ECM3703

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May/June 2011
Complex Analysis
Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Solve the quadratic equation

$$
\begin{equation*}
z^{2}-(8+i) z+18+4 i=0 \tag{3}
\end{equation*}
$$

(b) Find the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n!(3 n)!}{((2 n)!)^{2}} z^{n} \tag{5}
\end{equation*}
$$

(c) Determine whether the set

$$
\begin{equation*}
A=\{z \in \mathbf{C}: \operatorname{Re}(z) \geq 0, \operatorname{Im}(z) \geq 0 \text { and }|z|<1\} \tag{6}
\end{equation*}
$$

is open, closed or neither.
(d) By using the Cauchy-Riemann equations, or otherwise, find a function f holomorphic on \mathbf{C} with

$$
\begin{equation*}
\operatorname{Re}(f(x+i y))=x \cos x \cosh y+y \sin x \sinh y \tag{10}
\end{equation*}
$$

(e) Prove that

$$
\left|\int_{\gamma} \frac{\sin \left(z^{2}\right)}{z^{3}} d z\right| \leq 2 \pi e
$$

where γ is the circle with centre 0 and radius 1 .
(f) Find the Laurent series expansion of the function

$$
\begin{equation*}
f(z)=\frac{1}{(z-1)(z+2)} \tag{8}
\end{equation*}
$$

valid for $1<|z|<2$.
(g) Let γ_{a} denote the circle with centre a and radius 1 traversed anticlockwise. Compute

$$
\int_{\gamma_{a}} \frac{e^{-z}}{z^{2}(z+2)} d z
$$

$$
\begin{equation*}
\text { for (i) } a=-2 \text {, (ii) } a=0 \text { and (iii) } a=2 \text {. } \tag{12}
\end{equation*}
$$

SECTION B

2. Let

$$
f(z)=\frac{e^{z}+1}{e^{z}-1} .
$$

(a) Prove that every singularity of f is a simple pole, and find the residue of f at each pole.
(b) Consider the Laurent expansion of f at 0 :

$$
\begin{equation*}
f(z)=\frac{a}{z}+\sum_{n=0}^{\infty} b_{n} z^{n} . \tag{14}
\end{equation*}
$$

Prove that $b_{n}=0$ whenever n is even, and compute a, b_{1} and b_{3}.
(c) Evaluate $\int_{\gamma} f(z) d z$ where γ is the circle with centre 0 and radius 10, traversed anticlockwise.
3. (a) Using the calculus of residues, evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{\cosh x}
$$

(You may assume that $|\cosh (x+i y)|^{2}=\sinh ^{2} x+\cos ^{2} y$ for real x and y.)
(b) Evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{4}+4} d x . \tag{15}
\end{equation*}
$$

4. (a) Let f be holomorphic on C. Assuming Cauchy's integral formula for the n-th derivative of f, prove Cauchy's estimate:

$$
\begin{equation*}
\left|f^{(n)}(a)\right| \leq \frac{n!}{r^{n}} \max \{|f(z)|:|z-a|=r\} \tag{5}
\end{equation*}
$$

(b) Let f be holomorphic on C. Prove that if

$$
|f(z)| \leq|z|^{2}+|z|^{3}
$$

for all $z \in \mathbf{C}$ then, $f(z)=\alpha z^{2}+\beta z^{3}$ where α and β are complex constants. Moreover prove that $|\alpha| \leq 1$ and $|\beta| \leq 1$.
(c) How many zeros, counted with multiplicity, does the polynomial

$$
\begin{equation*}
z^{5}+z^{4}-10 z^{3}+15 z+1 \tag{7}
\end{equation*}
$$

have in the annulus $\{z \in \mathbf{C}: 1<|z|<2\}$.

