ECM3703

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May/June 2012
Complex Analysis
Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Find all complex solutions of the equation

$$
\begin{equation*}
z^{3}+(6+5 i) z+5-5 i=0 \tag{10}
\end{equation*}
$$

given that $z=1-3 i$ is one solution.
(b) Find the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(2-i)^{n}(2 n)!}{(n!)^{2}} z^{n} \tag{6}
\end{equation*}
$$

(c) By using the Cauchy-Riemann equations, or otherwise, find a function f holomorphic on \mathbf{C} with

$$
\begin{equation*}
\operatorname{Re}(f(x+i y))=x^{4}+x^{3} y-6 x^{2} y^{2}-x y^{3}+y^{4} \tag{8}
\end{equation*}
$$

(d) Find the Laurent series expansion of the function

$$
\begin{equation*}
f(z)=\frac{1}{(z+1)(z+3)} \tag{8}
\end{equation*}
$$

which is valid in the annulus where $1<|z|<3$.
(e) Let γ_{a} denote the circle with centre a and radius $1 / 2$. Compute

$$
\begin{equation*}
\int_{\gamma_{a}} \frac{\exp \left(z^{2}\right)}{(z-1)\left(z^{2}-1\right)} d z \tag{10}
\end{equation*}
$$

for (i) $a=-1$, (ii) $a=0$ and (iii) $a=1$.
(f) How many zeros, counted with multiplicity, has the function

$$
\begin{equation*}
g(z)=z^{4}-6 z^{3}-3 z^{2}+12 z-1 \tag{8}
\end{equation*}
$$

in the annulus $\{z \in \mathbf{C}: 1<|z|<3\}$?

SECTION B

2. Let

$$
f(z)=\frac{1}{z\left(e^{z}-1\right)}
$$

(a) Prove that every singularity of f is a pole, and find the order of each pole.
(b) Consider the Laurent expansion of f at 0 :

$$
f(z)=\sum_{n=-N}^{\infty} b_{n} z^{n}
$$

where N is the order of the pole of f at 0 . Find all the b_{n} for $-N \leq n \leq 1$.
(c) Evaluate $\int_{\gamma} f(z) d z$ where (i) γ is the unit circle (with centre 0 and radius 1), and (ii) γ is the circle with centre $3 i$ and radius 4 .
3. (a) Evaluate the integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{5}}{x^{12}+1} d x \tag{12}
\end{equation*}
$$

(b) Evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x \sin x}{\left(x^{2}+1\right)^{2}} d x \tag{13}
\end{equation*}
$$

4. (a) Let f be an entire function (a function holomorphic on all of \mathbf{C}.) Assuming Cauchy's integral formula for the n-th derivative of f, prove Cauchy's estimate:

$$
\left|f^{(n)}(a)\right| \leq \frac{n!M}{r^{n}}
$$

where $M=\max \{|f(z)|:|z-a|=r\}$.
Deduce that if f is entire and

$$
|f(z)| \leq|z|+|z|^{3}
$$

for all $z \in \mathbf{C}$, then there are α, β and $\gamma \in \mathbf{C}$ with

$$
\begin{equation*}
f(z)=\alpha z+\beta z^{2}+\gamma z^{3} . \tag{15}
\end{equation*}
$$

Moreover, prove that $|\alpha| \leq 1,|\beta| \leq 2$ and $|\gamma| \leq 1$.
(b) Let $g(z)=\exp \left(\left(z+z^{-1}\right) / 2\right)$. By computing c_{0} in the Laurent series

$$
g(z)=\sum_{m=-\infty}^{\infty} c_{m} z^{m}
$$

and performing a suitable contour integral, prove that

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{\cos t} d t=2 \pi \sum_{n=0}^{\infty} \frac{1}{4^{n}(n!)^{2}} \tag{10}
\end{equation*}
$$

