Some useful analytic results

Robin Chapman

16 February 2011

Here I give some details and results of "real analysis" type which are used and useful in the course.

Recall the Bolzano-Weierstrass theorem, which states that if $\left(a_{n}\right)$ is a bounded sequence of real numbers, then $\left(a_{n}\right)$ has a convergent subsequence.

Lemma (Complex Bolzano-Weierstrass). Let $\left(z_{n}\right)$ be a bounded sequence of complex numbers. Then $\left(z_{n}\right)$ has a convergent subsequence.

Proof As $\left(z_{n}\right)$ is bounded sequence of complex numbers, then $\left(\operatorname{Re} z_{n}\right)$ and $\left(\operatorname{Im} z_{n}\right)$ are bounded sequences of real numbers. By Bolzano-Weierstrass, $\left(\operatorname{Re} z_{n}\right)$ has a convergent subsequence $\left(\operatorname{Re} z_{n_{k}}\right)$. Now the sequence $\left(\operatorname{Im} z_{n_{k}}\right)$ is also bounded so by Bolzano-Weierstrass again, it has a convergent subsequence $\left(\operatorname{Im} z_{n_{k_{r}}}\right)$. Now $\left(\operatorname{Re} z_{n_{k_{r}}}\right)$ is a subsequence of the convergent sequence ($\operatorname{Re} z_{n_{k}}$), and so converges (to the same limit). Hence ($z_{n_{k_{r}}}$) is a convergent subsequence of $\left(z_{n}\right)$ as its real and imaginary parts are both convergent.

This is useful in proving the following result used in the proof of the Cauchy-Goursat theorem.

Theorem. Let $A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots$ be a sequence of nonempty closed bounded subsets of \mathbf{C}. Then there is a complex number α which is an element of all the A_{m}.

Proof Pick an element $a_{n} \in A_{n}$ for each n. Then each $a_{n} \in A_{0}$, which is a bounded set. So we may apply the complex form of Bolzano-Weierstrass and deduce there is a subsequence $\left(a_{n_{k}}\right)$ converging to $\alpha \in \mathbf{C}$.

Let m be a positive integer. In the sequence $\left(a_{n}\right)$, all but perhaps the first m terms lie in A_{m}. So at most finitely many terms in the sequence $\left(a_{n_{k}}\right)$ lie outside A_{m}. Deleting these we get a sequence of elements of A_{m} converging to α. As A_{m} is a closed set, then $\alpha \in A_{m}$ also (by exercise 10 of the problems sheet).

We conclude that α is an element of all of the A_{m}.
Another useful consequence of Bolzano-Weierstrass is the fact that continuous functions on closed bounded sets are bounded.

Theorem. Let A be a closed bounded subset of \mathbf{C}, and let $f: A \rightarrow \mathbf{C}$ be a continuous function. Then f is bounded on A, that is there is M such that $|f(z)| \leq M$ for all $z \in A$.

Proof Suppose, for sake of contradiction, that f is not bounded. Then for each positive integer n there is $z_{n} \in A$ with $\left|f\left(z_{n}\right)\right|>n$. The sequence $\left(z_{n}\right)$ is bounded (as A is bounded), so it has a convergent subsequence $\left(z_{n_{k}}\right)$ with limit w. By question 10 of the problem sheet, as each $z_{n_{k}} \in A$ then $w \in A$ (as A is closed). But then by continuity, $f\left(z_{n_{k}}\right) \rightarrow f(w)$ so that $\left|f\left(z_{n_{k}}\right)\right| \rightarrow|f(w)|$ as $k \rightarrow \infty$. But $\left|f\left(z_{n_{k}}\right)\right|>n_{k}$ and as $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$ therefore $\left|f\left(z_{n_{k}}\right)\right| \rightarrow \infty$ as $k \rightarrow \infty$, a contradiction.

A technical result which I need in the proof of Cauchy's integral formula is that if an open set contains a closed disc then it contains a larger open disc.

Theorem. Let U be an open subset of \mathbf{C}, and suppose $\bar{D}(a, r) \subseteq U$ for some $a \in \mathbf{C}$ and $r>0$. Then there is some $s>r$ with $D(a, s) \subseteq U$.

Proof Assume that there isn't such an s. Then for each $n \in \mathbf{N}, s$ cannot be $r+1 / n$, so there is $z_{n} \in D(a, r+1 / n)$ with $z_{n} \notin U$. As $\bar{D}(a, r) \subseteq U$ then $r \leq\left|z_{n}-a\right|<r+1 / n$. It follows that $\left|z_{n}-a\right| \rightarrow r$ as $n \rightarrow \infty$.

The sequence $\left(z_{n}\right)$ is bounded, so it has a convergent subsequence $\left(z_{n_{k}}\right)$ by Bolzano-Weierstrass. Let w denote its limit. Then $\left|z_{n_{k}}-a\right| \rightarrow r$ as $k \rightarrow \infty$ and so $|w-a|=r$. As $\bar{D}(a, r) \subseteq U$ then $w \in U$.

As U is open $D(w, \varepsilon) \subseteq U$ for some $\varepsilon>0$. As $z_{n} \notin U$ then $\left|z_{n}-w\right| \geq \varepsilon$ for all n. A fortiori $\left|z_{n_{k}}-w\right| \geq \varepsilon$ for all k. This means that $\left(z_{n_{k}}\right)$ cannot converge to w, a contradiction. Hence there must be an $s>r$ with $D(a, s) \subseteq U$.

