MAS3006

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTING AND MATHEMATICS

MATHEMATICAL SCIENCES

May/June 2008
COMPLEX ANALYSIS
Module Leader: Dr. Andreas Schweizer
Duration: 2 HOURS.

The mark for this module is calculated from 75% of the percentage mark for this paper plus 25% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Discuss whether the following subset of \mathbb{C} is open or closed or both or neither:

$$
\begin{equation*}
T=\{z \in \mathbb{C}: \operatorname{Re}(z) \geq 0, \operatorname{Im}(z) \geq 0, \operatorname{Re}(z)+\operatorname{Im}(z)<2\} \tag{7}
\end{equation*}
$$

(b) Find $\lim _{n \rightarrow \infty} z_{n}$ where

$$
\begin{equation*}
z_{n}=\frac{8 n+6 n i+i^{n}}{3 n+4 i} . \tag{5}
\end{equation*}
$$

(c) Solve the quadratic equation

$$
\begin{equation*}
z^{2}+(1+3 i) z-1+\frac{3}{4} i=0 \tag{9}
\end{equation*}
$$

(d) Determine where the function

$$
\begin{equation*}
\frac{e^{\sin (z)}}{z^{3}+z} \tag{7}
\end{equation*}
$$

is holomorphic and calculate its derivative.
(e) Determine the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n+3}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{n}{2^{2}} z^{2 n} \tag{8}
\end{equation*}
$$

(f) Express the following analytic function in terms of known functions, not as a power series.

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{2(n!)} \tag{4}
\end{equation*}
$$

(No, no typo! And no, it's not the cosine!)
(g) Let γ_{c} be the circle with centre c and radius 1 , traversed once counterclockwise. Calculate

$$
\begin{equation*}
\int_{\gamma_{c}} \frac{e^{z}}{z(z-2)^{2}} d z \tag{10}
\end{equation*}
$$

for $c=-2, c=0$, and $c=2$.

SECTION B

2. (a) At which points is the function

$$
\begin{equation*}
f(z)=f(x+i y)=x^{2}+i x y=z \operatorname{Re}(z) \tag{6}
\end{equation*}
$$

differentiable?
(b) Find the first 3 terms of the Laurent series around 0 of the function

$$
\begin{equation*}
f(z)=\frac{e^{3 z}-1}{e^{z^{2}}-1} \tag{7}
\end{equation*}
$$

What is the residue of f at 0 ?
(c) Using residues, evaluate the real integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2}+3}{\left(x^{2}+4\right)^{2}} d x . \tag{12}
\end{equation*}
$$

3. (a) Let f be a holomorphic function in a domain D such that $\operatorname{Re}(f)-\operatorname{Im}(f)$ is constant in D. Show that f is constant.
(b) Let $M \in \mathbb{R}$ and let f be an entire function with

$$
|f(z)| \leq|z|^{\frac{3}{2}} \text { for all } z \geq M
$$

Show that $f(z)$ is a polynomial of degree at most 1 .
(c) Using residues, evaluate the integral

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{1}{5-3 \sin \vartheta} d \vartheta . \tag{10}
\end{equation*}
$$

4. (a) A rope hanging between two pillars forms the curve

$$
\begin{equation*}
\gamma(t)=t+i\left(3+\frac{e^{t}+e^{-t}}{2}\right), \quad-1 \leq t \leq 1 \tag{8}
\end{equation*}
$$

Calculate the length of the rope.
(b) Classify the singularities (removable, pole or essential) at 0 of the following functions. In case of a pole give the order.
(i)

$$
\frac{\cos (z)-1}{\sin (z)-z}
$$

(ii)

$$
\frac{\cos (z)-z}{\sin (z)-1}
$$

(iii)

$$
\begin{equation*}
\cos \left(\frac{1}{z}\right)+\sin \left(\frac{1}{z}\right) \tag{9}
\end{equation*}
$$

(c) Using Rouché's Theorem, determine the number of zeroes (counted with multiplicities) of the polynomial

$$
\begin{equation*}
p(z)=z^{4}+4 z^{3}+z^{2}+2 z+5 \tag{8}
\end{equation*}
$$

in the disk $D(0,3)$.

