MAS3006
 UNIVERSITY OF EXETER
 SCHOOL OF ENGINEERING, COMPUTER SCIENCE \& MATHEMATICS

DEPARTMENT OF MATHEMATICAL SCIENCES

COMPLEX ANALYSIS

SECTION A

1. (a) Is the set $H:=\{z: \operatorname{Im} z>0\}$ open, closed, neither or both? Justify your answer.
(b) Determine the subset of the complex plane on which the function $f(z)=\frac{e^{z}}{\left(z^{2}+2\right)}$ is analytic.
(c) Let $z=x+i y$ and $f(z)=\left(2 x+y^{2}\right)+i\left(x^{2}-y^{2}\right)$. Determine the points $z=x+i y$ for which the derivative $f^{\prime}(z)$ exists.
(d) Let γ be the circle of centre 0 and radius 1 , traversed once anticlockwise. Prove that

$$
\begin{equation*}
\left|\int_{\gamma} \frac{\sin z d z}{z^{2}}\right| \leq 2 \pi e . \tag{5}
\end{equation*}
$$

(e) Evaluate the integral $\int_{\gamma} \frac{(z+2)}{(z-1)} d z$ where γ is the circle with centre 0 and radius 2 , traversed once anticlockwise.
(f) Find the radius of convergence of the following series $\sum_{n=0}^{\infty} \frac{z^{n}}{e^{n}}$.
(g) Compute the Taylor series of the function $f(z)=z e^{z^{2}}$ around $z=0$ and indicate the radius of convergence of this series.
(h) Compute the integral $\int_{\gamma} \frac{z d z}{\left(z^{2}-z(1+i)+i\right)}$ where γ is the circle of centre 0 and radius 2 .

SECTION B

2. Let $f(z)=\frac{1}{\left(e^{z}-1\right)}$.
(a) Show that $f(z)$ has a simple pole at $z=0$.
(b) Let

$$
\begin{equation*}
f(z)=\frac{b}{z}+a_{0}+a_{1} z+a_{2} z^{2}+\ldots \tag{7}
\end{equation*}
$$

be the Laurent expansion of f around 0 . Compute the terms b, a_{0} and a_{1}.
(c) Evaluate $\int_{\gamma} f(z) d z$ where γ is a circle of centre 0 and radius $r>0$, traversed once anticlockwise.
3. Let $f(z)=\frac{z^{2}}{1+z^{4}}$.
(a) Determine the poles of F which lie in the upper-half plane $H=\{z: \operatorname{Im}(z)>0\}$ and compute the residues of f at these poles.
(b) Show that $\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x=\frac{\pi}{\sqrt{2}}$.
4. (a) Suppose that f is an analytic function on the open disc $D=\{z:|z|<1\}$ and that $\operatorname{Re}(f(z))=3$ for all $z \in D$. Show that f is constant in D.
(b) Let f be analytic inside and on a simple closed curve γ. Suppose that $f=0$ on γ. Show that $f=0$ inside γ.
(c) Compute the Taylor series of $F(z)=\frac{1}{z}$ around $z_{0}=1$ and its radius of convergence.
(d) Show that $\int_{\gamma} \frac{5 z-2}{z(z-1)} d z=10 \pi i$, where γ is any circle of radius greater than 1 and centre 0 .
.

