converges for such z).
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Proof By considering f(z + a) in place of f(z), we can assume a = 0. So D(0, r) ⊆ U .

Let 0 < R < r. Then γ, the circle centre 0 radius R is contained in D(0, r).

If |z| < R, f(z) = 1
2πi

´
γ
f(w)dw
w−z by Cauchy’s integral formula.

Now

1

w − z =
1

w

1

1− z
w

=
1

w

∞∑
n=0

( z
w

)n
∴

N∑
n=0

1

w

( z
w

)n
=

1

w

1−
(
z
w

)N+1

1−
(
z
w

) (geometric series formula)

=
1

w − z −
(
z
w

)N+1

w − z

⇐⇒ 1

w − z =

(
z
w

)N+1

w − z +
N∑
n=0

1

w

( z
w

)n
Therefore

f(z) =
1

2πi

ˆ
γ

((
z
w

)N+1

w − z +

N∑
n=0

1

w

( z
w

)n)
f(w)dw

=
1

2πi

ˆ
γ

(
z
w

)N+1

w − z f(w)dw +

N∑
n=0

ˆ
γ

znf(w)

wn+1
dw

= In +

N∑
n=0

anz
n (∗)

where an = 1
2πi

´
γ
f(w)dw
wn+1 = f (n)(0)

n! by Cauchy’s integral formula for the nth derivative.

Now we apply the ML-bound to IN .

|IN | ≤
1

2π

(|z| /R)N+1M

R− |z| · 2πR

|f(w)| is bounded by M , say on γ, so that |w| = R on γ.

Since |z| < R,
(
|z|
R

)N+1
→ 0 as N →∞, IN → 0 as N →∞.

By putting this limit into (∗), we have

f(z) =

∞∑
n=0

anz
n

=

∞∑
n=0

f (n)(0)

n!
zn if z ∈ D(0, R).
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If z ∈ D(0, r), |z| < r so I can choose R with |z| < R < r.

Using this particular r, we can get

f(z) =
∞∑
n=0

f (n)(0)

n!
zn.

�

Taylor’s theorem says that holomorphic functions are “locally” power series.

Remark Power series expansions may not hold for all points of the domain, but certainly in any disc sur-
rounding a given point. For example,

f(z) =
1

z

and a = 1. f is holomorphic on C\{0}.

f is also holomorphic on D(1, 1). In this disc,

f(z) =
1

z − 1 + 1

=
1

1− (−(z − 1))

=
∞∑
n=0

(−1)n(z − 1)n.

However, outside of this disc, the series is divergent. f isn’t given by this series outside of the disc.

Again, as in real analysis, there are 3 possibilities.

1. f(z) =
∑∞

n=0 bn(z − a)n converges ∀z ∈ C.

2. f(z) =
∑∞

n=0 bn(z − a)n converges only for z = 0.

3. There exists R ∈ (0,∞) (the radius of convergence) such that

f(z)

{
converges absolutely |z − a| < R

diverges |z − a| > R
.

Proof: Same as in real analysis.

The radius of convergence makes more sense over C than R, since the power series converges on a disc of
radius R.

Theorem If the power series
∑∞

n=0 bn(z−a)n is convergent on D(a,R), then it defines a holomorphic function
f there and moreover

f ′(z) =

∞∑
n=1

nbn(z − a)n−1 on D(a,R).
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Proof Assume a = 0. otherwise replace z − a with z.

Let f1(z) =
∑∞

n=1 nbnz
n−1. Robin claims that f1 converges on D(0, R).

Let z ∈ D(0, R). One can choose r with |z| < r < R. Then
∑∞

n=0 bnr
n converges, so bnrn → 0, so (bnr

n) is a
bounded sequence. There is M ∈ R with |bnrn| ≤M for all n.

∣∣nbnzn−1∣∣ = |z|n−1
rn−1

so

∣∣nbnrn−1∣∣ = ( |z|
r

)n−1 n
r
|nbnrn|

≤ M

r
n

( |z|
r

)n−1

and so

∞∑
n=1

∣∣nbnrn−1∣∣ ≤ M

r

∞∑
n=1

( |z|
r

)n−1

which is convergent by the ratio test.

Therefore f1(z) =
∑∞

n=1 nbnz
n−1 is absolutely convergent for z ∈ D(a,R).

We repeat the argument for

f2(z) =
∞∑
n=2

n(n− 1)bnz
n−2

which also converges on D(a,R).

To show that f is differentiable and f ′ = f1, consider

f(z + h)− f(z)
h

− f1(z).

We need to prove that this tends to zero as h→ 0.
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f(z + h)− f(z)
h

− f1(z) =
∞∑
n=1

bn

[
(z + h)n − zn

h
− nzn−1

]
(using the fact that f(z) =

∞∑
n=0

bnz
n)

Now
(z + h)n − zn

h
=

n∑
k=1

(
n

k

)
zn−khk−1 (by the binomial theorem)

∴
(z + h)n − zn

h
− nzn−1 = h

n∑
k=2

(
n

k

)
zn−khk−2

∴

∣∣∣∣(z + h)n − zn
h

− nzn−1
∣∣∣∣ =

∣∣∣∣∣h
n∑
k=2

(
n

k

)
zn−khk−2

∣∣∣∣∣
≤ |h|

n∑
k=2

(
n

k

)
|z|n−k |h|k−2 (by the triangle inequality )

= |h|
n∑
k=2

n!

k!(n− k)! |z|
n−k |h|k−2

= |h|
n∑
k=2

n(n− 1)(n− 2)!

k(k − 1)

|z|n−k
(n− k)!

|h|k−2
(k − 2)!

= |h|n(n− 1)
n∑
k=2

1

k(k − 1)

(n− 2)!

(k − 2)!(n− k)! |z|
n−k |h|k−2

≤ |h|n(n− 1)
n∑
k=0

(
n− 2

k − 2

)
|z|n−k |h|k−2 (as k ≥ 2,k(k − 1) ≥ 2 · 1 = 2)

=
n(n− 1)

2
(|z|+ |h|)n−2

Therefore

∣∣∣∣f(z + h)− f(z)
h

− f1(z)
∣∣∣∣ ≤ |h|2

∞∑
n=2

n(n− 1) |bn| (|z|+ |h|)n−2 .

If |h| < R− |z| then |z|+ |h| < R so
∑∞

n=2 n(n− 1) |bn| (|z|+ |h|)n−2 is absolutely convergent.

Let |z| < r < R. If |h| < r then
∣∣∣f(z+h)−f(z)h − f1(z)

∣∣∣ ≤ |h|M2 .

Indeed, limh→0
f(z+h)−f(z)

h = f1(z), so f is differentiable with

f ′(z) =
∞∑
n=1

nbnz
n−1.

�

Inside their disc of convergence, power series define functions that are holomorphic.

Remark: Just as with power series over R, the radius of convergence can be computed by the ratio test, that
is,
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if lim
n→∞

∣∣∣∣ bnbn+1

∣∣∣∣ = R

then
∑
bn(z − a)n has radius of convergence equal to R.

2.13 Zeros of holomorphic functions

If f is holomorphic, then a zero of f is some z0 ∈ C such that f(z0) = 0.

How does f behave near a zero?

Let f be holomorphic on U , and f(a) = 0 (a ∈ U).

By Taylor’s theorem, f(z) =
∑∞

n=1 bn(z − a)n (starting at n = 1 as f(0) = 0). This is valid in some disc centre
a.

• Case 1 (trivial): All the bn = 0 =⇒ f(z) = 0 on a disc D(a, r), r > 0.

• Case 2: Some bn 6= 0. Let N be the smallest integer with bN 6= 0. Then f(z) =
∑∞

n=N bn(z − a)n on
some D(a, r).
In this case we say f has a zero of order N (this integer is unique) at z = a.

