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This states that
n! ∼

√
2πe−nnn+1/2.

We can divide the proof of Stirling’s formula into two parts: first that there
is a constant C > 0 such that

n! ∼ Ce−nnn+1/2

and second that
C =

√
2π.

Here I’ll give a fairly complete proof of the first part and a very incomplete
proof of the second.

Of course n! = 1 × 2 × 3 × · · · × n is a product, but sums are easier to
deal with than products, so we study

log n! = log 1 + log 2 + log 3 + · · ·+ log n = log 2 + log 3 + · · ·+ log n

instead. This should approximate the area under the curve y = log x between
x = 1 and x = n. Indeed applying the trapezium rule with strips of width 1
indicates we should approximate

In =
∫ n

1
log x dx

by

Sn =
log 1

2
+ log 2 + log 3 + · · ·+ log(n− 1) +

log n

2
.

The weak form of Stirling’s formula will follow from the analysis of the ac-
curacy of this approximation.

By doing the integral we get

In = n log n− n+ 1
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and of course

Sn = log n!− log n

2
.

The error bound for the trapezium rule with one strip is∣∣∣∣∣
∫ b

a
f(x) dx− (b− a)

f(a) + f(b)

2

∣∣∣∣∣ ≤ (b− a)3

12
max
x∈[a,b]

|f ′′(x)|.

Here f is a function on the interval [a, b] with a continuous second derivative.
This should be proved in any introductory course on numerical methods, but
you can take it as an exercise for the reader. Taking f(x) = log x and the
interval to be [k, k + 1] we have f ′′(x) = −1/x and so∣∣∣∣∣

∫ k+1

k
log x dx− log k + log(k + 1)

2

∣∣∣∣∣ ≤ 1

12
max

x∈[k,k+1]

∣∣∣∣ 1

x2

∣∣∣∣ =
1

12k2
.

Now

In − Sn =
n−1∑
k=1

Ek

where

Ek =
∫ k+1

k
log x dx− log k + log(k + 1)

2
.

Since |Ek| ≤ 1/(12k2) and the series
∑∞

k=1 1/k2 is convergent, the series∑∞
k=1Ek converges absolutely, to L say. Therefore

L = lim
n→∞

(In − Sn) = lim
n→∞

(n log n− 1− log n! + (log n)/2)

and so
lim
n→∞

((n+ 1/2) log n− n− log n!) = L+ 1.

It follows that

lim
n→∞

e−nnn+1/2

n!
= eL+1

which is
n! ∼ Ce−nnn+1/2

with C = e−L−1.
To prove that C =

√
2π involves some jiggery-pokery, and is the harder

part of Stirling’s formula. The usual trick involves Wallis’s formula (which
I won’t prove):

π

2
=
∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
=

2

1
× 2

3
× 4

3
× 4

5
× 6

5
× 6

7
× · · · .
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From Wallis’s formula,

π

2
= lim

N→∞

N∏
n=1

(2n)2

(2n− 1)(2n+ 1)
= lim

N→∞

N∏
n=1

(2n)4

(2n− 1)(2n)2(2n+ 1)

= lim
N→∞

24NN !4

(2N + 1)(2N)!2
,

We now apply our weak version of Stirling’s formula:

24NN !4

(2N + 1)(2N)!2
∼ 24NN !4

(2N)(2N)!2
∼ 24NC4e−4NN4N+2

C2e−4N(2N)2N+2
=
C2

4
.

Therefore π/2 = C2/4, that is C =
√

2π.
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