MAS3006

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS

MATHEMATICAL SCIENCES

COMPLEX ANALYSIS

June 2006
Time allowed: 2 HOURS.

Examiner: Andreas Schweizer

This is a CLOSED BOOK examination.

The mark for this module is calculated from 75% of the percentage mark for this paper plus 25% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

SECTION A

1. (a) Discuss whether the following subset of \mathbb{C} is open or closed or both or neither:

$$
\begin{equation*}
U=\{z \in \mathbb{C}:|z|<1, \operatorname{Im}(z) \geq 0\} . \tag{8}
\end{equation*}
$$

(b) Determine where the function

$$
\begin{equation*}
\frac{z^{3}-7}{e^{i z}-1} \tag{10}
\end{equation*}
$$

is holomorphic and calculate its derivative.
(c) Determine the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+4) z^{n} \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{z^{2 n}}{9^{n}} \tag{10}
\end{equation*}
$$

(d) Evaluate the integral

$$
\begin{equation*}
\int_{\gamma} \frac{\sin \left(e^{z}-1\right)}{z^{2}} d z \tag{10}
\end{equation*}
$$

where γ is the unit circle traversed once counter-clockwise.
(e) Let γ_{r} be the circle with center 0 and radius r, traversed once counter-clockwise. Evaluate

$$
\begin{equation*}
\int_{\gamma_{\tau}} \frac{e^{z+4}}{z^{2}+2 z-8} d z \tag{12}
\end{equation*}
$$

for $r=1, r=3$ and $r=5$.

SECTION B

2. (a) In each of the following cases determine the limit or show that it does not exist:

$$
\lim _{z \rightarrow 2 i} \frac{5 i z+10}{z^{2}-5 i z-6}
$$

and

$$
\begin{equation*}
\lim _{z \rightarrow 0} f(z) \text { where } f(z)=f(x+i y)=\frac{5 x^{3}+i y^{2}}{x^{2}+y^{2}} \tag{8}
\end{equation*}
$$

(b) Let $z=x+i y$ and $f(z)=\left(x^{2}+2 x y\right)+i\left(4 x+y^{2}\right)$. Show that f is not holomorphic at any point $z \in \mathbb{C}$.
(c) Let f be a holomorphic function in a domain D such that $\operatorname{Im}(f(z))=5 \operatorname{Re}(f(z))$ for all $z \in D$. Show that f is constant.
3. (a) Determine the largest open disk around 0 on which the function

$$
f(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n \cdot 3^{n}}
$$

is analytic. Give a simple expression (not the power series) for the derivative $f^{\prime}(z)$.
(b) Expand the function $e^{2 z^{2}}$ in a power series around 0 . Where does this power series converge?
(c) Evaluate

$$
\begin{equation*}
\int_{\gamma} \frac{e^{2 z^{2}}}{z^{77}} d z \tag{5}
\end{equation*}
$$

where γ is a circle around 0 , traversed once counter-clockwise.
What is the value of

$$
\begin{equation*}
\int_{\gamma} z^{77} e^{2 z^{2}} d z \tag{10}
\end{equation*}
$$

and why?
4. (a) Find the first two coefficients of the Laurent series around 0 of the function

$$
\begin{equation*}
\frac{1}{e^{z}-1-z} \tag{7}
\end{equation*}
$$

(b) Show that

$$
\int_{\gamma} \frac{1}{e^{z}-1-z} d z=\frac{-4 \pi i}{3}
$$

where γ is a sufficiently small circle around 0 , traversed once counter-clockwise.
(c) Using residues, evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2}+5}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x . \tag{15}
\end{equation*}
$$