– A zero of order 1 is simple

– A zero of order 2 is double

– A zero of order 3 is triple, and so on.

The order of a zero of f is m at z = a if and only if

f(a) = . . . = f (m−1)(a) = 0 6= f (m)(a).

Remarked that we can have f(z) = 0 in some D(a, r) if not then f(a) 6= 0 or f has a zero of order m at a.

Then as f(z)
(z−a)m → bm 6= 0 as z → a, f(z) 6= 0 in some punctured open disc D′(a, r) = {z ∈ C| 0 < |z − a| < r} .

Zeros of order m are “isolated”, surrounded by a disc where f(z) 6= 0 (except from at a).

Theorem If f is holomorphic on a domain U , and f is identically zero on some disc D(a, r) with D(a, r) ⊆ U ,
then f is identically zero on U .

Proof (vague outline) We need the fact that U is connected. Let V = {a ∈ U| f is identically zero on some D(a, r)} .
Then one proves that

1. V is open

2. U\V is open

3. In a connected open set U , the only V satisfying the first two rules are V = ∅ or V = U .
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We omit proofs of these three properties, and say that V = ∅ by the hypothesis so V = U =⇒ f is identically
zero on U .

2.13.1 Corollary (Identity Theorem)

Let U be a domain. Let (zn) be a sequence of points in U converging to w ∈ U with zn 6= w∀n. Then if f and g
are holomorphic on U and f (zn) = g (zn) for all n, then f(z) = g(z) for all z ∈ U .

Proof Let h(z) = f(z)− g(z). h (zn) = 0 as h is holomorphic and continuous. So also zn → w =⇒ h (zn)→
h (w) =⇒ h(w) = 0.

By the Theorem above, either h is identically zero on U , i.e. f = g on all of U , or h has a zero of order m at w.

Then w is an isolated zero of h, so that h(w) 6= 0 on some D(w, r).

Let zn → w but zn 6= w for large enough n. Then zn ∈ D′(w, r), the punctured disc. But this means that
h (zn) 6= 0 which is a contradiction.

�

Examples

1. f(z) = zn has a zero of order n at z = 0.

2. f(z) = sin z = z− z3

3! +
z5

5! − . . . has a simple zero at z = 0 and at z = π (and other integer multiples of π);

f(z + π) = sin(z + π)

= − sin z

= −
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

f(z) = −
∞∑
n=0

(−1)n(z − π)2n+1

(2n+ 1)!

= −(z − π) + (z − π)3
6

− . . .
so sin zdoes have a simple zero at z = π.

3. f(z) = 1− cos z = 1−
(
1− z2

2! +
z4

4! − . . .
)
= z2

2! − . . . so 1− cos z has a double zero at z = 0.
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2.14 Laurent Series

2.14.1 Theorem (Laurent’s Theorem)

Let f be holomorphic on the annulus A = {z ∈ C| r < |z − a| < R} where 0 ≤ r < R (≤ ∞) . Then

f(z) =
∞∑

n=−∞
bn(z − a)n

where bn ∈ C for each n ∈ Z.
This series is called a Laurent series and equals

. . .+
b−2

(z − a)2 +
b−1

(z − a) + b0 + b1(z − a) + b2(z − a)2 + . . .

Proof Let z ∈ A. Pick r1, r2 with r < r1 < |z − a| < r2 < R. Assume without loss of generality that a = 0.

Create contours γ1 and γ2, defined to be circles (both centre 0) with radii r1 and r2 respectively.

I claim that

f(z) =
1

2πi

[ˆ
γ1

f(w)

w − zdw −
ˆ
γ2

f(w)

w − zdw
]
.

So

I(γ2)− I(γ1) = I(γ3) + I(γ4)

(where in this case, I(γ) is shorthand for 1
2πi

´
γ
f(w)
w−z dz).

Applying Cauchy’s integral formula to I(γ3), we get

I(γ3) =
ˆ
γ3

f(w)

w − zdw = 2πif(z).

Also, by Cauchy’s theorem, I(γ4) = 0.

This means that

f(z) = I(γ2)− I(γ1).

Now

I(γ2) =
∞∑
n=0

bnz
n

where bn =
1

2πi

´
γ2

f(w)
wn+1dw (from Taylor’s theorem).
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1

2πi

ˆ
γ1

f(w)

w − zdw =
1

2πi

(
−1

z

) ˆ
γ1

f(w)

1− w
z

dw

=
1

2πi

(
−1

z

) ˆ
γ1

f(w)
∞∑
m=0

wm

zm
dw

=

(
−1

z

)
1

zm

∞∑
m=0

(
1

2πi

ˆ
γ1

wmf(w)dw

)
︸ ︷︷ ︸

bm−1

= − 1

2πi

∞∑
m=0

b−m−1
z−m−1

.

Technical point: The formulae for bn involve r1 or r2.

But a similar argument to Robin’s “circle chopping” contour argument shows that bn is independent of the radii
r1, r2.

So the formula

f(z) =

∞∑
n=−∞

bnz
n

is true on the annulus.

�

The Laurent series can be split up as follows.

∞∑
n=−∞

bn(z − a)n =
∞∑
n=0

bn(z − a)n +
−1∑

n=−∞
bn(z − a)n

The first term is a power series in (z − a) which converges absolutely for |z − a| < R.

The second term is a power series in (z − a)−1 which converges absolutely for
∣∣∣ 1
z−a

∣∣∣ < R′.

If 1
R′ < R then the Laurent series converges absolutely for 1

R′ < |z − a| < R.

Example

f(z) =
1

(z − 1)(z − 2)

=
1

z − 2
− 1

z − 1

is holomorphic everywhere except for z = 1, 2. In particular, f is holomorphic on A = {z ∈ C| 1 < |z| < 2} .
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1

z − 2
=

1

2

(
1

z
2 − 1

)
= −1

2

(
1

1− z
2

)
= −1

2

∞∑
n=0

(z
2

)n
(as

∣∣∣z
2

∣∣∣ < 1)

= −
∞∑
n=0

zn

2n+1

and

1

z − 1
=

1

z

(
1

1− 1
z

)

=
1

z

∞∑
n=0

1

zn
(as

∣∣∣∣1z
∣∣∣∣ < 1)

=

∞∑
n=0

1

zn+1

=
−1∑

m=−∞
zm (m = −(n+ 1))

Therefore

1

z − 2
− 1

z − 1
= −

∞∑
n=0

zn

2n+1
+

−1∑
m=−∞

zm

This means that
1

(z − 2)(z − 1)
has Laurent series on the annuli

{z ∈ C| 0 < |z| < 1} (Taylor series; no terms znwith n < 0)
{z ∈ C| 2 < |z|} (Laurent series only with terms znwith n < 0)

which are different to the ones we calculated!

2.15 Singularities

Definition Let U be a domain on which f is holomorphic. Let a /∈ U but supposeD′(a, r) = {z ∈ C| 0 < |z − a| < r} ⊆
U for some r > 0.

We say that f has an isolated singularity at z = a. For example, 1
z ,

sin z
z , e1/z all have isolated singularities at

z = 0.

If f is holomorphic on D′(a, r), then Laurent’s theorem states that f(z) =
∑∞
−∞ bn(z − a)n on D′(a, r).
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f(z) = f1(z) + f2(z)

=
∞∑
n=0

bn(z − a)n +
−1∑

n=−∞
bn(z − a)n

=
∞∑
n=0

bn(z − a)n +
∞∑
m=1

b−m
(z − a)m︸ ︷︷ ︸

principal part of a

is convergent for all z 6= a.

