ECM3703

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTING AND MATHEMATICS

MATHEMATICAL SCIENCES

May/June 2010
COMPLEX ANALYSIS
Module Leader: Dr P. J. Truman
Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1) (a) Sketch the following subset of \mathbb{C} and discuss whether it is open, closed or neither:

$$
\{z \in \mathbb{C}|1 \leq|z|<2 \text { and } \operatorname{Re}(z)+\operatorname{Im}(z) \geq 0\} .
$$

(b) Find the radius of convergence of the following series:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{i^{n}(n!)^{2}}{(2 n)!} z^{n} \tag{7}
\end{equation*}
$$

(c) Let γ be the circle with centre 0 and radius 1 , traversed once anitclockwise. Using the estimation theorem, prove that

$$
\left|\int_{\gamma} \frac{\cos z}{2 z^{2}} d z\right| \leq \pi e
$$

(d) Using the Cauchy Riemann Equations, or otherwise, find a holomorphic function f on \mathbb{C} satisfying

$$
\operatorname{Re}(f(x+i y))=\sinh \left(x^{2}-y^{2}\right) \cos (2 x y)
$$

Give your solution in the form $f(z)$.
(e) Let γ be the circle with centre 1 and radius 1, traversed once anticlockwise. Evaluate

$$
\int_{\gamma} \frac{i z}{z^{2}-(1+i) z+i} d z
$$

simplifying your answer as much as possible.
(f) Let γ_{r} be the circle with centre 0 and radius r, traversed once anticlockwise. Evaluate

$$
\int_{\gamma_{r}} \frac{1}{z^{2}-2 z+2} d z
$$

when
(i) $r=1$
(ii) $r=2$.

SECTION B

2) Let f be a complex function defined on an open set $G \subseteq \mathbb{C}$ and let $z=x+i y \in G$. Write $f(z)=u(x, y)+i v(x, y)$, where u and v are real valued functions defined on G.
(a) State the Cauchy-Riemann equations and show that if f is differentiable at z then the partial derivatives of u and v satisfy them.
(b) Prove that the function $\operatorname{Im}\left(z^{2}\right)$ is not differentiable at any point $z \in \mathbb{C}$.
(c) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the function defined by $f(0)=0$ and $f(z)=z^{5} /|z|^{4}$ elsewhere. By expressing $f(x+i y)$ in the form $u(x, y)+i v(x, y)$, show that f satisfies the Cauchy Riemann equations at $z=0$ but is not differentiable there.
3) (a) State Laurent's Theorem.
(b) Compute the Laurent expansions of the function

$$
f(z)=\frac{1}{(z+1)^{2}(z-3)}
$$

in each of the following annular domains:
(i) $\{z \in \mathbb{C}|0<|z|<1\}$.
(ii) $\{z \in \mathbb{C}|1<|z|<3\}$.
(iii) $\{z \in \mathbb{C}||z|>3\}$.
(You may use standard series expansions provided you state clearly why they are valid)
(c) Let $f(z)=e^{z+1 / z}$. You may assume that $f(z)$ is holomorphic except at $z=0$. Let

$$
\sum_{n=-\infty}^{\infty} c_{n} z^{n}
$$

be the Laurent expansion of $f(z)$ around 0 . Write down an expression for the coefficient c_{n} and deduce that

$$
\int_{0}^{2 \pi} e^{2 \cos t} d t=2 \pi \sum_{n=0}^{\infty} \frac{1}{(n!)^{2}}
$$

4) (a) State Cauchy's Residue Theorem.
(b) Determine the poles of

$$
f(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)}
$$

and calculate the residues at these poles.
(c) Show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{\pi}{6} . \tag{12}
\end{equation*}
$$

