ECM3703

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTING AND MATHEMATICS

MATHEMATICAL SCIENCES

May/June 2009
Complex Analysis
Module Leader: Robin Chapman
Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Solve the quadratic equation

$$
\begin{equation*}
z^{2}-(1+2 i) z-7+i=0 \tag{4}
\end{equation*}
$$

(b) Determine whether the set A is open, closed or neither, justifying your answer:

$$
\begin{equation*}
A=\{z \in \mathbf{C}: \operatorname{Re}(z)>\operatorname{Im}(z) \geq 0\} \tag{8}
\end{equation*}
$$

(c) Using the Cauchy-Riemann equations, or otherwise, find a holomorphic function f on \mathbf{C} satisfying

$$
\begin{equation*}
\operatorname{Re}(f(x+y i))=x \sin x \cosh y-y \cos x \sinh y \tag{10}
\end{equation*}
$$

(d) Determine where the function

$$
\begin{equation*}
g(z)=\frac{\cos (1 / z)}{z^{2}+2} \tag{5}
\end{equation*}
$$

is holomorphic and find its derivative there.
(e) Find the radius of convergence of the power series

$$
\begin{equation*}
h(z)=\sum_{n=0}^{\infty} \frac{(3 n)!}{n!(2 n)!} z^{n} . \tag{6}
\end{equation*}
$$

(f) Let γ denote the circular contour with centre 0 and radius 2, traversed anticlockwise. Prove that

$$
\begin{equation*}
\left|\int_{\gamma} \frac{e^{z} d z}{z^{2}\left(z^{2}+1\right)}\right| \leq \frac{\pi e^{2}}{3} \tag{6}
\end{equation*}
$$

(g) Let Γ_{a} denote the circular contour with centre a and radius 1, traversed anticlockwise. Calculate the contour integral

$$
\begin{equation*}
\int_{\Gamma_{a}} \frac{\sin (\pi z)}{z^{2}(z-2)} d z \tag{11}
\end{equation*}
$$

for $a=-2$, for $a=0$ and for $a=2$.

SECTION B

2. (a) Evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} \tag{10}
\end{equation*}
$$

(b) By integrating the function

$$
f(z)=\frac{1}{z^{4} \tan (\pi z)}
$$

over the contour S_{N}, the square with vertices $\left(N+\frac{1}{2}\right)(\pm 1 \pm i)$ where N is a positive integer, evaluate the infinite sum

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

(You may assume without proof that

$$
\begin{equation*}
|\tan (x+i y)|^{2}=\frac{\sin ^{2} x+\sinh ^{2} y}{\cos ^{2} x+\sinh ^{2} y} \tag{15}
\end{equation*}
$$

for real x and y).
3. (a) Assuming Cauchy's integral formula for the n-th derivative, prove that if f is holomorphic on $\mathbf{C}, a \in \mathbf{C}, n$ is a nonnegative integer and $R>0$ then

$$
\begin{equation*}
\left|f^{(n)}(a)\right| \leq \frac{n!}{R^{n}} \max \{|f(z)|:|z-a|=R\} . \tag{9}
\end{equation*}
$$

(b) Assuming part (a) above, prove that if f is holomorphic on \mathbf{C} and satisfies

$$
|f(z)| \leq|z|^{2}+|z|
$$

for all $z \in \mathbf{C}$, then there are $\alpha, \beta \in \mathbf{C}$ such that

$$
\begin{equation*}
f(z)=\alpha z^{2}+\beta z \tag{16}
\end{equation*}
$$

for all $z \in \mathbf{C}$. Also prove that $|\alpha| \leq 1$ and $|\beta| \leq 1$.
4. (a) Find the terms up to the z^{3} term of the Laurent series around 0 of

$$
\begin{equation*}
f(z)=\frac{1-\cos z}{z-\sin z} \tag{9}
\end{equation*}
$$

(b) Classify the singularities (as removable, essential or poles) of the function

$$
\begin{equation*}
g(z)=\frac{\sin \left(\frac{z}{z+1}\right)}{z(z-1)^{2}\left(z^{2}+1\right)} \tag{9}
\end{equation*}
$$

giving the order of each pole.
(c) Using Rouché's theorem, calculate the number of zeros (counted with multiplicity) of

$$
\begin{equation*}
h(z)=z^{5}-5 z^{4}+z^{2}+9 z-1 \tag{7}
\end{equation*}
$$

in the annulus with $1<|z|<3$.