Definition

• Case (i): If b−m = 0 for m > 0, so f2(z) = 0, then f has a removable singularity at a. Then

f1(z) =

{
f(z) z 6= a

b0 z = a

is holomorphic on D(a, r) and f1(z) =
∑∞

n=0 bn(z − a)n.

• Case (ii): f2(z) 6= 0 but the series has finitely many terms.

f2(z) =

−1∑
n=−N

bn(z − a)n

=
b−N

(z − a)N + . . .+
b−1
z − a

where b−N 6= 0. Then f(z) =
∑∞

n=−N bn(z − a)n.

We say f has a pole of order N at z = a (for example, f(z) = 1/z has a pole of order 1 at z = 0).

– Poles of order 1 are simple poles
– Poles of order 2 are double poles, and so on.

If f has a pole of order N are a, then (z − a)Nf(z) has a removable singularity at a, and therefore
(z − a)Nf(z) converges towards a finite limit as z → a. This implies that |f(z)| → ∞ as z → a.

• Case (iii): f2(z) has infinitely many terms.

We say f has an essential singularity at a.

For example,

f(z) = e1/z

=

∞∑
n=0

z−n

n!
=

0∑
m=−∞

zm

(−m)!

has an essential singularity at z = 0.
Essential singularities are complicated!
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Example

f(z) =
sin z

z

has a removable singularity at z = 0.

f(z) =
z − z3

3! +
z5

5! − . . .
z

= 1− z2

3!
+
z4

5!
− . . .

There are no terms of negative exponent in this series. f has a removable singularity.

Theorem (Picard’s Great Theorem) Suppose f has an essential singularity at a. If f is defined on D′(a, r)
then f takes all complex values with at most one exception on D′(a, r).
At an isolated singularity a, f(z) =

∑∞
n=−∞ bn(z − a)n.

Here is an example to illustrate this. The complex function that has been plotted is f(z) = e1/z.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ℜ

ℑ

f(z) = e1/z has an essential singularity at z = 0. We can see that every possible complex value is reached
(with all brightnesses and colours) in an arbitrarily large disc about z = 0. This illustrates the fascinating (and
rather nasty) behaviour of essential singularities.

The principal part of f at a is

−1∑
n=−∞

bn(z − a)n

=

∞∑
n=1

b−n
(z − a)n
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which converges for all z 6= a.

The residue of f at a is
Res
z=a

f(z) = b−1.

If f has a removable singularity at a, then Res
z=a

f(z) = 0.

If f has a simple pole then Res
z=a

f(z) 6= 0.

2.16 Calculus of Residues

Theorem (Calculus of Residues) Suppose γ is a closed, simple contour traversed anticlockwise. Let f be
a function which is holomorphic on and inside γ except for a finite number of isolated singularities inside γ (call
them a1, . . . , ak).
Then

ˆ
γ
f(z)dz = 2πi

k∑
j=1

Res
z=aj

f(z).

This theorem subsumes Cauchy’s theorem, Cauchy’s integral formula and Cauchy’s integral formula for the
nth derivative.

Proof At each singularity aj , let gj(z) be its principal part. F (z) = f(z) =
∑k

j=1 gj(z) will have only removable
singularities and so can be considered holomorphic.
´
γ F (z)dz = 0 by Cauchy’s theorem (as the contour γ is closed) so

ˆ
γ
f(z)dz =

k∑
j=1

ˆ
γ
gj(z)dz.

gj(z) =
b−1
z − aj

+ hj(z)

=⇒
ˆ
γ
gj(z)dz = b−1

ˆ
γ

1

z − aj
+

ˆ
γ
hj(z)dz

= Res
z=a

f(z) · 2πi +
ˆ
γ
hj(z)dz by Cauchy’s integral formula

where hj(z) =
∑∞

n=2

b−n
(z − aj)n

.

But hj(z) = d
dz

∑∞
n=2

−b−n
(n− 1)(z − aj)n−1

so
´
γ hj(z)dz = 0 by the Fundamental Theorem of Calculus.

Putting it all together,

ˆ
γ
f(z)dz =

k∑
j=1

2πi · Res
z=aj

f(z)
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as required.

�

Calculating Residues

• Case (i): f has a simple pole at z = a.

f(z) =
b−1
z − a + b0 + b1(z − a) + . . . near z = a.

=⇒ (z − a)f(z) = b−1

= lim
z→a

f(z)(z − a)

• Case (ii): f has multiplie poles (order N ≥ 2).

f(z) =
b−N

(z − a)N + . . .+
b−1
z − a + b0 + . . . near z = a.

– Method 1 (NOT recommended)

(z − a)Nf(z) = b−N + . . .+ b−1(z − a)N−1 + b0(z − a)N + . . .

=⇒
(

d

dz

)N−1 (
(z − a)Nf(z)

)
= (N − 1)!b−1 +N !b0(z − a) + . . .

The residue is then

b−1 = lim
z→a

1

(N − 1)!

(
d

dz

)N−1 (
(z − a)Nf(z)

)
.

– Method 2 (Robin’s favourite)

w = z − a or z = w + a so

f(w + a) =
b−N
wN

+ . . .+
b−1
w

+ b0 + . . .

Expand f(w + a) as a Laurent series as far as the w−1 term.

• Case (iii): Essential singularity

– Have to compare Laurent series. These are usually rather nasty, and are rare on exercises and
problem sheets.
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Example

Res
z=i

1

z2 + 1

This is where f(z) =
1

z2 + 1
has two simple poles at z = ±i.

Note that

z − i

z2 + 1
=

z − i

(z + i) (z − i)

=
1

z + i
provided z 6= ±i.

So

Res
z=i

1

z2 + 1
= lim

z→i

z − i

z2 + 1

=
1

2i
= − i

2

In practice we are usually given f(z) = g(z)
h(z) where g, h are holomorphic, g(a) 6= 0 and h has a simple pole at

z = a

Res
z=a

g(z)

h(z)
= lim

z→a

(z − a)g(z)
h(z)

= lim
z→a

g(z) lim
z→a

z − a
h(z)− h(a) as h(a) = 0

=
g(a)

h′(a)
.

So for the example above, we would have

Res
z=i

1

z2 + 1
=

g(a)

h′(a)
=

1

2i

so g(z) = 1 and h′(z) = 2i.

Example

Res
z=π

2

tan z =
sin π

2

cos′
(
π
2

)
=

sin π
2

− sin π
2

= −1.

Example

Res
z=i

1

(z2 + 1)2
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f(z) =
1

(z2 + 1)2
has double poles at z = ±i.

f(w + i) =
1

(w2 + 2iw)2

=
1

(2iw)2
(
1− iw

2

)2
= − 1

4w2

1(
1− iw − w2

4

)
= −1

4
w−2

(
c0 + c1w + c2w

2 + . . .
)

∴

(
1− iw − w2

4

)(
c0 + c1w + c2w

2 + . . .
)
= 1

The residue is the w−1 coefficient, which is −c1
4
.

By comparing constants, we have c0 = 1.

By comparing w coefficients, we have c1 − ic0 = 0 ⇐⇒ c1 = ic0 = i.

So
Res
z→i

1

(z2 + 1)2
= − i

4
.

Example ˆ
γ

ez

1 + z2
dz

where γ is the circle centre 0 radius 2.

f(z) =
ez

1 + z2
has singularities at z = ±i, both of which are inside γ (and are simple poles). Then

ˆ
γ

ez

1 + z2
dz = 2πi

(
Res
z=i

f(z) + Res
z=−i

f(z)

)

Both residues can be calculated by method of writing f(z) = g(z)
h(z) where h has a simple zero at the singular

point.

