Stirling's formula

Robin Chapman

12 December 2013

This states that

$$
n!\sim \sqrt{2 \pi} e^{-n} n^{n+1 / 2}
$$

We can divide the proof of Stirling's formula into two parts: first that there is a constant $C>0$ such that

$$
n!\sim C e^{-n} n^{n+1 / 2}
$$

and second that

$$
C=\sqrt{2 \pi} .
$$

Here I'll give a fairly complete proof of the first part and a very incomplete proof of the second.

Of course $n!=1 \times 2 \times 3 \times \cdots \times n$ is a product, but sums are easier to deal with than products, so we study

$$
\log n!=\log 1+\log 2+\log 3+\cdots+\log n=\log 2+\log 3+\cdots+\log n
$$

instead. This should approximate the area under the curve $y=\log x$ between $x=1$ and $x=n$. Indeed applying the trapezium rule with strips of width 1 indicates we should approximate

$$
I_{n}=\int_{1}^{n} \log x d x
$$

by

$$
S_{n}=\frac{\log 1}{2}+\log 2+\log 3+\cdots+\log (n-1)+\frac{\log n}{2} .
$$

The weak form of Stirling's formula will follow from the analysis of the accuracy of this approximation.

By doing the integral we get

$$
I_{n}=n \log n-n+1
$$

and of course

$$
S_{n}=\log n!-\frac{\log n}{2}
$$

The error bound for the trapezium rule with one strip is

$$
\left|\int_{a}^{b} f(x) d x-(b-a) \frac{f(a)+f(b)}{2}\right| \leq \frac{(b-a)^{3}}{12} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right| .
$$

Here f is a function on the interval $[a, b]$ with a continuous second derivative. This should be proved in any introductory course on numerical methods, but you can take it as an exercise for the reader. Taking $f(x)=\log x$ and the interval to be $[k, k+1]$ we have $f^{\prime \prime}(x)=-1 / x$ and so

$$
\left|\int_{k}^{k+1} \log x d x-\frac{\log k+\log (k+1)}{2}\right| \leq \frac{1}{12} \max _{x \in[k, k+1]}\left|\frac{1}{x^{2}}\right|=\frac{1}{12 k^{2}}
$$

Now

$$
I_{n}-S_{n}=\sum_{k=1}^{n-1} E_{k}
$$

where

$$
E_{k}=\int_{k}^{k+1} \log x d x-\frac{\log k+\log (k+1)}{2}
$$

Since $\left|E_{k}\right| \leq 1 /\left(12 k^{2}\right)$ and the series $\sum_{k=1}^{\infty} 1 / k^{2}$ is convergent, the series $\sum_{k=1}^{\infty} E_{k}$ converges absolutely, to L say. Therefore

$$
L=\lim _{n \rightarrow \infty}\left(I_{n}-S_{n}\right)=\lim _{n \rightarrow \infty}(n \log n-1-\log n!+(\log n) / 2)
$$

and so

$$
\lim _{n \rightarrow \infty}((n+1 / 2) \log n-n-\log n!)=L+1 .
$$

It follows that

$$
\lim _{n \rightarrow \infty} \frac{e^{-n} n^{n+1 / 2}}{n!}=e^{L+1}
$$

which is

$$
n!\sim C e^{-n} n^{n+1 / 2}
$$

with $C=e^{-L-1}$.
To prove that $C=\sqrt{2 \pi}$ involves some jiggery-pokery, and is the harder part of Stirling's formula. The usual trick involves Wallis's formula (which I won't prove):

$$
\frac{\pi}{2}=\prod_{n=1}^{\infty} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}=\frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \cdots .
$$

From Wallis's formula,

$$
\begin{aligned}
\frac{\pi}{2} & =\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \frac{(2 n)^{2}}{(2 n-1)(2 n+1)}=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \frac{(2 n)^{4}}{(2 n-1)(2 n)^{2}(2 n+1)} \\
& =\lim _{N \rightarrow \infty} \frac{2^{4 N} N!^{4}}{(2 N+1)(2 N)!^{2}}
\end{aligned}
$$

We now apply our weak version of Stirling's formula:

$$
\frac{2^{4 N} N!^{4}}{(2 N+1)(2 N)!^{2}} \sim \frac{2^{4 N} N!^{4}}{(2 N)(2 N)!^{2}} \sim \frac{2^{4 N} C^{4} e^{-4 N} N^{4 N+2}}{C^{2} e^{-4 N}(2 N)^{2 N+2}}=\frac{C^{2}}{4} .
$$

Therefore $\pi / 2=C^{2} / 4$, that is $C=\sqrt{2 \pi}$.

