
Combinatorics: Problem sheet 4

Solutions to indicated questions must be submitted by Thursday 10 December 2015
You are encouraged to submit solutions to other questions

If you use outside resources (books, papers, websites etc.) to help
with your solutions you should acknowledge and cite them carefully

Recall that pn denotes the number of partitions of n.

1. Find all partitions of 8, 9 and 10.

2. Find all partitions into distinct parts of 17. Also find all partitions into
odd parts of 17.

3. Find all self-conjugate partitions of 21 and draw the Ferrers diagram
of each. [10 marks]

4. A composition of n is a finite sequence λ = (λ1, . . . , λr) of positive
integers whose sum is n. Here order does matters: for instance, (5),
(3, 2), (2, 3) and (1, 2, 1, 1) are all compositions of 5, and (3, 2) and (2, 3)
are different compositions. Let cn denote the number of compositions
of n and compute c1, c2, c3 and c4. Conjecture and prove a formula
for cn. [10 marks]

Why do you think the theory of compositions is less studied than that
of partitions?

5. Let an be the number of partitions of n in which no part occurs more
than twice (e.g., 4 32 2 12 is included in this count but 5 4 13 isn’t). Let
bn be the number of partitions of n in which no part is a multiple of 3
(e.g., 7 52 4 23 is included but 8 6 43 22 isn’t). Find infinite product
expressions for

∞∑
n=0

anx
n and

∞∑
n=0

bnx
n

and hence, or otherwise, prove that an = bn for all n. [15 marks]

6. Let λ = (λ1, . . . , λm) be a partition, and let µ = λ′ = (µ1, . . . , µr) be
its conjugate. Prove that µk is the largest number j with λj ≥ k.

7. Let p(k)n be the number of partitions of n with exactly k parts. Show
that

∞∑
n=0

p(k)n tn = tk
k∏

j=1

1

1− tj
.



8. Use Euler’s recurrence

pn =
∞∑
j=1

(−1)j−1(pn−j(3j−1)/2 + pn−j(3j+1)/2)

to calculate pn for all n up to 25. [15 marks]

(Optional: program a computer to calculate pn for all n up to 200 (or
beyond!) thus checking Major MacMahon’s calculations).

9. Prove that pn ≥ pn−1 for all n ≥ 1. Using Euler’s recurrence or other-
wise, prove that pn ≤ pn−1 + pn−2 for all n ≥ 2. [20 marks]

10. Recall the Jacobi triple product :

∞∏
n=1

[
(1 + x2n−1z)(1 + x2n−1z−1)(1− x2n)

]
=

∞∑
m=−∞

zmxm
2

. (∗)

As an example of the use of (∗), setting z = 1 and x = t gives

∞∏
n=1

[
(1 + t2n−1)2(1− t2n)

]
=

∞∑
m=−∞

tm
2

.

(a) Use (∗) to obtain a product formula for
∑∞

m=0 t
m(m+1).

(b) (harder) Put x = t and z = −tu in (∗), divide both sides by
(1− u), set u = 1 and deduce that

∞∏
n=1

(1− t2n)3 =
∞∑

m=0

(−1)m(2m+ 1)tm(m+1).

11. Let P (t) =
∑∞

n=0 pnt
n =

∏∞
m=1(1− tm)−1. Prove that

P ′(t)

P (t)
=

d

dt
logP (t) =

∞∑
n=1

σ(n)tn−1

where σ(n) is the sum of the positive integer divisors of n. (For instance,
σ(10) = 18 as the divisors of 10 are 1, 2, 5 and 10 which add to 18).
Deduce that

npn =
n−1∑
k=1

σ(k)pn−k.



12. Find in the literature (books, papers, websites and so on) a proof of the
Jacobi triple product formula that is different to the one I gave in the
lectures, and give an account of this in your own words. You should
cite your source(s) carefully; marks will be awarded by convincing me
that you understand the proof you give. (Warning: there are erroneous
proofs out there; correcting errors will impress me, repeating them will
depress me.) [30 marks]

13. (Exam 2013) Let Ak denote the set of all partitions which have both (i)
exactly k parts and (ii) largest part k. Write down all elements of A3

and their Ferrers diagrams. State and prove a formula for the number
of elements of Ak.

14. (Challenge problem: due to Mircea Merca, American Mathematical
Monthly, November 2012) We adopt the convention that pn = 0 when-
ever n is a negative integer. Prove that

pn − 4pn−3 + 4pn−5 − pn−8 > 0

whenever n ≥ 0 and n 6= 3.

15. (Challenge problem: due to Mircea Merca, American Mathematical
Monthly, October 2013) For convenience in displaying the formula be-
low I write p(n) instead of pn. Prove that

∞∑
k=0

2k∑
j=0

(−1)kp

(
n− k(3k + 1)

2
− j

)
= 1

for all integers n ≥ 0.

16. (Challenge problem: more of a mini-project than a straight problem)
The first stage in my proof of the Jacobi triple product is to prove that

∞∏
k=1

(1 + x2k−1z)(1 + x2k−1z−1) = F (x)
∞∑

m=−∞
xm

2

zm. (∗)

Prove that the sum S(x, z) =
∑∞

m=−∞ x
m2
zm satisfies the partial dif-

ferential equation

x
∂S

∂x
= z2

∂2S

∂z2
+ z

∂S

∂z
. (†)

Use (∗) and (†) to find an ordinary differential equation satisfied by
F (x) and solve it to complete the proof of the Jacobi triple product.
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