Differentiation of power series

Robin Chapman

20 February 2014

I provide a proof that power series are differentiable inside their disc of convergence. More precisely, I prove that if

$$
f(z)=\sum_{n=0}^{\infty} b_{n}(z-a)^{n}
$$

is a power series, with radius of convergence $R>0$, then f is holomorphc on $D(a, R)$ (or on all of \mathbf{C} when $R=\infty$) and that

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} b_{n} n(z-a)^{n-1} .
$$

I have given this proof in the lectures in previous years, but it is rather fiddly, so I want to avoid it in order to deal with more genuinely complex-analytic topics in a more leisurely manner.

By replacing $f(z)$ by $f(z+a)$ we can assume that $a=0$. Define the power series

$$
f_{1}(z)=\sum_{n=1}^{\infty} b_{n} n z^{n-1} \quad \text { and } \quad f_{2}(z)=\sum_{n=2}^{\infty} b_{n} n(n-1) z^{n-2}
$$

We want to prove that f_{1} is the derivative of f; also f_{2} should be the second derivative of f, but at the moment f_{1} and f_{2} are just two more power series.

If $z \in D(0, R)$ (we think of $D(0, \infty)$ as \mathbf{C}) then $|z|<R$ and so there is a slightly smaller radius r, with $|z|<r<R$ and $z \in D(0, r)$. Then $\sum_{n=0}^{\infty}\left|b_{n} r^{n}\right|=\sum_{n=0}^{\infty}\left|b_{n}\right| r^{n}$ is convergent. The terms of a convergent series tend to zero, so they are bounded: there is a positive real B with $\left|b_{n}\right| r^{n}<B$ for all n. If $z \in D(0, r)$ then $|z / r|<1$. Now

$$
\left|n b_{n} z^{n-1}\right|=n r^{n-1}\left|b_{n}\right||z / r|^{n} \leq r^{-1} n B|z / r|^{n} .
$$

The series $\sum_{n=1}^{\infty} n B|z / r|^{n}$ is convergent, by the ratio test, and so the series $f_{1}(z)$ converges absolutely (by comparison) for $z \in D(0, r)$. A similar argument (omitted) shows that the series $f_{2}(z)$ converges absolutely in $D(0, r)$.

Consider $z \in D(0, r)$. To show that $f^{\prime}(z)=f_{1}(z)$ we need to prove that

$$
\lim _{h \rightarrow 0}\left|\frac{f(z+h)-f(h)}{h}-f_{1}(z)\right|=0 .
$$

For small enough $h, z+h \in D(0, r)$ so that

$$
f(z+h)-f(z)=\sum_{n=0}^{\infty} b_{n}\left((z+h)^{n}-z^{n}\right)=\sum_{n=1}^{\infty} b_{n} \sum_{k=1}^{n}\binom{n}{k} h^{k} z^{n-k}
$$

and so

$$
\frac{f(z+h)-f(z)}{h}-f_{1}(z)=\sum_{n=1}^{\infty} b_{n} \sum_{k=2}^{n}\binom{n}{k} h^{k-1} z^{n-k} .
$$

For $k \geq 2$

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}=\frac{n(n-1)}{k(k-1)}\binom{n-2}{k-2} \leq n(n-1)\binom{n-2}{k-2} .
$$

Therefore

$$
\begin{aligned}
\left|\frac{f(z+h)-f(z)}{h}-f_{1}(z)\right| & \leq \sum_{n=2}^{\infty}\left|b_{n}\right| \sum_{k=2}^{\infty}\binom{n}{k}|h|^{k-1}|z|^{n-k} \\
& \leq|h| \sum_{n=2}^{\infty} n(n-1)\left|b_{n}\right| \sum_{k=2}^{\infty}\binom{n-2}{k-2}|h|^{k-2}|z|^{n-k} \\
& =|h| \sum_{n=2}^{\infty} n(n-1)\left|b_{n}\right|(|z|+|h|)^{n-2} .
\end{aligned}
$$

This last series is convergent for small h since the series $f_{2}(|z|+|h|)$ is convergent. More precisely, if $|z|<s<r$ then for $|h|<s-|z|$ we have

$$
\left|\frac{f(z+h)-f(z)}{h}-f_{1}(z)\right| \leq|h| \sum_{n=2}^{\infty} n(n-1)\left|b_{n}\right| s^{n-2}=C|h|
$$

say, since the series is convergent. By the sandwich principle,

$$
\lim _{h \rightarrow 0}\left|\frac{f(z+h)-f(z)}{h}-f_{1}(z)\right|=0
$$

and so $f^{\prime}(z)=f_{1}(z)$, as required.