Res
z=i

f(z) =
ez

(1 + z2)′

∣∣∣∣
z=i

=
ez

2z

∣∣∣∣
z=i

=
ei

2i

and similarly
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Res
z=−i

f(z) =
e−i

−2i

So

ˆ
γ

ez

1 + z2
dz = 2πi

(
ei

2i
+

e−i

−2i

)
= π

(
ei − e−i

)
= 2πi sin 1.

Example ˆ
γ

dz

z2(ez − 1)

where γ is the circle centre radius 2i radius 3.

Let f(z) =
1

z2(ez − 1)
. This function has singularities at z = 0 (triple pole) and not forgetting z = 2nπi, n ∈ Z

(as e2nπi = 1). However, only z = 0 is inside γ.

f(z) =
z−2

z +
z2

2!
+
z3

3!
+ . . .

=
z−3

1 +
z

2!
+
z2

3!
+ . . .

= z−3 + az−2 + bz−1 + . . .

⇐⇒ z−3 =

(
1 +

z

2!
+
z2

3!
+ . . .

)(
z−3 + az−2 + bz−1 + . . .

)
Comparing z−3 coefficients gives 1 = 1.

Comparing z−2 coefficients gives 0 = 1
2 + a ⇐⇒ a = −1

2 .

Comparing z−1 coefficients gives 0 = 1
6 + 1

2a+ b so b = 1
6 − 1

2a = −1
6 + 1

4 = 1
12 .

Hence

ˆ
γ

dz

z2(ez − 1)
=

2πi

12

=
πi

6
.

2.16.1 Integrals of the form
´ 2π
0 F (cos t, sin t)dt (where F is a nice 2-variable function)

When γ is the unit circle centre 0, with parametrisation γ(t) = eit, this integral becomes
´
γ F

(
z+z−1

2 , z−z
−1

2i

)
dz
iz .
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Example ˆ 2π

0

dt

a+ cos t

where a > 1.

This equals

I =

ˆ
γ

1

a+
z + z−1

2

dz

iz

=
2

i

ˆ
γ

dz

z2 + 2az + 1
where γis the unit circle.

Let f(z) =
1

z2 + 2az + 1
. This has poles at the roots of z2 + 2az + 1 = 0, i.e. at z = −a±

√
a2 − 1 ∈ R.

Clearly because a > 1,
√
a2 − 1 > 0 so −a−

√
a2 − 1 < −a < −1 so the negative root isn’t in the unit circle.

The product of the two roots is 1 so −a +
√
a2 − 1 =

1

−a−
√
a2 − 1

∈ (−1, 0) so the positive root is inside the

unit circle.

Hence

I =
2

i
· 2πi Res

z=−a+
√
a2−1

f(z)

= 4π
1

h′
(
−a+

√
a2 − 1

)
where h(z) = z2 + 2az + 1 as f(z) = 1

h′(z) has a simple pole at z = a.

h′(z) = 2z + 2a

= 2(z + a)

h′(b) = 2(a+ b)

= 2
√
a2 − 1

So
I =

2π√
a2 − 1

.

Example ˆ 2π

0

cos 2t

5− 3 cos t
dt

Now
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cos 2t =
ei(2t) + e−i(2t)

2

=
z2 + z−2

2
where γ is the unit circle.

So

I =

ˆ
γ

z2+z−2

2

5− 3 · z+z−1

2

dz

zi

=
1

i

ˆ
γ

z2 + z−2

−3z2 + 10z − 3
dz

= −1

i

ˆ
γ

1 + z4

z2 (3z2 − 10z + 3)
dz

f(z) =
1 + z4

z2 (3z2 − 10z + 3)
=

1 + z4

z2(3z − 1)(z − 3)

This function has a double pole at z = 0 and also simple poles at z = 3 and z = 1
3 . Only z = 0 and z = 1

3 are
inside the unit circle.

Therefore

I = −1

i
· 2πi

(
Res
z=0

f(z) + Res
z= 1

3

f(z)

)

z = 0 is a double pole, so write

f(z) =
z2 + z−2

3z2 − 10z + 3

=
z−2

3
+ az−1 + . . .

∴ z−2
(
1 + z4

)
=
(
3− 10z + 3z2

)(z−2
3

+ az−1 + . . .

)
Comparing z−1 coefficients gives 0 = 3a− 10

3 ⇐⇒ a = 10
9 .

So

Res
z= 1

3

f(z) =
1 + z4

1
32

(3z2 − 10z + 3)′

∣∣∣∣∣
z= 1

3

=
82

9
· 1

(6z − 10)|z= 1
3

=
82

9(2− 10)
= −41

36
.
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and

Res
z=0

f(z) =
10

9

so

I = −2π
(
10

9
− 41

36

)
=

π

18
.

2.16.2 The Semicircle Method

Take a contour γ of the form as shown below. γ1 is the interval [−R,R] and γ2 is the semicircular arc of radius
R going from R to −R.

INSERT DIAGRAM

Let R → ∞. Then
´
γ1
f(z)dz =

´ R
−R f(x)dx →

´∞
−∞ f(x)dx. We hope that |f(z)| → 0 sufficiently quickly as

|z| → ∞ to ensure that
´
γ2
f(z)dz → 0.

If these conditions are satisfied, then

ˆ ∞
−∞

f(x)dx = lim
R→∞

ˆ
γ
f(z)dz.

Example

I =

ˆ ∞
−∞

dx

1 + x2

Let f(z) =
1

1 + z2
. On γ2, |z| = R and so

∣∣z2 + 1
∣∣ ≥ R2 − 1

(by the “alternate” triangle inequality, |z + w| ≥ |z| − |w| ∀z, w ∈ C)

⇐⇒
∣∣∣∣ 1

z2 + 1

∣∣∣∣ ≤ 1

R2 − 1
.

Then if R > 1, ∣∣∣∣ 1

1 + z2

∣∣∣∣ ≤ 1

R2 − 1
.

The arc γ2 has length πR, so by the ML-bound,
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∣∣∣∣ˆ
γ2

f(z)dz

∣∣∣∣ ≤ πR

R2 − 1
(if R > 1)

→ 0 as R→∞

=⇒
ˆ
γ2

f(z)dz → 0 as R→∞.

Therefore we can use the semicircle method (therefore calculus of residues) to evaluate the integral.

f(z) is holomorphic except at z = ±i (two simple poles). Only one of these lies inside γ for large R, which is
z = i.

Therefore

ˆ
γ
f(z)dz = 2πiRes

z=i

1

1 + z2

= 2πi
1

d
dz (1 + z2)

∣∣∣∣∣
z=i

= 2πi · 1
2i

= π.

Confirming that this is true, we could use traditional integration methods:

ˆ ∞
−∞

dx

1 + x2
= [arctanx]∞−∞

=
π

2
−
(
−π
2

)
= π.

Example

I =

ˆ ∞
0

dx

(1 + x2)2
=

1

2

ˆ ∞
−∞

dx

(1 + x2)2

since the integrand is an even function of x and is therefore symmetrical about x = 0.

Let f(z) =
1

(1 + x2)2
. Then

|f(z)| ≤ 1

(R2 − 1)2
if z is on γ2

from the previous example. The same inequality holds because the integrand and limit are the square of those
in the previous example, and squaring both sides of the inequality preserves the sign.

Then by the ML-bound again,
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∣∣∣∣ˆ
γ2

f(z)dz

∣∣∣∣ = πR

(R2 − 1)2

→ 0 as R→∞.

Therefore the condition to use the semicircle method is met.

f(z) has the same singularities as in the previous example (z = ±i, double poles this time!) and once again
z = i is inside the contour γ for large R.

From a previous lecture, Res
z=i

1

(1 + z2)2
=

1

4i
, so

ˆ
γ

dz

(1 + z2)2
= 2πi · 1

4i

=
π

2
=

ˆ ∞
−∞

dx

(1 + x2)2

∴
ˆ ∞
0

dx

(1 + x2)2
=
π

4
.

