ECM3703

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May 2013

Complex Analysis

Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Find all complex solutions of the equation

$$
\begin{equation*}
z^{3}+5 z^{2}+(9-5 i) z+10-10 i=0 \tag{6}
\end{equation*}
$$

given that $z=2 i$ is one solution.
(b) Find the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(2+i)^{n}(n!)^{2}}{(1+i)^{n}(2 n)!} z^{n} . \tag{4}
\end{equation*}
$$

(c) Let f be holomorphic and write

$$
f(x+i y)=u(x, y)+i v(x, y) .
$$

Assuming the Cauchy-Riemann equations, prove that

$$
f^{\prime}=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y} .
$$

Hence, or otherwise, find a function f holomorphic on $\{z \in \mathbf{C}$: $z \neq 0\}$ with

$$
\begin{equation*}
u(x, y)=\frac{x+y}{x^{2}+y^{2}} \tag{12}
\end{equation*}
$$

and $f(1)=1$.
(d) Find the Laurent series expansion of the function

$$
\begin{equation*}
f(z)=\frac{z}{(z+1)(z-2)} \tag{10}
\end{equation*}
$$

which is valid on the annulus $\{z \in \mathbf{C}: 1<|z|<2\}$.
(e) Let γ_{a} denote the triangular contour with vertices $-1+i,-1-i$ and a traversed in the anticlockwise direction. Compute

$$
\begin{equation*}
\int_{\gamma_{a}} \frac{\cos (\pi z)}{(z-1)(z-3)^{2}} d z \tag{12}
\end{equation*}
$$

for (i) $a=0$, (ii) $a=2$ and (iii) $a=4$.
(f) How many zeros, counted with multiplicity, has the function

$$
\begin{equation*}
f(z)=e^{z}-3 z^{2013} \tag{6}
\end{equation*}
$$

on the disc $\{z \in \mathbf{C}:|z|<1\}$?

SECTION B

2. Let

$$
f(z)=\frac{1}{z\left(e^{z}+1\right)} .
$$

(a) Prove that every singularity of f is a pole. Find the order of each pole of f and also the residue of f there.
(b) Consider the Laurent expansion of f at 0 :

$$
f(z)=\sum_{n=-N}^{\infty} b_{n} z^{n}
$$

where N is the order of the pole of f at 0 . Find all the b_{n} for $-N \leq n \leq 2$.
(c) Evaluate $\int_{\gamma} f(z) d z$ where (i) γ is the unit circle (with centre 0 and radius 1), and (ii) γ is the circle with centre $5 i$ and radius 6 .
3. (a) Evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2} \cos x}{\left(x^{2}+1\right)^{2}} d x \tag{10}
\end{equation*}
$$

(b) By integrating

$$
f(z)=\frac{1}{z^{3} \cos (\pi z)}
$$

over the boundary S_{N} of the square with vertices at $N(1+i)$, $N(-1+i), N(-1-i)$ and $N(1-i)$, and letting $N \rightarrow \infty$, prove that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}=\frac{\pi^{3}}{32} .
$$

(You may assume, without proof, the identity

$$
\begin{equation*}
|\cos (x+i y)|^{2}=\cos ^{2} x+\sinh ^{2} y \tag{15}
\end{equation*}
$$

valid for real x and y.)
4. (a) Let f be an entire function (a function holomorphic on all of \mathbf{C}.) Assuming Cauchy's integral formula for the n-th derivative of f, that is

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} d z
$$

where C is a circle surrounding a, prove Cauchy's estimate:

$$
\left|f^{(n)}(a)\right| \leq \frac{n!M}{r^{n}}
$$

where $M=\max \{|f(z)|:|z-a|=r\}$.
Deduce that if f is entire and

$$
|f(z)| \leq 1+|z|^{3}
$$

for all $z \in \mathbf{C}$, then there are a_{0}, a_{1}, a_{2} and $a_{3} \in \mathbf{C}$ with

$$
\begin{equation*}
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3} . \tag{13}
\end{equation*}
$$

Moreover, prove that $\left|a_{1}\right|<19 / 10$ and $\left|a_{3}\right| \leq 1$.
(b) Let $U=\{z \in \mathbf{C}: z \neq 0\}$. Assuming Laurent's theorem, prove that the only holomorphic functions on U satisfying $f(2 z)=f(z)$ for all $z \in U$ are the constant functions. By giving its Laurent expansion, or otherwise, prove that there is a nonzero holomorphic function g on U satisfying

$$
\begin{equation*}
g(2 z)=\sqrt{2} z g(z) . \tag{12}
\end{equation*}
$$

