
Differentiation of power series

Robin Chapman

20 February 2014

I provide a proof that power series are differentiable inside their disc of
convergence. More precisely, I prove that if

f(z) =
∞∑
n=0

bn(z − a)n

is a power series, with radius of convergence R > 0, then f is holomorphc on
D(a,R) (or on all of C when R =∞) and that

f ′(z) =
∞∑
n=1

bnn(z − a)n−1.

I have given this proof in the lectures in previous years, but it is rather fiddly,
so I want to avoid it in order to deal with more genuinely complex-analytic
topics in a more leisurely manner.

By replacing f(z) by f(z + a) we can assume that a = 0. Define the
power series

f1(z) =
∞∑
n=1

bnnz
n−1 and f2(z) =

∞∑
n=2

bnn(n− 1)zn−2.

We want to prove that f1 is the derivative of f ; also f2 should be the second
derivative of f , but at the moment f1 and f2 are just two more power series.

If z ∈ D(0, R) (we think of D(0,∞) as C) then |z| < R and so there
is a slightly smaller radius r, with |z| < r < R and z ∈ D(0, r). Then∑∞

n=0 |bnrn| =
∑∞

n=0 |bn|rn is convergent. The terms of a convergent series
tend to zero, so they are bounded: there is a positive real B with |bn|rn < B
for all n. If z ∈ D(0, r) then |z/r| < 1. Now

|nbnzn−1| = nrn−1|bn||z/r|n ≤ r−1nB|z/r|n.

The series
∑∞

n=1 nB|z/r|n is convergent, by the ratio test, and so the series
f1(z) converges absolutely (by comparison) for z ∈ D(0, r). A similar argu-
ment (omitted) shows that the series f2(z) converges absolutely in D(0, r).
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Consider z ∈ D(0, r). To show that f ′(z) = f1(z) we need to prove that

lim
h→0

∣∣∣∣∣f(z + h)− f(h)

h
− f1(z)

∣∣∣∣∣ = 0.

For small enough h, z + h ∈ D(0, r) so that

f(z + h)− f(z) =
∞∑
n=0

bn((z + h)n − zn) =
∞∑
n=1

bn
n∑

k=1

(
n

k

)
hkzn−k

and so
f(z + h)− f(z)

h
− f1(z) =

∞∑
n=1

bn
n∑

k=2

(
n

k

)
hk−1zn−k.

For k ≥ 2(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
=

n(n− 1)

k(k − 1)

(
n− 2

k − 2

)
≤ n(n− 1)

(
n− 2

k − 2

)
.

Therefore∣∣∣∣∣f(z + h)− f(z)

h
− f1(z)

∣∣∣∣∣ ≤
∞∑
n=2

|bn|
∞∑
k=2

(
n

k

)
|h|k−1|z|n−k

≤ |h|
∞∑
n=2

n(n− 1)|bn|
∞∑
k=2

(
n− 2

k − 2

)
|h|k−2|z|n−k

= |h|
∞∑
n=2

n(n− 1)|bn|(|z|+ |h|)n−2.

This last series is convergent for small h since the series f2(|z|+ |h|) is con-
vergent. More precisely, if |z| < s < r then for |h| < s− |z| we have∣∣∣∣∣f(z + h)− f(z)

h
− f1(z)

∣∣∣∣∣ ≤ |h|
∞∑
n=2

n(n− 1)|bn|sn−2 = C|h|

say, since the series is convergent. By the sandwich principle,

lim
h→0

∣∣∣∣∣f(z + h)− f(z)

h
− f1(z)

∣∣∣∣∣ = 0

and so f ′(z) = f1(z), as required.
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