
Combinatorics: Problem sheet 2

Solutions to indicated questions must be submitted by Thursday 12 November 2015
You are encouraged to submit solutions to other questions

If you use outside resources (books, papers, websites etc.) to help
with your solutions you should acknowledge and cite them carefully

Recall that, when n ∈ N, [n] is shorthand for the set {1, 2, . . . , n}. For
instance [5] = {1, 2, 3, 4, 5}. Also a k-subset of a set A means a k-element
subset of A.

1. Let Un denote the number of ways to divide a 2-by-n rectangle into
2-by-1 dominoes.

Show that in such an arrangement, the number of horizontal dominoes
is even. Moreover prove that the number of ways of dividing a 2-by-
n rectangle into dominoes with so that 2j dominoes are horizontal is(
n−j
j

)
and deduce that

Un =
∑
j

(
n− j

j

)

where this sum is over all the integers j with 0 ≤ j ≤ n/2. [8 marks]

Also prove that
Um+n = UmUn + Um−1Un−1

as long as m ≥ 1 and n ≥ 1. [7 marks]

2. For each integer n ≥ 0 one has

1

(1− t)n+1
=
∞∑
k=0

(
n + k

k

)
tk. (∗n)

Prove (∗n)

(a) directly, using the binomial theorem;

(b) by induction, multiplying (∗n) by 1/(1− t);

(c) by induction, differentiating (∗n).

3. For each of the following recursively defined sequences (an), find its
generating function A(t) =

∑∞
n=0 ant

n, and hence find a formula for an:

(a) a0 = 1, a1 = 0, an = 10an−1 − 21an−2 (n ≥ 2);



(b) a0 = 2, a1 = 1, an = an−1 + an−2 (n ≥ 2);

(c) a0 = 1, a1 = 3, an = 6an−1 − 10an−2 (n ≥ 2); [6 marks]

(d) a0 = 1, a1 = 6, an = 6an−1 − 9an−2 (n ≥ 2);

(e) a0 = 0, a1 = −1, a2 = 5, an = 3an−1 − 4an−3 (n ≥ 3). [9 marks].

4. (From 2014 exam) You have a supply of cards, each coloured red, blue
or green. You arrange n of these cards in a row. Such an arrangement
is called admissible if

• no two blue cards are adjacent, and

• no green card has a red or blue card to its right.

For example RBRRBGGG is an admissible arrangement, but RBBRBGGG
and RBRRBGBG are not.

Let rn denote the number of admissible n-card arrangements having a
red card as the right-most card. Similarly let bn and gn respectively
denote the numbers of admissible n-card arrangements having a blue
or green card respectively as the right-most card. Define

R(t) =
∞∑
n=1

rnt
n, B(t) =

∞∑
n=1

bnt
n and G(t) =

∞∑
n=1

gnt
n.

Prove that
R(t) = t + tR(t) + tB(t)

and give similar formulas for B(t) and G(t). Hence find an explicit for-
mula for G(t) and use that to find an explicit formula for gn. [30 marks]

5. Let a0, a1, . . . be a sequence of numbers with generating function A(t) =∑∞
n=0 ant

n. Define a new sequence s0, s1, . . . by sn = a0+a1+ · · ·+an =∑n
j=0 aj. Prove that

∞∑
n=0

snt
n =

A(t)

1− t
.

Deduce that ∞∑
n=0

Dn
tn

n!
=

e−t

1− t

where Dn denotes the number of derangements of n.

6. Recall that a permutation of [n] is a bijective mapping from [n] to [n].

Let f be a permutation of [n]. We call a number j a descent of f if
f(j) > f(j+1). For instance the permutation f with f(1), . . . , f(6)) =



(5, 3, 2, 6, 4, 1) has has four descents, namely 1, 2, 4 and 5. (These de-
scents correspond to the positions in the sequence (5, 3, 2, 6, 4, 1) im-
mediately before a decrease.) It’s plain that a permutation of [n] must
have between 0 and n− 1 descents.

Define E(n, k) is the number of permutations of [n] with k descents.
Prove that

(a)
∑n−1

k=0 E(n, k) = n!;

(b) E(n, 0) = E(n, n− 1) = 1;

(c) E(n, k) = E(n, n− k − 1) for all n and k;

(d) E(n, k) = (k + 1)E(n − 1, k) + (n − k)E(n − 1, k − 1) whenever
0 < k < n− 1.

Using the last recurrence, compute E(n, k) for all n and k with 1 ≤
n ≤ 6 and 0 ≤ k ≤ n− 1.

7. Let (a1, a2, . . . , an) be a sequence of n nonnegative integers. We say
this sequence is admissible if a1 ≥ 1, a1 + a2 ≥ 2, etc. (that is the
sum of the first k terms is at least k, and also a1 + a2 + · · · + an = n.
Let An be the number of admissible sequences of length n. Then, for
instance, A3 = 5 as (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0) are
the admissible sequences of length three.

Find A4 (and A1 and A2). Conjecture, and prove, a general formula
for An.

8. Let Tn denote the number of ways of cutting a (convex) polygon with
n + 2 vertices into n triangles. Then T1 = 1:
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and T3 = 5:
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Find T4, and conjecture a formula for Tn. [10 marks]



9. Recall that a Dyck path consists of two types of steps:

• Up: (x, y)→ (x + 1, y + 1)

• Down: (x, y)→ (x + 1, y − 1)

starts at (0, 0), ends at (2n, 0) for some n and never descends below

the x-axis. There are Cn = 1
n+1

(
2n
n

)
Dyck paths from (0, 0) to (2n, 0).

An almost-Dyck path from (0, 0) to (2n, 0) consists of Up and Down
steps where exactly two of its steps lie below the x-axis. Show that each
almost-Dyck path from (0, 0) to (2n, 0) goes through exactly one point
(2k + 1,−1), and that there are CkCn−k−1 almost-Dyck paths from
(0, 0) to (2n, 0) through this point. Hence find and prove a formula for
the total number of almost-Dyck paths from (0, 0) to (2n, 0).

10. Consider paths in the grid. We allow three types of steps:

• Up: (x, y)→ (x + 1, y + 1);

• Down: (x, y)→ (x + 1, y − 1);

• Horizontal: (x, y)→ (x + 1, y).

An M-path is a finite path built from these steps, starting at (0, 0),
ending on the x-axis and entirely lying on or above the x-axis. Let Mn

denote the number of M-paths ending at (n, 0) (also let M0 = 1). Find
M1, M2, M3, M4 and M5, directly from the definition. [12 marks]

Prove that, for n ≥ 2,

Mn = Mn−1 +
n∑

k=2

Mk−2Mn−k.

Use this identity to find a quadratic equation satisfied by the generat-
ing function M(t) =

∑∞
n=0Mnt

n and hence find an explicit expression
for M(t). [18 marks]

(Warning: as far as I know there is no “closed formula” for the Mn

themselves.)
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