Complex analysis: my exam questions

These are the questions on complex analysis that I sat in my undergraduate exams, many, many years ago.

- State Cauchy's formula for the nth derivative of a holomorphic function. State and prove Morera's theorem.

Suppose f_{n} is a sequence of holomorphic functions on an open set Ω converging pointwise to a function f, and such that $|f(z)| \leq M$ for all $z \in \Omega$. Show that f is holomorphic on Ω and that $\frac{d^{k}}{d z^{k}} f_{n}$ converges to $\frac{d^{k}}{d z^{k}} f$.

- Evaluate by contour integration

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\sin ^{2} t}{(a+b \cos t)} d t, \quad 0<b<a \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{(\log t)^{n}}{1+t^{4}} d t, \quad n=0,1,2 \tag{ii}
\end{equation*}
$$

- Let $D=\{z \in \mathbf{C}:|z|<1\}$ and suppose that f is holomorphic on an open neighbourhood of \bar{D}. Show that each of the following implies that f is constant on \bar{D}.
(i) $f^{\prime}(z)=0$ whenever $z \in D$,
(ii) $|f(z)|$ is constant for $z \in D$,
(iii) $f\left(z_{n}\right)$ is constant where $\left\{z_{n}: n \in \mathbf{N}\right\} \subset D$ is a sequence converging to 0 ,
(iv) $|f(0)|=\sup \{|f(z)|: z \in \bar{D}\}$,
(i) $|f(0)| \geq \sup \{|f(z)|:|z|=1\}$.
- (a) Show that the equation

$$
\left|\frac{z-\alpha}{z-\beta}\right|=\lambda
$$

where $\lambda \in \mathbf{R}, \lambda>0$ and $\alpha, \beta \in \mathbf{C}$ with $\alpha \neq \beta$ represents a circle or straight line, and that, conversely, any circle or straight line may be so represented.
Define a Möbius transformation, and show that the image in \mathbf{C} of a cicrle or straight line in \mathbf{C} under a Möbius is either a circle, or a circle woth one point removed, or a straight line.
(b) Find a conformal mapping of $\{z:|z|<1\} \cap\left\{z:\left|z-\frac{1}{2}\right|>\frac{1}{2}\right\}$ onto an annulus.

RJC 5/3/2013