Again this can be verified using traditional integration:

ˆ ∞
0

dx

(1 + x2)2
=

ˆ π/2

0

sec2 θdθ

(1 + tan2 θ)2

(setting x = tan θso dx = sec2 θdθ)

=

ˆ π/2

0

sec2 θdθ

sec4 θ

=

ˆ π/2

0
cos2 θdθ

=
1

2

ˆ π/2

0
(1 + cos 2θ) dθ

=
1

2

[
θ +

1

2
sin 2θ

]π/2
0

=
1

2
· π
2

=
π

4
.

Example

I =

ˆ ∞
−∞

dx

(x2 + a2)(x2 + b2)
with 0 < a < b.

Let f(z) =
1

(z2 + a2)(z2 + b2)
On γ2 (the semicircular arc) where |z| = R, we have

|f(z)| ≤ 1

(R2 − a2)(R2 − b2)

74



Oliver Bond ECM3703: Complex Analysis Lecture Notes

and using similar reasoning to the previous examples and the ML-bound, we have

∣∣∣∣ˆ
γ
f(z)dz

∣∣∣∣ ≤ πR

(R2 − a2)(R2 − b2)
→ 0 as R→∞.

f(z) has 4 singularities, at z = ±ai and z = ±bi (each simple poles). For large R > b, the contour γ encloses
2 of these poles (z = ai and z = bi). Therefore

ˆ
γ
f(z)dz = 2πi

[
Res
z=ai

f(z) + Res
z=bi

f(z)

]
= 2πi

[
1

d
dz ((z

2 + a2)(z2 + b2))

∣∣∣∣∣
z=ai

+
1

d
dz ((z

2 + a2)(z2 + b2))

∣∣∣∣∣
z=bi

]

and d
dz

[
(z2 + a2)(z2 + b2)

]
= 2z(z2 + a2) + 2z(z2 + b2) = 2z

(
2z2 + a2 + b2

)
so the integral becomes

ˆ
γ
f(z)dz = 2πi

[
1

2ai (−2a2 + a2 + b2)
+

1

2bi (−2b2 + a2 + b2)

]
= 2πi

[
1

2ai (b2 − a2) +
1

2bi (a2 − b2)

]
= π

[
1

a (b2 − a2) −
1

b (b2 − a2)

]
= π

[
b− a

ab (b2 − a2)

]
=

π

ab(a+ b)

Example

I =

ˆ ∞
−∞

cosx

1 + x2
dx

This is a wolf in sheep’s clothing! The snag is that
∣∣∣ cosx1+x2

∣∣∣ 6→ 0 as R → 0, so we need to use a more strict
bound.

We could try using g(z) =
eiz

1 + z2
and then apply the semicircle method.

For z in the upper half-plane,
∣∣eiz∣∣ ≤ 1 since

∣∣eiz∣∣ = e<(iz) = e−=(z) ≤ 1 if y = =(z) ≥ 0.

On γ2 (the semi-circular arc),
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∣∣∣∣ eiz

1 + z2

∣∣∣∣ ≤ 1

|z2 + 1|

≤ 1

R2 − 1
(R > 1)

so by the ML-bound, we have ∣∣∣∣ˆ
γ
g(z)dz

∣∣∣∣ ≤ πR

R2 − 1

→ 0 as R→∞.

So the condition to apply the semicircle method holds.

However,

ˆ ∞
−∞

g(x)dx =

ˆ ∞
−∞

eix

1 + x2
dx

=

ˆ ∞
−∞

cosx+ i sinx

1 + x2
dx

∴
ˆ ∞
−∞

cosx

1 + x2
dx = <

[ˆ ∞
−∞

g(x)dx

]
.

g(z) has a simple pole, z = i, which lies inside γ. Therefore

ˆ ∞
−∞

cosx

1 + x2
dx = <

[ˆ ∞
−∞

g(x)dx

]
= <

[
2πiRes

z=i
g(z)

]
= <

[
2πi

e−1

2i

]
(using an adaptation of a previous example)

= <
[π
e

]
=
π

e
.

2.16.3 “Slice of pie” Method

I =

ˆ ∞
0

dx

1 + x100

To avoid adding 50 residues I use a contour enclosing just one pole. The poles of f(z) =
1

1 + z100
are the

hundredth roots of unity, i.e. ei[
π

100
+ 2πk

100 ].

Consider α = e
πi
100 . Integrate over a “slice of pie” contour γ, the boundary of a sector of a circle of centre 0 and

radius R, and angle 2π
100 .
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INCLUDE DIAGRAM

γ only contains one pole in its interior. Poles of f are located at α, α3, α5, . . . , α199 = α−1 with only α enclosed
in γ.

Fortunately though, z = α is a simple pole, so by the calculus of residues,
ˆ
γ
f(z)dz = 2πiRes

z=a
f(z)

= 2πi
1

d
dz (1 + z100)

∣∣∣∣∣
z=α

= 2πi · 1

100α99

=
2πiα

100α100

= −2πiα

100
(as α100 = −1).

Clearly
´
γ1
f(z)dz →

´∞
0 f(x)dx as R→∞.

On γ2 (the arc), |z| = R, so
∣∣z100 + 1

∣∣ = R100 − 1. If R > 1,

|f(z)| ≤ 1

R100 − 1
.

Also, length(γ2) = 2πR
100 . Hence

∣∣∣∣ˆ
γ2

f(z)dz

∣∣∣∣ ≤ 2πR
100

R100 − 1

→ 0 as R→∞

=⇒
ˆ
γ2

f(z)dz → 0 as R→∞.

Now we need to integrate over γ3 (the line segment from 0 to α2R). Parametrise this by z = α2t for 0 ≤ t ≤ R.

Then

ˆ
γ3

f(z)dz = −
ˆ
γ−3

f(z)dz

= −
ˆ R

0
f(α2t)α2dt

= −α2

ˆ R

0

1

1 + α200t100
dt

= −α2

ˆ R

0

1

1 + t100
dt (as α200 =

(
α100

)2
= (−1)2 = 1)

→ −α2I as R→∞, where I is the original integral that we wanted to find.
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Therefore as R→∞,
ˆ
γ
f(z)dz → (1− α2)I

= −2πiα

100
for R > 1

∴ I = − 2πiα

100(1− α2)

=
2πi

100(α− α−1)

=
2πi

100
(
e

iπ
100 − e−

iπ
100

)
=

π

100 sin π
100

=
π

100
cosec

π

100
.

The “slice of pie” method is often useful if the integrand depends only on xn where n is a large integer.

This cannot be verified using traditional integration!

Example

I =

ˆ ∞
0

sinx

x
dx

Now since
sinx

x
→ 1 as x→ 0 we have no problems with any sort of poles.

However,
sinx

x
is not absolutely integrable on [0,∞), i.e.

´∞
0

∣∣ sinx
x

∣∣dx diverges! So if we interpret

I as lim
R→∞

ˆ R

0

sinx

x
dx

then it will emerge that this limit exists. We would like to attack this integral using the semicircle method...

Note that

2I =

ˆ ∞
−∞

sinx

x
dx

?
= =

[ˆ ∞
−∞

eix

x
dx

]

although this is somewhat dubious as the integral goes right through the singularity at z = 0. So we have to
use a modified version of the semicircle method where the contour omits z = 0 somehow.

We create a new contour γ that circles around z = 0 with radius ε, and then consider the limit as R → ∞ and
ε→ 0.

f(z) = eiz/z only has the one singularity, at z = 0, which is outside γ, so
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ˆ
γ
f(z)dz = 0

by Cauchy’s theorem.

