MAS3006

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS

MATHEMATICAL SCIENCES

COMPLEX ANALYSIS

May/June 2007
Time allowed: 2 HOURS.

Examiner: Dr. Andreas Schweizer

This is a CLOSED BOOK examination.
The mark for this module is calculated from 75% of the percentage mark for this paper plus 25% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

SECTION A

1. (a) Discuss whether the following subset of \mathbb{C} is open or closed or both or neither:

$$
\begin{equation*}
U=\{z \in \mathbb{C}:|z| \leq 1, \operatorname{Re}(z)>0\} \tag{7}
\end{equation*}
$$

(b) Find $\lim _{n \rightarrow \infty} z_{n}$ for

$$
\begin{equation*}
z_{n}=\frac{2-3 n i+(-1)^{n} i}{5 n-i} \tag{5}
\end{equation*}
$$

(c) Determine where the function

$$
\begin{equation*}
\frac{z^{2}-2}{e^{\pi z}-1} \tag{8}
\end{equation*}
$$

is holomorphic and calculate its derivative.
(d) Determine the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n+3}{4^{n}} z^{2 n} \tag{6}
\end{equation*}
$$

(e) What is the biggest open disk around 0 in which the function

$$
\begin{equation*}
f(z)=\frac{1}{5-3 z} \tag{8}
\end{equation*}
$$

is analytic. Find the power serics around 0 of this function.
(f) Let γ be the following contour: straight line from 1 to 2 , followed by three-quarter-circle with centre 0 from 2 to $-2 i$, followed by straight line from $-2 i$ to 1 . Find the values of the integrals

$$
\begin{equation*}
\int_{\gamma} e^{2 z} d z \text { and } \int_{\gamma} \frac{e^{2 z}}{z^{2}} d z \tag{6}
\end{equation*}
$$

(g) Let $a, b \in \mathbb{C}$ with $|a|<|b|$. Let γ_{R} be the circle with centre 0 and radius R, traversed once counter-clockwise. Evaluate

$$
\int_{\gamma_{R}} \frac{1}{(z-a)(z-b)} d z
$$

$$
\begin{equation*}
\text { for } R<|a| \text {, for }|a|<R<|b| \text {, and for } R>|b| \tag{10}
\end{equation*}
$$

SECTION B

2. (a) Does

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{R e(z)}{z} \tag{4}
\end{equation*}
$$

exist? Justify your answer.
(b) Let $f(z)=f(x+i y)=x y$. Show that f is not differentiable at any point $z_{0} \neq 0$, and that f is differentiable at $z_{0}=0$.
(c) Using residues, evaluate the real integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2}+1}{\left(x^{2}+9\right)^{2}} d x \tag{12}
\end{equation*}
$$

3. (a) Find all holomorphic functions $f(z)=f(x+i y)$ with

$$
\begin{equation*}
\operatorname{Re}(f)=5 x^{3}-15 x y^{2}+e^{2 x} \cos (2 y) . \tag{7}
\end{equation*}
$$

(b) Let f be an entire function with

$$
|f(z)| \leq|z| \text { for all } z \in \mathbb{C}
$$

Show that $f(z)=\alpha z$ where α is a complex constant with $|\alpha| \leq 1$.
(c) Using residues, evaluate the integral

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{1}{5+3 \sin \vartheta} d \vartheta \tag{9}
\end{equation*}
$$

4. (a) Classify the singularities (removable, pole or essential) at 0 of the following functions. In case of a pole give the order.
(i)

$$
\frac{z^{2}}{\cos (z)-1}
$$

(ii)

$$
\cos \left(\frac{1}{z^{2}}\right)
$$

(iii)

$$
\begin{equation*}
\frac{\sin (z)}{z^{2}} \tag{9}
\end{equation*}
$$

(b) Find the first 3 terms of the Laurent series around 0 of the function

$$
\begin{equation*}
f(z)=\frac{e^{2 z}-1}{e^{z^{2}}-1} \tag{8}
\end{equation*}
$$

What is the residue of f at 0 ?
(c) Using Rouché's Theorem, determine the number of zeroes (counted with multiplicities) of the polynomial

$$
p(z)=z^{5}+5 z^{4}+20 z^{3}+3
$$

in the disk $D(0,2)$.

