Differentiation of power series

Robin Chapman

20 February 2014

I provide a proof that power series are differentiable inside their disc of convergence. More precisely, I prove that if

$$f(z) = \sum_{n=0}^{\infty} b_n (z - a)^n$$

is a power series, with radius of convergence R > 0, then f is holomorphe on D(a, R) (or on all of \mathbb{C} when $R = \infty$) and that

$$f'(z) = \sum_{n=1}^{\infty} b_n n(z-a)^{n-1}.$$

I have given this proof in the lectures in previous years, but it is rather fiddly, so I want to avoid it in order to deal with more genuinely complex-analytic topics in a more leisurely manner.

By replacing f(z) by f(z + a) we can assume that a = 0. Define the power series

$$f_1(z) = \sum_{n=1}^{\infty} b_n n z^{n-1}$$
 and $f_2(z) = \sum_{n=2}^{\infty} b_n n(n-1) z^{n-2}$.

We want to prove that f_1 is the derivative of f; also f_2 should be the second derivative of f, but at the moment f_1 and f_2 are just two more power series.

If $z \in D(0,R)$ (we think of $D(0,\infty)$ as \mathbb{C}) then |z| < R and so there is a slightly smaller radius r, with |z| < r < R and $z \in D(0,r)$. Then $\sum_{n=0}^{\infty} |b_n r^n| = \sum_{n=0}^{\infty} |b_n| r^n$ is convergent. The terms of a convergent series tend to zero, so they are bounded: there is a positive real B with $|b_n| r^n < B$ for all n. If $z \in D(0,r)$ then |z/r| < 1. Now

$$|nb_nz^{n-1}| = nr^{n-1}|b_n||z/r|^n \le r^{-1}nB|z/r|^n.$$

The series $\sum_{n=1}^{\infty} nB|z/r|^n$ is convergent, by the ratio test, and so the series $f_1(z)$ converges absolutely (by comparison) for $z \in D(0,r)$. A similar argument (omitted) shows that the series $f_2(z)$ converges absolutely in D(0,r).

Consider $z \in D(0,r)$. To show that $f'(z) = f_1(z)$ we need to prove that

$$\lim_{h \to 0} \left| \frac{f(z+h) - f(h)}{h} - f_1(z) \right| = 0.$$

For small enough $h, z + h \in D(0, r)$ so that

$$f(z+h) - f(z) = \sum_{n=0}^{\infty} b_n ((z+h)^n - z^n) = \sum_{n=1}^{\infty} b_n \sum_{k=1}^{n} {n \choose k} h^k z^{n-k}$$

and so

$$\frac{f(z+h) - f(z)}{h} - f_1(z) = \sum_{n=1}^{\infty} b_n \sum_{k=2}^{n} \binom{n}{k} h^{k-1} z^{n-k}.$$

For $k \geq 2$

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n(n-1)}{k(k-1)} \binom{n-2}{k-2} \le n(n-1) \binom{n-2}{k-2}.$$

Therefore

$$\left| \frac{f(z+h) - f(z)}{h} - f_1(z) \right| \leq \sum_{n=2}^{\infty} |b_n| \sum_{k=2}^{\infty} {n \choose k} |h|^{k-1} |z|^{n-k}$$

$$\leq |h| \sum_{n=2}^{\infty} n(n-1) |b_n| \sum_{k=2}^{\infty} {n-2 \choose k-2} |h|^{k-2} |z|^{n-k}$$

$$= |h| \sum_{n=2}^{\infty} n(n-1) |b_n| (|z| + |h|)^{n-2}.$$

This last series is convergent for small h since the series $f_2(|z| + |h|)$ is convergent. More precisely, if |z| < s < r then for |h| < s - |z| we have

$$\left| \frac{f(z+h) - f(z)}{h} - f_1(z) \right| \le |h| \sum_{n=2}^{\infty} n(n-1)|b_n| s^{n-2} = C|h|$$

say, since the series is convergent. By the sandwich principle,

$$\lim_{h \to 0} \left| \frac{f(z+h) - f(z)}{h} - f_1(z) \right| = 0$$

and so $f'(z) = f_1(z)$, as required.