Now let R→∞ and ε→ 0. Then

ˆ
γ1

f(z)dz =

ˆ R

ε

eix

x
dx

and
ˆ
γ3

f(z)dz =

ˆ −ε
−R

eix

x
dx

= −
ˆ R

ε

e−ix

x
dx

∴
ˆ
γ1

f(z)dz +

ˆ
γ3

f(z)dz =

ˆ R

ε

eix − e−ix

x

= 2i

ˆ R

ε

sinx

x

= 2iI as R→∞ and ε→ 0.

Consider
´
γ4
f(z)dz = −

´
γ−4
f(z)dz, and the parametrisation z = εeit on t ∈ [0, π].

Now by using Laurent series,

f(z) =
1

z
+ i− z

2!
− iz2

3!
+
z3

4!
+ . . .

=
1

z
+ g(z) where gis holomorphic on C

=
1

z
+G′(z) where Gis holomorphic on C.

Hence

ˆ
γ4

g(z)dz =

ˆ
γ4

dz

z
+

ˆ
γ4

G′(z)dz

=

ˆ
γ4

dz

z
+G(ε)−G(−ε) by the Fundamental Theorem of Calculus

Now
ˆ
γ4

dz

z
= −
ˆ
γ−4

dz

z

= −
ˆ π

0

εieit

εeit
dt

= −πi

Therefore

ˆ
γ4

f(z)dz → −πi +G(0)−G(0) as ε→ 0.
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We need to prove that
´
γ2
f(z)dz → 0 as R → ∞. The ML-bound isn’t enough to prove this, as

∣∣∣∣eizz
∣∣∣∣ ≤ 1

R
on

the large arc, but γ2 has length πR so this bound implies

∣∣∣∣ˆ
γ2

f(z)dz

∣∣∣∣ ≤ π
which is not good enough! So we need to work harder and use a different bound.

Jordan’s Inequality

sin t ≥ 2t

π

for t ∈
[
0, π2

]
.

So we can use Jordan’s inequality on a parametrisation of
´
γ2
f(z)dz. Let z = Reit with t ∈ [0, π]. Then

ˆ
γ2

f(z)dz =

ˆ π

0

eiReit

Reit
iReitdt

= i

ˆ π

0
eiReitdt

= i

ˆ π

0
e−R sin t+iR cos tdt

∴

∣∣∣∣ˆ
γ2

f(z)dz

∣∣∣∣ ≤ ˆ π

0
e−R sin tdt

= 2

ˆ π/2

0
e−R sin tdt (as the integrand is symmetrical about the line t =

π

2
)

≤ 2

ˆ π/2

0
e−

2R
π
tdt

(by Jordan’s inequality and the fact that expis an increasing function, so the inequality is preserved)

< 2

ˆ ∞
0

e−
2R
π
tdt

=
π

R
→ 0 as R→∞.

∴
ˆ
γ2

f(z)dz → 0 as R→∞.

So
ˆ
γ1

f(z)dz +

ˆ
γ2

f(z)dz +

ˆ
γ3

f(z)dz +

ˆ
γ4

f(z)dz = 0

=⇒ 0 = 2πI − πi + 0 (letting R→∞and ε→ 0)

Therefore
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ˆ ∞
0

sinx

x
dx =

π

2

which is a very important integral in Fourier analysis.

2.16.4 Rectangle Method

Example (Rectangle Method)

I =

ˆ ∞
−∞

dx

coshx

The rectangle method is useful for f(z) periodic with period iλ for λ ∈ R. Remember that cosh z is periodic
over C but not R.

Let f(z) =
1

cosh z
. Integrate this over the contour γ, which traverses the rectangle with vertices±R and ±R+πi

anticlockwise. γ1 is the path from −R to R.

The poles of 1
cosh z = 1

cos iz occur when iz = (2n + 1)π2 for n ∈ Z, therefore when z = −i (2n+ 1) π2 . Inside γ
there is only one simple pole, which is z = πi

2 .

Therefore

ˆ
γ
f(z)dz = 2πiRes

z=πi
2

f(z)

= 2πi · 1
d
dz (cosh z)

∣∣∣∣∣
z=πi

2

= 2πi · 1

sinh z

∣∣∣∣
z=πi

2

= 2πi · 1

i sin π
2

= 2π

Also, note that
ˆ
γ1

f(z)dz =

ˆ R

−R

dx

coshx

and
ˆ
γ3

f(z)dz = −
ˆ
γ−3

f(z)dz

= −
ˆ R

−R

dx

cosh(x+ πi)

=

ˆ R

−R

dx

coshx

because cosh(x+ πi) = cos(ix− π) = − cos ix = coshx.
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Therefore

ˆ
γ1

f(z)dz +

ˆ
γ3

f(z)dz → 2I as R→∞

= 2

ˆ ∞
−∞

dx

coshx
.

Consider
´
γ2
f(z)dz. On γ2, z = R+ it with t ∈ [0, π].

∣∣cosh2 z∣∣ = ∣∣cos2 iz∣∣
=
∣∣cos2(iR− t)∣∣

= cos2 t+ sinh2R

≥ sinh2R (as cos2 t > 0∀t).

So on γ2, ∣∣∣∣ 1

cosh z

∣∣∣∣ ≤ 1

sinhR
.

Therefore by the ML-bound, with length(γ2) = π, we have

∣∣∣∣ˆ
γ2

f(z)dz

∣∣∣∣ ≤ π

sinhR

→ 0 as R→∞.

∴
ˆ
γ2

f(z)dz → 0 as R→∞.

And by similar reasoning,
´
γ4
f(z)dz → 0 as R→∞.

Letting R→∞ in
´
γ f(z)dz = 2π, we get

2

ˆ ∞
−∞

dx

coshx
= 2π

⇐⇒
ˆ ∞
−∞

dx

coshx
= π.

Example (Summing a series using contour integration)

S =
∞∑
n=1

1

n2

Let
f(z) =

cot z

z2
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where z has poles where tan z = 0, i.e. at z = nπ for n ∈ Z. All these poles are simple, because tan′(nπ) =
sec2 nπ = 1 so all these poles are simple. So f(z) has simple poles at z = nπ for n ∈ Z\{0}, but z = 0 is a
triple pole.

Let N ∈ N. Let γ be the contour which is the perimeter of a square with vertices ±
(
N + 1

2

)
π and ±

(
N + 1

2

)
πi.

This means that γ encloses all poles −Nπ, . . . ,−π, 0, π, . . . , Nπ. Then

ˆ
γ
f(z)dz = 2πi ·

[
a0 +

N∑
n=1

(an + a−n)

]

where an = Res
z=nπ

f(z)

When n 6= 0, nπ is a simple pole, so

an = Res
z=nπ

f(z)

= Res
z=nπ

( cos z

z2 sin z

)
=

cos z
d
dz (z

2 sin z)

∣∣∣∣∣
z=nπ

=
cos z

2z sin z + z2 cos z

∣∣∣∣
z=nπ

=
cosnπ

2nπ sinnπ + (nπ)2 cosnπ

=
(−1)n

(nπ)2(−1)n

=
1

n2π2
.

0 is a triple pole of f(z):

f(z) =
1− z2

2! +
z4

4! − . . .
z3
(
1− z2

3! +
z4

5! − . . .
)

= z−3
(
1 + c2z

2 + c4z
4 + . . .

)

⇐⇒
(
1 + c2z

2 + . . .
)(

1− z2

3!
+ . . .

)
= 1− z2

2!
+ . . .

=⇒
(
1− z2

3!
+ . . .

)
+

(
c2z

2 − c2z
4

3!
+ . . .

)
= 1− z2

2!
+ . . .

so by equating z2 coefficients, we obtain − 1
3! + c2 = − 1

2! ⇐⇒ c2 = 1
6 − 1

2 = −1
3 . This is the z−1 coefficient in

the Laurent series of f(z) and therefore

a0 = Res
z=0

f(z) = −1

3
.

Therefore
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ˆ
γ
f(z)dz = 2πi

[
a0 +

N∑
n=1

(an + a−n)

]

= 2πi

[
−1

3
+

N∑
n=1

2

n2π2

]

=
4πi

π2

[
−π

2

6
+

N∑
n=1

1

n2

]
.

To prove that
∑∞

n=1
1
n2 = π2

6 we can show that
´
γ f(z)dz = 0 as N →∞.

Note that

∣∣cot2(x+ iy)
∣∣ = |cos(x+ iy)|2

|sin(x+ iy)|2

=
cos2 x+ sinh2 y

sin2 x+ sinh2 y
.

Suppose that z = x+ iy lies on γ.

• Case (i): z is on a horizontal side of γ, i.e. y = ±
(
N + 1

2

)
π (with x ∈

[
−
(
N + 1

2

)
π,
(
N + 1

2

)
π
]
). Then

|cot z|2 ≤ 1 + sinh2
(
N + 1

2

)
π

sinh2
(
N + 1

2

)
π

=
cosh2

(
N + 1

2

)
π

sinh2
(
N + 1

2

)
π

= coth2
(
N +

1

2

)
π

• Case (ii): z is on a vertical side of γ, i.e. x = ±
(
N + 1

2

)
π (with y ∈

[
−
(
N + 1

2

)
π,
(
N + 1

2

)
π
]
).

Then

cosx = 0 =⇒ cos2 x = 0

⇐⇒ sin2 x = 1

So

|cot z|2 = sinh2 y

1 + sinh2 y

= tanh2 y

≤ 1

as 1 < coth
(
N + 1

2

)
π.

84



Oliver Bond ECM3703: Complex Analysis Lecture Notes

On γ, |cot z| ≤ coth
(
N + 1

2

)
π, and |z| ≥

(
N + 1

2

)
π so

|f(z)| ≤ coth
(
N + 1

2

)
π(

N + 1
2

)2
π2

.

γ has length 4(2N + 1)π.

Therefore by the ML-bound,

∣∣∣∣ˆ
γ

cot z

z2
dz

∣∣∣∣ ≤ 4(2N + 1) coth
(
N + 1

2

)
π(

N + 1
2

)2
π2

=
8
(
N + 1

2

)
coth

(
N + 1

2

)
π(

N + 1
2

)2
π2

=
8 coth

(
N + 1

2

)
π(

N + 1
2

)
π2

→ 0 as N →∞.

∴
ˆ
γ

cot z

z2
dz → 0 as N →∞.

Therefore

4πi

π2

[
−π

2

6
+

N∑
n=1

1

n2

]
→ 0 as N →∞

∴
N∑
n=1

1

n2
=
π2

6

as required!

2.17 Rouché’s Theorem

Recall that f is holomorphic on a domain U if f is differentiable there.

We call f meromorphic on a domain U if f is holomorphic on U except possibly for poles.

For example:

• All rational functions are meromorphic on C.

• f(z) = e1/z is not meromorphic on C (because 0 is not a pole of f(z)) but it is on C\{0}.

Rouché’s theorem is about containing zeros inside a simple closed contour.

Let f(z) be a meromorphic function and consider f ′(z)/f(z). If a is in the domain of f (assuming f is not
constant) its Laurent series is
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f(z) =
∞∑
n=N

an(z − a)n (aN 6= 0)

with N = ord
z=a

f(z)

=⇒ f ′(z) =
∞∑
n=N

nan(z − a)n−1

If N 6= 0,

f ′(z)

f(z)
=
NaN (z − a)N−1 + (N + 1)aN+1(z − a)N + . . .

aN (z − a)N + aN+1(z − a)N+1 + . . .

=
1

z − a

(
NaN + (N + 1)aN+1(z − a) + . . .

aN + aN+1(z − a) + . . .

)
So f ′(z)/f(z) has a simple pole of residue N at z = a.

If N = 0, then f(a) 6= 0, and so
f ′(z)

f(z)
is holomorphic at z = a.

f ′(z)

f(z)
is also meromorphic, as it has at most

simple poles precisely at the poles and zeros of f . Moreover,

Res
z=a

f ′(z)

f(z)
= ord

z=a
f(z).

Now we apply the residue theorem.

If f is meromorphic on and inside γ (a simple closed contour) and f has no zeros or poles on γ, then

ˆ
γ

f ′(z)

f(z)
dz = 2πi ·

∑(
residues of

f ′

f
in γ

)
= 2πi ·

∑
(orders of fat 0and poles in γ)

=⇒ 1

2πi

ˆ
γ

f ′(z)

f(z)
dz = Z − P

where Z =
∑

(order of zeros of f in γ) and P =
∑

(orders of poles of f in γ).

If f is holomorphic inside γ, then P = 0 and

1

2πi

ˆ
γ

f ′(z)

f(z)
dz = Z

= #(zeros of f in γcountered according to multiplicity)

Theorem (Rouché’s Theorem) Let γ be a simple closed contour. Let f and g be holomorphic on and inside
γ.
If

|f(z)− g(z)| < |f(z)|+ |g(z)|
for all z on γ, then Zf = Zg, where Zf = total order of zeros of f inside γand similarly for Zg.
(A more usual statement and stronger hypothesis is that |f(z)− g(z)| < |f(z)| on γ)
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Proof The hypothesis implies that f and g are nonzero on γ . If f(z) = 0 then

|0− g(z)| < 0 + |g(z)|
i.e. |g(z)| < |g(z)|

is false so f(z) 6= 0 on γ and similarly for g(z).

We claim also that
f(z)

g(z)
can’t be a negative real number.

If
f(z)

g(z)
= −t, for t ∈ R+ then

f(z) = −tg(z)
=⇒ f(z)− g(z) = (1 + t)g(z)

=⇒ |f(z)− g(z)| = (1 + t) |g(z)|
and |f(z)|+ |g(z)| = |g(z)|+ t |g(z)|

= (1 + t) |g(z)|

which contradicts that |f(z)− g(z)| < f(z) + g(z).

For z on γ,
f(z)

g(z)
∈ U = C\{−t| t ∈ R, t ≥ 0} (the slit plane). On U , Log is holomorphic. So Log

f(z)

g(z)
is

holomorphic on a domain containing γ.

h(z) = Log
f(z)

g(z)

=⇒ h′(z) =
f ′(z)

f(z)
− g′(z)

g(z)
.

As γ is a closed contour,
´
γ h
′(z)dz = 0, i.e.

ˆ
γ

f ′(z)

f(z)
dz =

ˆ
γ

g′(z)

g(z)
dz

=⇒ Zf = Zg

as required.

�

Example Prove that all roots of z5 + 7z + 12 lie in the annulus {z ∈ C| 1 < |z| < 2} .

We consider the numbers of possible roots inside each disc and then subtract one from the other.

• Large disc: let γ be the circle with |z| = 2., and f(z) = z5 + 7z + 12.

Then let g(z) = z5 (the term in f with greatest modulus). Then on γ,
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|f(z)− g(z)| = |7z + 12|
≤ 7 |z|+ 12 (by the triangle inequality )
= 26 (as |z| = 2on γ)

On γ, |g(z)| =
∣∣z5∣∣ = |z|5 = 32.

Now since

|f(z)− g(z)| < g(z)

≤ |f(z)|+ |g(z)|

on γ, then by Rouché’s theorem, we conclude that the number of solutions of f(z) = 0 in the annulus is
equal to the number of solutions of g(z) = 0 in the disc with |z| < 2, which is 5 (counted with multiplicity)
and z5 has a quintuple zero at z = 0 and no others.

• Small disc: let γ be the unit circle, and this time we take g(z) = 12, because
∣∣z5∣∣ < |z| < 12 when

|z| < 1.

On γ, we have |z| = 1 and so

|f(z)− g(z)| =
∣∣z5 + 7z

∣∣
≤ |z|5 + 7 |z|
= 8 < |g(z)| .

By Rouché’s theorem, f and g have the same number of zeros inside γ, i.e. none!

Therefore all zeros of f lie in the annulus {z ∈ C| 1 < |z| < 2}. To visualise this, see the diagram below.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ℜ

ℑ
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Example (From 2009 exam) How many zeros (counted with multiplicity) has f(z) = z5 − 5z4 + z2 + 9z − 1
in the annulus {z ∈ C| 1 < |z| < 3}?

• Large disc: let γ be the circle centre 0 radius 3. Let g(z) = −5z4 (not z5, as
∣∣−5z4∣∣ > ∣∣z5∣∣ when |z| = 3,

as on γ).

Hence on γ, we have

|f(z)− g(z)| =
∣∣z5 + z2 + 9z − 1

∣∣
≤ |z|5 + |z|2 + 9 |z|+ 1 (by the triangle inequality )
= 243 + 9 + 27 + 1

= 280

and

|g(z)| = 5 |z|4

= 405

on γ, so |f(z)− g(z)| < |g(z)| . Rouché’s theorem applies. f and g have the same number of zeros inside
γ, i.e. 4 (counted with multiplicity).

• Small disc: let γ be the unit circle, i.e. where |z| = 1. This time, let g(z) = 9z (as all the other terms
have smaller moduli than |9z| when |z| = 1).

Then

|f(z)− g(z)| =
∣∣z5 − 5z4 + z2 − 1

∣∣
≤ |z|5 + 5 |z|4 + |z|2 + 1 (by the triangle inequality )
= 1 + 5 + 1 + 1

= 8 on γ.

Also,

|g(z)| = 9

> 8 on γ.

Rouché’s theorem strikes again! f(z) has the same number of zeros as g(z) inside γ, i.e. 1.

Therefore in the annulus {z ∈ C| 1 < |z| < 3}, f(z) has 4 − 1 = 3 zeros (counted with multiplicity). You can
see this below.
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−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

ℜ

ℑ

Proof of Fundamental Theorem of Calculus (Using Rouché’s Theorem) An important thing to note is that
Rouché’s theorem implies the Fundamental Theorem of Calculus!

Let
f(z) = zn + a1z

n−1 + . . .+ an−1z + a

and g(z) = zn, which is term in f(z) of greatest modulus. We consider these functions on the contour γ, the
circle centre 0 radius R.

Then

|f(z)− g(z)| =
∣∣a1zn−1 + . . .+ an−1z + a

∣∣
≤ |a1| |z|n−1 + . . .+ |an−1| |z|+ |a| (by the triangle inequality )

Then

|f(z)− g(z)|
|g(z)| ≤ |a1|R

n−1 + |a2|Rn−2 + . . .+ |an|
Rn

=
|a1|
R

+
|a2|
R2

+ . . .+
|an|
Rn

There is R0 such that |f(z)−g(z)||g(z)| < 1 if z is on γ and R > R0. For such R, |f(z)− g(z)| < g(z) holds on γ so
Rouche’s theorem applies.

So f and g have the same number of zeros (counted with multiplicity) inside γ, i.e. n zeros.

So f(z) has exactly n zeros on C.
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�

2.18 Maximum Modulus Theorem

Theorem (Maximum Modulus Theorem) Let f be holomorphic on a disc D(a, r). Then if |f | is maximised
on D(a, r) at a, then f is constant on D(a, r).
That is, if |f(z)| ≤ f(a) on D(a, r) then f is constant on the disc.

Proof Apply Cauchy’s integral formula.

• Case (i): f(a) = 0. Then |f(z)| ≤ 0 for all z ∈ D(a, r) unless f is identically zero.

• Case (ii): f(a) 6= 0. Consider g(z) = f(z)/f(a). Then g(a) = 0 and |g(z)| ≤ 1 for all z ∈ D(a, r).
Apply Cauchy’s integral formula to g. Let γ the the circle centre a radius r′ where 0 < r′ < r. We can
parametrise this by using z = a+ r′eit with t ∈ [0, 2π].

Then

1 = g(a)

=
1

2πi

ˆ
γ

g(z)

z − adz

=
1

2πi

ˆ 2π

0

g(a+ reit)

r′eit
· ir′eitdt

=
1

2π

ˆ 2π

0
g(a+ reit)dt

= mean value of g(z)for zon γ.

If we take real parts, we have

1 =
1

2π

ˆ 2π

0
<
[
g(a+ r′eit)

]
dt

=
1

2π

ˆ 2π

0
φ(t)dt

so ∣∣g (a+ r′eit
)∣∣ ≤ 1 =⇒ <

[
g(a+ r′eit)

]
≤ 1 (as <(z) ≤ |z| ∀z ∈ C)

⇐⇒ φ(t) ≤ 1

Therefore
ˆ 2π

0
(1− φ(t)) dt = 2π −

ˆ 2π

0
φ(t)dt

= 0 (by Cauchy’s theorem)
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so 1−φ(t) ≥ 0. If for some t0, 1−φ(t) > 0, then 1−φ(t) > 0 in an interval containing t0, so
´ 2π
0 (1−φ(t)) > 0.

This is a contradiction, as the integral can’t be both zero and greater than zero.

But
∣∣g(a+ r′eit)

∣∣ ≤ 1 and <
[
g(a+ r′eit)

]
= 1, so g(a+ reit) = 1, i.e. g(z) = 1 on γ.

By the identity theorem, g(z) = 1 on all z ∈ D(a, r) =⇒ f(z) = f(a) on D(a, r).

�

2.19 Winding numbers

Consider a path γ ∈ C not containing 0. Let γ : [a, b]→ C\{0}.

A fact is that there are continuous functions

r : [a, b]→ R+

θ : [a, b]→ R

with γ(t) = r(t)eiθ(t).

Obviously r(t) = |γ(t)|, but the existence of θ(t) is more delicate to prove - see Stewart & Tall.

If f is smooth, then

θ(t) = Arg (γ(a)) +

ˆ t

a

γ′(u)

γ(u)
du

which is related to an exercise on the problem sheet.

If γ is a closed path then γ(a) = γ(b) =⇒ θ(b) = θ(a) = 2πm with m ∈ Z.

For example, on the unit circle, γ(t) = eit =⇒ θ(t) = t =⇒ θ(2π)− θ(0) = 2π.

We write m as w(γ; 0) and this is called the winding number of γ about 0 and this is an integer when γ is
closed.

• When γ is smooth and closed, its winding number is

w(γ; 0) =
1

2π

ˆ b

a

γ′(u)

γ(u)
du

=
1

2πi

ˆ
γ

dz

z
.

• If γ is a closed smooth path not containing z0, then

w(γ; z0) =
1

2πi

ˆ
γ

dz

z − z0
=

1

2πi
(θ(b)− θ(a))

where γ(t) = z0 + r(t)eiθ(t) with r, θ continuous.

Another fact is that a closed smooth path divides its complement in C into domains. On each of these, the
winding number is constant. One domain is unbounded, so it has winding number zero.
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Examples See the diagrams below.

The interior of a closed contour γ is the set of z0 not on γ with w(γ; z0) 6= 0.

And now we can provide a more rigorous statement of Cauchy’s theorem!

Rigorous statement of Cauchy’s theorem Let γ be a closed contour, in a domain U . Suppose U contains
all of γ’s interior points. Then

´
γ f(z)dz = 0 for all holomorphic f on the set U .
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